Journal of Cheminformatics© Lu et al.; licensee Chemistry Central Ltd. 2014
                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

              

https://doi.org/10.1186/1758-2946-6-26

Research article

Estimation of acute oral toxicity in rat using local lazy learning

Jing Lu1, 2   , Jianlong Peng2   , Jinan Wang2  , Qiancheng Shen2  , Yi Bi1  , Likun Gong2  , Mingyue Zheng2  , Xiaomin Luo2  , Weiliang Zhu2  , Hualiang Jiang2, 3, 4   and Kaixian Chen2, 3  
(1)Department of Medicinal Chemistry, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China

(2)Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China

(3)School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China

(4)School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China

 

 
Jing Lu
Email: lujing_ytu@126.com

 
Jianlong Peng
Email: pjlxsda@163.com

 
Jinan Wang
Email: jawang@mail.shcnc.ac.cn

 
Qiancheng Shen
Email: qcshen@mail.shcnc.ac.cn

 
Yi Bi
Email: beeyee_413@sina.com

 
Likun Gong
Email: lkgong@cdser.simm.ac.cn

 
Mingyue Zheng (Corresponding author)
Email: myzheng@mail.shcnc.ac.cn

 
Xiaomin Luo (Corresponding author)
Email: xmluo@simm.ac.cn

 
Weiliang Zhu
Email: wlzhu@mail.shcnc.ac.cn

 
Hualiang Jiang
Email: hljiang@mail.shcnc.ac.cn

 
Kaixian Chen
Email: kxchen@mail.shcnc.ac.cn


 Contributed equally


Received: 28 March 2014Accepted: 6 May 2014Published online: 16 May 2014
Abstract
Background
Acute toxicity means the ability of a substance to cause adverse effects within a short period following dosing or exposure, which is usually the first step in the toxicological investigations of unknown substances. The median lethal dose, LD50, is frequently used as a general indicator of a substance’s acute toxicity, and there is a high demand on developing non-animal-based prediction of LD50. Unfortunately, it is difficult to accurately predict compound LD50 using a single QSAR model, because the acute toxicity may involve complex mechanisms and multiple biochemical processes.

Results
In this study, we reported the use of local lazy learning (LLL) methods, which could capture subtle local structure-toxicity relationships around each query compound, to develop LD50 prediction models: (a) local lazy regression (LLR): a linear regression model built using k neighbors; (b) SA: the arithmetical mean of the activities of k nearest neighbors; (c) SR: the weighted mean of the activities of k nearest neighbors; (d) GP: the projection point of the compound on the line defined by its two nearest neighbors. We defined the applicability domain (AD) to decide to what an extent and under what circumstances the prediction is reliable. In the end, we developed a consensus model based on the predicted values of individual LLL models, yielding correlation coefficients R2 of 0.712 on a test set containing 2,896 compounds.

