POSTER PRESENTATION

Open Access

Predicting protein-protein interactions with DrugScore^{PPI}: fully-flexible docking, scoring, and *in silico* alanine-scanning

DM Krüger^{1*}, JI Garzón², PC Montes², H Gohlke¹

From 6th German Conference on Chemoinformatics, GCC 2010 Goslar, Germany. 7-9 November 2010

Protein-protein complexes play key roles in all cellular signal transduction processes. Here, we present a fast and accurate computational approach to predict protein-protein interactions. The approach is based on DrugScore^{PPI}, a knowledge-based scoring function for which pair potentials were derived from 851 complex structures and adapted against 309 experimental alanine scanning results. We developed the DrugScore^{PPI} webserver [1], accessible at http://cpclab.uni-duesseldorf.de/ dsppi, that is intended for identifying hotspot residues in protein-protein interfaces. For this, it allows performing computational alanine scanning of a protein-protein interface within a few minutes. Our approach has been successfully validated by application to an external test set of 22 alanine mutations in the interface of Ras/ RalGDS and outperformed the widely used CC/PBSA, FoldX, and Robetta methods [1].

Next, DrugScore^{PPI} was teamed with FRODOCK [2], a fast FFT-based protein-protein docking tool, in order to predict 3D structures of protein-protein complexes. When applied to datasets of 54 bound-bound (I) and 54 unbound-unbound (II) test cases, convincing results were obtained (docking success rate for complexes with rmsd < 10 Å: I: ~80%; II: ~50%). Thus, we set out to evaluate whether our approach of deformable potential grids [3], previously developed for protein-ligand docking, also provides an accurate and efficient means for representing intermolecular interactions in fully-flexible protein-protein docking. The underlying idea is to adapt a 3D grid of potential field values, pre-calculated from an initial protein conformation by DrugScore^{PPI}, to another conformation by moving grid intersection

points in space, but keeping the potential field values constant. Protein movements are thereby translated into grid intersection displacements by coupling protein atoms to nearby grid intersection points by means of harmonic springs and modelling the irregular, deformable 3D grid as a homogeneous linear elastic body applying elasticity theory. Thus, new protein conformations can be sampled during a docking run without the need to re-calculate potential field values.

Author details

¹Department of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany. ²Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain.

Published: 19 April 2011

References

- Krüger DM, Gohlke H: DrugScore^{PPI} webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucl Acids Res 2010, 38:W480-W486.
- Garzon JI, Lopez-Blanco JR, Pons C, Kovacs J, Abagyan R, Fernandez-Recio J, Chacon P: FRODOCK: a new approach for fast rotational protein-protein docking. *Bioinformatics* 2009, 25:2544-2551.
- Kazemi S, Krüger DM, Sirockin F, Gohlke H: Elastic potential grids: accurate and efficient representation of intermolecular interactions for fullyflexible docking. *ChemMedChem* 2009, 4:1264-1268.

doi:10.1186/1758-2946-3-S1-P36

Cite this article as: Krüger *et al*: Predicting protein-protein interactions with DrugScore^{PPI}: fully-flexible docking, scoring, and *in silico* alanine-scanning. *Journal of Cheminformatics* 2011 **3**(Suppl 1):P36.

© 2011 Krüger et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany

Full list of author information is available at the end of the article