
Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24
http://www.jcheminf.com/content/4/1/24

SOFTWARE Open Access

mol2chemfig, a tool for rendering chemical
structures from molfile or SMILES format
to LATEX code
Eric K Brefo-Mensah and Michael Palmer*

Abstract

Displaying chemical structures in LATEX documents currently requires either hand-coding of the structures using one of
several LATEX packages, or the inclusion of finished graphics files produced with an external drawing program. There is
currently no software tool available to render the large number of structures available in molfile or SMILES
format to LATEX source code. We here present mol2chemfig, a Python program that provides this capability. Its
output is written in the syntax defined by the chemfig TEX package, which allows for the flexible and concise
description of chemical structures and reaction mechanisms. The program is freely available both through a web
interface and for local installation on the user’s computer. The code and accompanying documentation can be found
at http://chimpsky.uwaterloo.ca/mol2chemfig.
Keywords: LATEX Chemfig, Molfile, SMILES, Molecular structures, Code generation

Background
While TEX and LATEX provide excellent built-in support
for mathematics and physics, the same cannot be said
for chemistry. Several TEX and LATEX packages have been
devised to address this lack of built-in support and to
facilitate the hand-coding of chemical structures. Older
examples of this approach are xymtex [1] and ppchTeX
[2]. A recent development is chemfig [3], which in
turn is built on top of the TiKZ general-purpose graph-
ics package [4] (Figure 1). The syntax implemented by
chemfig is remarkably concise and regular, which makes
hand-coding of simple organic molecules effortless. The
package offers many ways to customize the appearance of
the rendered structures. It also facilitates the depiction of
chemical reaction mechanisms, and it seems fair to say
that chemfig sets a new standard for chemical illustra-
tions in LATEX. Nevertheless, the hand-coding approach
remains time-consuming with large molecules. The pur-
pose of the mol2chemfig program described here is to
remove this requirement by allowing for the generation of
chemfig code from readily available chemical structure
file formats.

*Correspondence: mpalmer@uwaterloo.ca
Department of Chemistry, University of Waterloo, 200 University Avenue West,
Waterloo, Ontario, N2L 3G1, Canada

The molfile [5] and the SMILES [6] data formats
are widely used to represent molecule structures with
or without atomic coordinates, respectively. The entries
in the PubChem database [7] are available in both for-
mats. Other chemical data formats can be converted
to molfile or SMILES using converters such as
openbabel [8], and most interactive chemical drawing
programs can export these formats as well. We there-
fore chose molfile and SMILES as input formats for
mol2chemfig.

Implementation
mol2chemfig is written in Python version 2 [9]. It was
tested only on Python 2.7 but uses no particular features
of that version, and should therefore run on any recent
Python 2.x installation. In addition to various modules
from the standard library, it uses the indigo cheminfor-
matics library and its accompanying Python API [10,11],
which it relies on for parsing of molfile and SMILES
input, addition or removal of hydrogen atoms, and the
calculation of missing coordinates.
The program, which is used from the command line,

and its required libraries can be installed on the user’s
computer. Alternatively, a server installation of the pro-
gram can be accessed through a web interface. As a third

© 2012 Brefo-Mensah and Palmer; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://chimpsky.uwaterloo.ca/mol2chemfig

Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24 Page 2 of 7
http://www.jcheminf.com/content/4/1/24

molfile or smiles

augmented chemfig code

chemfig code

TikZ code

TEX code

PDF
pdftex engine

mol2chemfig

mol2chemfig package

chemfig package

TikZ package

Figure 1 mol2chemfig processing flowchart. Rendering
molecular structures with mol2chemfig involves two separate
executables, namely mol2chemfig itself (or, strictly speaking, the
Python interpreter, which runs mol2chemfig) and a TEX engine
such as pdftex. Processing inside TEX requires several packages, all
of which will be loaded into LATEX by requiring the mol2chemfig
package.

option, a command line-driven thin web client is avail-
able, which accepts input in the same way as the locally
installed program but then hands it off to the server instal-
lation. The web interface is also implemented in Python.
The thin client is implemented in Lua. Since TeXLive con-
tains a Lua interpreter, it runs the thin client without
installing any other software. MikTex should to the same,
but the authors have not confirmed this. The thin client
also transparently accesses the most up-to-date version of
mol2chemfig.
The code in mol2chemfig is divided into several mod-

ules, whose functions are briefly outlined in Table 1. Addi-
tional information is contained within the doc strings and
comments in the source code. Execution of the program
involves the following major stages:

1. Using indigo, the molfile or SMILES input is
read into the data structures defined by that library.
If coordinates are missing (SMILES input) or the

Table 1 mol2chemfig codemodules

Module name(s) Role

processor Accepts and validates user input
from the command line or through
the web; invokes indigo to parse
input and supply missing coordi-
nates; hands over to molecule

molecule Generates tree representation of
the molecule, applies options, ren-
ders molecule to chemfig code

chemfig mappings Supplies translations and auxiliary
code for rendering the molecule
tree to chemfig code

atom, bond Supply auxiliary classes for mole-
cule

common Supplies auxiliary classes and global
settings

options, optionparser Define and process options

user has explicitly requested calculation of new ones,
indigo is used to compute them.