Conclusion
Encouraged by the promising results, we expect that our consensus LLL model of LD50 would become a useful tool for predicting acute toxicity. All models developed in this study are available via http://​www.​dddc.​ac.​cn/​admetus.
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Background
Estimation of rodent acute toxicity is an important task in the safety assessment of drug candidates. Median lethal dose (LD50), a dose causing 50% death of the treated animals in a given period when administered in an acute toxicity test [1], is a common criterion that measures acute toxicity of compound. However, due to ethical reasons, the animal experiments on rodent acute toxicity are highly controversial. European Union Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) has recommended the use of in vitro or in silico methods instead of animal testing of LD50[2]. This proposal drives the development of quick, reliable, and non-animal predicting methods such as quantitative structure-toxicity relationships (QSTRs).
Acute toxicity involves multiple biochemical mechanisms, and a large number of compounds have been reported for their LD50 information, which covers a significant portion of chemical diversity space. These complexities pose a big challenge to the building of a single QSAR model with high prediction accuracy. Taking the acute rodent toxicity as an example, Enslein et al.[3, 4] developed multiple linear regression (MLR) models based on noncongeneric datasets, and found that the models had poor prediction power. To increase the prediction accuracy, Eldred et al.[5] and Guo et al.[6] built a few local models based on congeneric datasets. This type of models has improved accuracy, but their application ranges are limited. Zhu et al.[7] introduced the applicability domain (AD) in their study, and constructed consensus model from multiple individual models using k nearest neighbors (KNN), random forest, hierarchical clustering, and so on. The consensus model showed improved results as compared to the individual constituent models, while the prediction accuracy is still limited when the model coverage increases.
Due to the complex mechanisms of acute toxicity, we explored the similarity-based local models to study the rat LD50 data by oral exposure. The basic idea of such models follow that “structurally similar molecules are likely to have similar properties”, which is suitable for modeling very complex boundaries between two classes [8]. In light of the idea, Yuan et al.[9] proposed a method “Clustering first, and then modeling”. It means the training set members are firstly grouped together based on their structural similarity. Then, the test set member is assigned to a specific group according to its structural resemblance to the group members, and its toxicity value is next predicted using an on-the-fly constructed model from the group. This method shows good performance for the datasets with distinct clusters, but it has the disadvantage of requiring a priori knowledge of the number of clusters. In this study, we try to use local lazy learning (LLL) to solve this problem. Given a test compound, LLL method firstly find its k nearest neighbors in the training set by using a predefined property set (molecular fingerprints or descriptors), and then build local models using these compounds to predict the value of the test compound. This method can fully consider the structural information of every test compound, while doesn’t rely on a priori knowledge of clusters. Moreover, to further improve the prediction accuracy, we try to enrich the reference data set and construct consensus models, which are critical for reducing the high variance of individual models. In the end, we analyze the application domain of the resulted models.

Results and discussion
Performance evaluation of LLL models
The use of LLL models makes it possible to explore many local structure-toxicity trends rather than global trends, which is expected to achieve an improvement in the prediction accuracy. Among the four types of LLL models, LLR prediction is based on a linear regression model with a single explanatory variable. In contrast, SA, SR, and GP predictions are directly based on the LD50 values of the query’s neighbors. In assessing molecular similarity, we used three structural (ECFP4, FCFP4, and MACCS) and descriptor-based (DES) metrics to determine which compounds would be selected as neighbors of a query from different aspects. Since each LLL model can be combined with each type of the metrics, there are 16 individual models in all. During constructing kNN-like models, the choice of k is very critical. A small value of k can make noises have a higher influence on the result, while a large one makes it computationally expensive and does not follow the underlying assumption that similar compounds share similar toxicity. Here the LLR and GP models automatically learn a specific k for each query compound. In contrast, SA and SR models use a fixed number of neighbors, which is optimized using cross-validation on the whole reference set. Table 1 summarized the statistics of the models on the test set using reference Set I, together with the best results of Zhu et al.[7] for comparison. Among the four LLL models, LLR has the lowest R2 and the largest MAE (mean absolute error), and the results of GP and SR are slightly better than SA. It is not surprising to notice that LLR yielded inferior prediction accuracy. Compared with other models, LLR has the ability to make prediction outside the range of our reference data. However, it is also subject to greater uncertainties and a higher risk of producing meaningless results, as it relies on not only the existence of similar reference compounds, but also the choice of relevant variables to establish the local regression model. For the other three methods, the SA model assumed equal contribution of all neighbors. However, when constructing similarity-based models, it cannot be guaranteed that all neighbors are similar enough to the test compound. Therefore, the performance of SR and GP is expected to be improved by applying weighting strategy such that more similar neighbors contribute more to the prediction. In this respect, we may find that the prediction accuracies of different models agree with our expectation. Moreover, for the four similarity metrics, most results obtained from fingerprints (ECFP4, FCFP4, and MACCS) were found superior to the results from DES. This observation suggests that the structural similarity is more efficient than the descriptor-based similarity in selecting neighbors with equivalent toxicity level. Among the 16 individual LLL models, the best combination is GP + ECFP4. It yielded R2 of 0.491 for “Set_2896”, 0.514 for “Set_2583”, and 0.719 for “Set_743”. Apart from being used to build predictive models, the fingerprints can also be analyzed to find out the fragments that may cause acute toxicity. The corresponding analysis with ECFP4 is provided in Additional file 1.Table 1
                          Performance of four LLL models using different similarity metrics on the test set using reference set I (Group I) versus the best model of the reference
                        


	Models
	“Set_3874”
	“Set_2896”
	“Set_2583”
	“Set_743”

	 	 	R2
	MAE
	R2
	MAE
	R2
	MAE
	R2
	MAE

	LLR
	ECFP4
	0.347
	0.622
	0.415
	0.589
	0.437
	0.580
	0.647
	0.474

	FCFP4
	0.333
	0.629
	0.433
	0.589
	0.460
	0.575
	0.649
	0.477

	MACCS
	0.317
	0.640
	0.386
	0.608
	0.407
	0.599
	0.644
	0.506

	DES
	0.255
	0.667
	0.348
	0.608
	0.381
	0.588
	0.578
	0.444

	LLR_consensus
	0.434
	0.535
	0.511
	0.508
	0.534
	0.499
	0.738
	0.401

	SA
	ECFP4
	0.390
	0.563
	0.464
	0.535
	0.486
	0.526
	0.688
	0.427

	FCFP4
	0.363
	0.581
	0.469
	0.543
	0.494
	0.527
	0.674
	0.441

	MACCS
	0.379
	0.573
	0.452
	0.546
	0.467
	0.542
	0.679
	0.452

	DES
	0.329
	0.591
	0.419
	0.539
	0.448
	0.523
	0.627
	0.407

	SA_consensus
	0.450
	0.528
	0.527
	0.493
	0.544
	0.490
	0.746
	0.394

	SR
	ECFP4
	0.406
	0.555
	0.483
	0.524
	0.508
	0.514
	0.719
	0.408

	FCFP4
	0.376
	0.575
	0.485
	0.536
	0.513
	0.519
	0.701
	0.426

	MACCS
	0.383
	0.570
	0.457
	0.543
	0.473
	0.539
	0.690
	0.445

	DES
	0.329
	0.590
	0.419
	0.539
	0.448
	0.523
	0.627
	0.407

	SR_consensus
	0.457
	0.515
	0.536
	0.489
	0.555
	0.485
	0.761
	0.384

	GP
	ECFP4
	0.413
	0.550
	0.491
	0.519
	0.514
	0.510
	0.719
	0.406

	FCFP4
	0.367
	0.583
	0.477
	0.543
	0.504
	0.527
	0.689
	0.437

	MACCS
	0.360
	0.586
	0.443
	0.556
	0.461
	0.551
	0.692
	0.451

	DES
	0.329
	0.586
	0.421
	0.534
	0.450
	0.518
	0.627
	0.412

	GP_consensus
	0.460
	0.512
	0.545
	0.483
	0.565
	0.477
	0.771
	0.371

	Final_consensus
	0.466
	0.510
	0.545
	0.483
	0.565
	0.478
	0.769
	0.374

	Reference
	Individuala
	n/ab
	n/ab
	0.41
	0.55
	0.41
	0.56
	0.70
	0.41

	 	Consensus
	n/a
	n/a
	0.42
	0.52
	0.48
	0.51
	0.71
	0.39


aFor each coverage set, the best result among all individual models reported by Zhu et al. [7] was shown.
bThe reference did not report the prediction results of all compounds in the test set.




Performance improvement by constructing consensus model
LLL models using different learning algorithm or similarity metrics can possess the high variance. For example, the descriptors used in this study characterize whether two compounds share similar physic-chemical properties, while fingerprints more focus on the 2D structure similarity, leading to that an individual model could only capture part of the relationship. Depending on the analogues retrieved by different similarity metrics, the learned decision boundaries and values can vary significantly. As a result, each compound has a chance of being successfully predicted for some individual models. This can be illustrated by the prediction of 5,6,7-Trichloro-2-(trifluoromethyl)-4- benzimidazolesulfonamide [10]. As shown in Figure 1, we may notice that all the individual model predictions show great variability, in which the toxicity is overestimated by using ECFP4 and FCFP4, but is underestimated by using MACCSS and DES. Accordingly, the average prediction from individual models is closer to the actual LD50 value. Therefore, to explore the complementary features of different modeling techniques for predicting the acute oral toxicity, we also constructed consensus models based on the above described individual LLL models. Given a query compound, its LD50 value in consensus model is predicted as the arithmetic average of all LD50 values from individual models. The statistical results of different consensus models on the test set were listed in Table 1. Clearly, all the consensus models showed improved performance as compared to their constitutional ones. Most of the prediction accuracies of the LLR, SA, SR, and GP consensus models were higher than those of the reference (e.g., R2 of “Set_2896” is 0.545 for GP versus 0.42 for the reference consensus model). Of note is the final consensus model. It obtained further improved R2 values ranging from 0.545 to 0.769 for “Set_2896”, “Set_2583” and “Set_743”, significantly higher than those of the reference consensus model. These results demonstrated that the LLL model based averaging scheme is an efficient way for enhancing prediction accuracy of acute toxicity prediction.[image: A13321_2014_Article_603_Fig1_HTML.jpg]
Figure 1Example to show how consensus model improve the prediction results. Comparison of estimates for an herbicide (CAS: 89427-44-1) using individual and consensus models from Group I. The y-axis is prediction error.





Performance improvement by enriching the reference set
The above results suggest that the use of LLL approaches can generally lead to an improvement in LD50 prediction accuracy. Then, we further inspected the performance of LLL models on the four different test sets. One can easily see that a significantly better prediction can be achieved for compounds which have more similar neighbors in the reference set. Clearly, a large and structurally diverse reference set is essential to the similarity based approaches. To enrich the chemical diversity space covered by the reference library, 2,271 compounds with LD50 values from EPA [11] and Accelrys Toxicity database [12] were combined with the reference set I to compose the reference set II. Table 2 summarized the statistics of all individual and consensus models on the test set by applying the expanded reference set. To make the comparison more clearly, we also plotted the distribution of performance on the whole test set (“Set_3874”) using the two reference set. As shown in Figure 2, we may find that the increasing of the size and diversity of reference set evidently contributed to the improvement of results. For example, the model GP + ECFP4 using reference set II obtained a R2 of 0.587 on the whole test set, while the corresponding model using reference set I only gave a R2 of 0.413. In contrast to the subtle differences among the results of various LLL schemes, the enrichment of the reference set substantially improved the prediction performance of all models.Table 2
                          Performance of our models on the test set using the reference set II (Group II)
                        


	Models
	“Set_3874”
	“Set_2896”
	“Set_2583”
	“Set_743”

	 	 	R2
	MAE
	R2
	MAE
	R2
	MAE
	R2
	MAE

	LLR
	ECFP4
	0.513
	0.495
	0.623
	0.439
	0.657
	0.415
	0.867
	0.222

	FCFP4
	0.481
	0.513
	0.604
	0.457
	0.640
	0.435
	0.818
	0.299

	MACCS
	0.476
	0.511
	0.568
	0.458
	0.610
	0.431
	0.833
	0.282

	DES
	0.459
	0.525
	0.594
	0.451
	0.633
	0.428
	0.824
	0.259

	LLR_consensus
	0.608
	0.420
	0.711
	0.371
	0.743
	0.354
	0.908
	0.186

	SA
	ECFP4
	0.519
	0.498
	0.610
	0.468
	0.634
	0.457
	0.731
	0.400

	FCFP4
	0.492
	0.513
	0.593
	0.481
	0.619
	0.470
	0.716
	0.438

	MACCS
	0.484
	0.517
	0.573
	0.485
	0.608
	0.470
	0.745
	0.397

	DES
	0.472
	0.522
	0.576
	0.477
	0.610
	0.462
	0.745
	0.361

	SA_consensus
	0.577
	0.452
	0.664
	0.424
	0.690
	0.416
	0.779
	0.365

	SR
	ECFP4
	0.551
	0.475
	0.650
	0.438
	0.676
	0.424
	0.834
	0.319

	FCFP4
	0.520
	0.495
	0.627
	0.458
	0.656
	0.444
	0.772
	0.391

	MACCS
	0.494
	0.510
	0.585
	0.476
	0.621
	0.460
	0.765
	0.381

	DES
	0.473
	0.521
	0.576
	0.477
	0.610
	0.461
	0.747
	0.360

	SR_consensus
	0.593
	0.442
	0.683
	0.411
	0.710
	0.402
	0.825
	0.330

	GP
	ECFP4
	0.587
	0.436
	0.684
	0.391
	0.709
	0.375
	0.928
	0.161

	FCFP4
	0.547
	0.462
	0.659
	0.413
	0.694
	0.394
	0.844
	0.278

	MACCS
	0.489
	0.493
	0.585
	0.451
	0.630
	0.428
	0.845
	0.292

	DES
	0.501
	0.494
	0.610
	0.445
	0.647
	0.426
	0.817
	0.297

	GP_consensus
	0.623
	0.413
	0.717
	0.374
	0.744
	0.362
	0.916
	0.213

	Final_consensus
	0.619
	0.422
	0.712
	0.385
	0.740
	0.374
	0.885
	0.265



[image: A13321_2014_Article_603_Fig2_HTML.jpg]
Figure 2
                          Distribution of R
                          
                            2
                          
                          values for the prediction of whole test set (“Set_3874”) using different reference set.
                        




The improvement can be illustrated with the prediction of the following test compound. Flocoumafen (cas: 90035-08-8) is an anticoagulant rodenticides [13] with a LD50 of 6.336. As shown in Table 3, the neighbors selected from the reference set I have low similarities to the compound, and the resultant prediction errors are large. However, the similarities of the neighbors selected from the reference set II to flocoumafen are significantly increased, and the toxicity range of neighbors (the range is from 4.762 to 6.515) is also closer to the test compound. With these similar reference compounds, the results of Group II had significant improvement compared to those of Group I. Apparently, the reference set should be expanded not only in terms of chemical diversity but also their activity distribution to afford higher prediction accuracy of LLL models.Table 3
                          The results of the test compound flocoumafen (cas: 90035-08-8) and its neighbors from the reference set I and II
                        


	 	Structure
	Exp. LD50a
	Dis.b
	Pred. LD50c
	Pred. LD50d

	Flocumafen
	
                              [image: A13321_2014_Article_603_IEq1_HTML.gif]
                            
	6.336
	---
	---
	---

	The neighbors from reference set I
	
                              [image: A13321_2014_Article_603_IEq2_HTML.gif]
                            
	4.068
	0.543
	3.435
	3.085

	
                              [image: A13321_2014_Article_603_IEq3_HTML.gif]
                            
	3.129
	0.691

	
                              [image: A13321_2014_Article_603_IEq4_HTML.gif]
                            
	2.687
	0.714

	
                              [image: A13321_2014_Article_603_IEq5_HTML.gif]
                            
	3.147
	0.720

	
                              [image: A13321_2014_Article_603_IEq6_HTML.gif]
                            
	3.166
	0.743

	The neighbors from reference set II
	
                              [image: A13321_2014_Article_603_IEq7_HTML.gif]
                            
	6.218
	0.169
	6.295
	5.948

	
                              [image: A13321_2014_Article_603_IEq8_HTML.gif]
                            
	5.807
	0.177

	
                              [image: A13321_2014_Article_603_IEq9_HTML.gif]
                            
	5.743
	0.194

	
                              [image: A13321_2014_Article_603_IEq10_HTML.gif]
                            
	5.686
	0.338

	 	
                              [image: A13321_2014_Article_603_IEq11_HTML.gif]
                            
	5.873
	0.343
	 	 

aExperimental –log(LD50).
bThe Tanimoto distance of Flocumafen to its neighbor using ECFP4.
cThe predicted –log(LD50) value by the best individual model.
dThe predicted –log(LD50) value by the final consensus model.




Effects of applicability domain
A large reference set with more similar compounds can improve the prediction performance of models. However, we still need to determine in which range and to what an extent the LLL models can be reliably applied. In this study, the AD is defined as a Tanimoto (or Euclidean) distance threshold between the test compound and its nearest neighbor. If the calculated distance is beyond the threshold, the prediction of the test compound is considered to be unreliable. Through the Equation (7), we obtained the AD threshold of every individual model. In Group I, the distance thresholds are 0.595 for ECFP4, 0.477 for FCFP4, 0.257 for MACCS, and 0.035 for DES. In Group II, the distance thresholds are 0.498 for ECFP4, 0.378 for FCFP4, 0.195 for MACCS, and 0.025 for DES. Obviously, the expansion of the reference dataset made it possible to find more similar compounds for the test compound, and hence enlarged the model AD. In order to investigate the influence of AD on prediction error, we further applied the models of Group II to the test compounds within and outside AD, respectively. From the distribution of MAEs (see Figure 3), we can find that the MAEs follow the trend within < all < outside in all individual models, which is in line with our initial hypothesis that AD delimitation is required to assess the reliability of a prediction. Specifically, the models using ECFP4 have the best performance for compounds both within and outside AD, but have the smallest AD. In contrast, the models using “DES” have the worst performance but the largest AD. When using the same similarity metrics, GP in most cases showed the best performance among the four LLL model types, while the other three exhibited some differences for compounds within and outside the AD. For example, the MAEs of LLR are lower than SA and SR for compounds within AD, but are higher for those outside AD. All these observations suggested that the individual LLL models explain complementary portions of the variance in chemicals’ LD50 data, which also account for the improvement in consensus modeling in this study.[image: A13321_2014_Article_603_Fig3_HTML.jpg]
Figure 3The MAEs of all individual models for the test set in Group II. all (blue): the MAEs of all compounds in the test set; within (red): the MAEs of compounds within AD; outside (green): the MAEs of compounds outside of the AD; comp: the number of compounds within the AD.




As the final consensus model is constructed by taking the arithmetic average of all LLL models, its reliability to predict a test compound highly depends on its constituent models. Therefore, the “consensus prediction fraction” (i.e., the ratio of individual models being reliable to predict a new compound), is used to define the AD of the final consensus model [7]. In the current study, the final model comprises four kinds of individual LLL models, and if one of them can reliably predict a new compound, the “consensus prediction fraction” is 25% for this compound. Only if the “consensus prediction fraction” is larger than or equals to a predefined threshold, the final consensus model is considered as reliable. When the threshold is set to be 75%, there are totally 2,378 test compounds within the AD, on which the final consensus model has significantly improved performance. For example, for the final consensus model of Group II, the MAEs of all, within, and outside are 0.422, 0.358, and 0.523, respectively. Obviously, the application of AD can tell us when the final consensus model provides a reliable and better estimation of acute oral toxicity in rat.


Experimental
Datasets
The rat LD50 data by oral exposure were collected from Zhu et al.[7], United States Environmental Protection Agency dataset [11], and Accelrys Toxicity database 2011.4 [12]. The final dataset included 9,617 compounds after removing the duplicated and wrong structures. Among them, there are 3,472 and 3,874 compounds identical to Zhu’s training set and test set, which will be used as the reference Set I and the test set, respectively. For comparison, we prepared three subsets representing different prediction coverage, in which the test compounds were ranked ascendingly according to their distance to their nearest neighbors, and then the first 2,896, 2,583 and 743 compounds were selected, respectively, to comprise multiunit test sets (hereafter called “Set_2896”, “Set_2583”, “Set_743”). In addition we also constructed an expanded reference set named the reference set II, which contains 5,743 compounds including the whole reference Set I, the compounds from EPA dataset and Accerlys Toxicity dataset. The original unit of LD50 was firstly converted to -log(mol/kg) to conform to the standard QSAR practice.

Feature sets and similarity measurement
The initial structures of all compounds were optimized by Sybyl 6.8 [14] which used the Powell method with Tripos Force fields and Gasteiger–Hückel charges. Further structural optimization was performed using the AM1 semi-empirical method implemented in AMPAC 8.16 [15]. To measure the similarity between compounds, we tried both physicochemical descriptors and molecular fingerprints. For the former, totally 490 descriptors were calculated with Codessa 2.7.2 [16] and Discovery Studio 2.5 [17]. After removing those descriptors with zero variance or that cannot be calculated for some compounds, altogether 286 descriptors were remained (hereafter called “DES”). For any two compounds, their normalized Euclidean distance (Dis) [18] was defined below:[image: A13321_2014_Article_603_Equ1_HTML.gif]

 (1)


where X
                    iA
                   and X
                    iB
                   are the normalized values of the i-th descriptor of A and B, respectively. For molecular fingerprints, the widely used ECFP4 [19], FCFP4 [19], and MACCS [20] were generated with RDKit [21]. Given the bit vectors of those fingerprints, the Tanimoto similarity (Sim) [18] between any two compounds were computed, and their Tanimoto distance (Dis’) was given by the following transformation:[image: A13321_2014_Article_603_Equ2_HTML.gif]

 (2)



Prediction models
For each given query compound, four sets of k nearest neighbors were retrieved from the reference set using different feature sets. Then local lazy learning strategies were applied to construct local models, from which consensus model was built. All the computation was done using in-house C/Python programs.


Conclusion
In this study, four kinds of local lazy learning schemes were combined with four similarity metrics to predict the acute toxicity in rat. Different from the conventional global QSAR models built upon the entire diverse data set, these LLL models were constructed “on-the-fly” by only utilizing the analogical compounds of a query. Accordingly, the detailed and subtle local structure-toxicity relationships around the query compound can be captured, which might be otherwise overshadowed by the large amount of employed training compounds in global models. As the approach relies on a priori knowledge about the toxicity profile of a query’s neighbors, its prediction accuracy can be improved by enriching the size and the structural diversity of the reference set, and the “on-the-fly” feature of LLL models also allows for a timely update and expansion. To reduce the high variance of individual LLL models, a consensus modeling scheme was employed, which further improved the accuracy of LD50 prediction. For the “Set_2896”, the R2 of the final consensus model using reference set II was enhanced from 0.545 to 0,712, and the MAE of prediction was reduced to 0.385. Moreover, by introducing the concept of AD, the reliability of a predication can be evaluated. For the compounds within AD, their toxicity can be more accurately predicted. The outstanding performance of our approach suggests that LLL models are feasible and effective for in silico prediction of acute oral toxicity in rat. We expect this method would also be a useful tool to provide inspiration for discovering novel drug candidates with favorable safety profile.

Methods
kNN-based LLL Models
Four sets of k nearest neighbors were provided for a test compound by ECFP4, FCFP4, MACCS, and DES. For each set, four types of LLL models were built, with details described as follows:[image: A13321_2014_Article_603_Fig4_HTML.jpg]
Figure 4
                          The flowchart of the LLR modeling.
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Figure 5Triangle inequality. An triangle can be constructed for any 3 compounds by using Euclidean or Tanimoto distance as the length of edge. D is the projection of vertex C on line AB.





                  	a.Local lazy regression (LLR): For each test compound, only one most relevant descriptor was selected to build a linear equation based on k nearest neighbors. During the procedure, both the descriptor and the number of nearest neighbors were optimized. Initially let k = 5 and Q 
                            2
                           = −108 (an arbitrary negative value that will be updated during the iteration), the algorithm was described as follows: (1). Select k nearest neighbors of the query compound (q) from the reference set. (2). Use one single descriptor to build a linear regression model, and perform a leave-one-out (LOO) cross-validation for the model. Note here the descriptor value calculated for the query was compared with those calculated for its neighbors. If the query’s value falls outside the range of its neighbors, the descriptor was disregarded to avoid yielding an extrapolated value. (3). After traversing all descriptors, record the descriptor D (k) that leads to the highest LOO Q 
                            2
                           
                            k
                          . (4). If Q 2 
                            k
                           > Q 2, update Q 2 and D (k), then add one more neighbor, and repeat steps 1–3 until k > 20; otherwise, the iteration is terminated, and let k = k-1. Finally, the query compound was predicted by a linear model using k nearest neighbors and the descriptor D 
                            (k)
                          . Figure 4 shows the flowchart of the LLR modeling.


 

	b.SA model: The predicted toxicity of the test compound is calculated as [22, 23]: [image: A13321_2014_Article_603_Equ3_HTML.gif]

 (3)




 




                
where y
                    i,obs
                   is the experimental value of the i-th neighbor, and y
                    pre
                   is the predicted value of the test compound. The value of n was determined by using 10-fold cross validation of the reference set.	c.SR model: The predicted toxicity of the test compound is calculated by [22, 23]: [image: A13321_2014_Article_603_Equ4_HTML.gif]
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where s
                    i
                   is the similarity value between the test compound and the i-th neighbor. The value of n was determined in the same way as being used to build the SA model.	d.GP model: For a query compound C and any two neighbors A and B, a triangle can be constructed in a multidimensional descriptor space (Euclidean space). As shown in Figure 5, the value of projection point D is used as an estimate of C, and under the assumption that the y-values is linearly changed along the line AB, the value of D can be calculated as follows: [image: A13321_2014_Article_603_Equ5_HTML.gif]

 (5)




 




where d
                    AB
                   is the distance between neighbor A and B, d
                    AD
                   = d
                    AC
                  * cos∠CAB, and y is –log(LD50) value of compound. Besides, as being proved by Lipkus [24] that Tanimoto distance from bit vectors also satisfies the triangle inequality, the GP model can also be applied to those using Tanimoto distance as a similarity measurement. Given k nearest neighbors of the query, any pair of the neighbors can build a GP model to yield a projection point D. We take the weighted average of all [image: A13321_2014_Article_603_IEq12_HTML.gif] individual estimates of the projection points as the final prediction:[image: A13321_2014_Article_603_Equ6_HTML.gif]

 (6)


where S is the similarity between a pair of neighbors, y
                    D
                   is obtained by Equation (5). Of note the above definitions assume that none of the edges of a triangle is degenerated. If a query compound has a neighbor with a zero distance, its LD50 is directly estimated by that neighbor. Moreover, a proper k was automatically optimized for each test compound by applying the same strategy showing in Figure 4. This procedure is similar to that of LLR except that the initial k value was set to 3.

Consensus model
The LLL methods in this study are all similarity based, of which the decision boundary or value largely depends on the input points and their particular positions. However, individual models using different modeling methods or similarity measurements could vary significantly and capture different part of the relationship. To reduce the high variance, consensus model can be established by combining each individual model, which has been demonstrated to be an effective means to improve the performance of similarity based methods [7, 25–29]. In this study, the strategy as used in Zhu et al.[7] was applied to build consensus model, in which the predicted toxicity for each compound equals to the arithmetical mean of all predicted values of individual models. For each type of LLL method, a consensus model was constructed by averaging the results using different similarity metrics, named as “LLR_consensus”, “SA_consensus”, “SR_consensus”, and “GP_consensus”, respectively. Besides, a consensus model named “Final_consensus” was built by averaging all the 16 individual models.

Applicability domain (AD)
In the QSAR models, the AD defines the chemical space for which the model is considered to be applicable [30]. Here we use the distance-based AD definition [30, 31], which assumes a prediction reliable if the concerned molecule is located in the neighborhood of the reference set compounds. The threshold of distance D
                    T
                   is defined as:[image: A13321_2014_Article_603_Equ7_HTML.gif]

 (7)


Where [image: A13321_2014_Article_603_IEq13_HTML.gif] is the average Tanimoto or Euclidean distance between all compound and their nearest neighbor in the reference set, σ is the standard deviation of these distances, and Z is an arbitrary parameter to control the threshold level (here set to 0.5). If the distance of the compound to its nearest neighbor exceeds this threshold, this test compound is treated as an “outlier”, and the prediction result is considered to be unreliable.
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