2. From the data structures populated by indigo, a
tree representation of the molecule is built.

3. The tree is traversed and annotated in order to satisfy
the user-selected options for molecule rotation, bond
scaling and so forth.

4. The tree is rendered to chemfig code, which is
returned.

The chemfig code generated by mol2chemfig uses
several custom macros. These macros must be loaded by
LATEX documents in order to execute the generated code;
they are contained within a separate small LATEX pack-
age (mol2chemfig.sty) that also takes care of loading
the chemfig package. The chemfig package, in turn,
requires and loads the TiKZ package (Figure 1).
As of this writing, both TiKZ and chemfig are avail-

able in the two major TEX distributions (MikTeX and
TeXLive). The custom LATEX code for mol2chemfig is
included in this program’s download.

Results and discussion
The use of the program and its features will here be
illustrated with a few short examples; some more exam-
ples are contained in the documentation available through
the program’s website, as well as in the Additional file 1
to this paper. While some basic elements of chemfig’s
syntax will be briefly introduced, the latter will not be
covered systematically. The chemfig package’s accom-
panying documentation is clearly written and thorough;
reference [12] gives a brief but useful introduction.

Basics of operation
The program is invoked from the command line. It takes
exactly one argument, which by default is the name of

Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24 Page 3 of 7
http://www.jcheminf.com/content/4/1/24

a file containing a single molecule in molfile format.
Output is written to stdout; output redirection will typ-
ically be used to write to a file instead. A miscellany of
options is available to modify input and output. Invok-
ing mol2chemfig -h or simply mol2chemfig will
display the full list of options and their descriptions.

Hand-written versus mol2chemfig-generated
chemfig code
Figure 2 depicts norepinephrine, rendered using either
hand-crafted and mol2chemfig-generated code. The
rendered result is very similar, although the double bonds
in the ring are better proportioned in A. This differ-
ence arises from the use of chemfig’s syntax for rings
in the hand-written version. The *6(...) clause (span-
ning lines 7–14 in Figure 2A) declares a six-membered
ring, and the - and = symbols within it denote the sin-
gle and double bonds in the ring. Nested parentheses
create branching bonds. Within the ring, specification of
bond angles is not required, as they are inferred from the
number of the ring atoms.
Outside of the ring, bond angles cannot be inferred

and are specified explicitly between angular brackets.
A preceding single colon denotes an absolute angle;
an angle that is relative to the preceding bond can be
specified with two colons, as in [::45]. Branches
are again created by parentheses, as in line 5 of
Figure 2A; this line also illustrates chemfig’s conven-
tion for specifying stereo bonds that point upwards.
Since chemfig ignores whitespace, Figure 2A could
also have been written as: \chemfigNH 2-[:270]-
[:210](<[:150]HO)-[:270]*6(=-(-HO)=(-OH)
-=-); this style might appeal to enthusiasts of the
brainfuck language [13].
While elegant and effective for hand-coded molecules,

chemfig’s syntax for rings is somewhat orthogonal to
the tree syntax used with other parts of the molecule
and thus is not implemented in mol2chemfig; there-
fore, the generated code in Figure 2B treats the ring
much like the remainder of the molecule. By default,
mol2chemfig uses one line for each bond and appends
an end-of-line comment with the number of the atom
that is reached by this bond; this number is the same
as in the input if the latter is given in molfile for-
mat. If the number is prefixed with ->, as in line 16
in Figure 2B, this indicates that the bond closes a ring
and points back to an atom that appeared in the output
earlier.
In the generated code, line-end comments and dispens-

able whitespace can be suppressed by passing the -z or
--terse option (see Figure 3 for an example). However,
even with this option, generated code will tend to be more
verbose than hand-crafted chemfig code and should not
be taken as a model for how to write the latter.

A

B

Figure 2 Structure of norepinephrine, rendered with
hand-written or mol2chemfig-generated chemfig code. The
code in A was hand-written and uses chemfig’s dedicated syntax
for specifying rings (see lines 7–14). The code in B was generated
with the mol2chemfig command shown at the top; it does not
use chemfig’s ring syntax but instead treats the ring much like a
regular branch. Each line of code specifies one bond; the number in
the line-end comment specifies the atom that this bond connects to.
While the code examples use line breaks and indentation for clarity,
this is not required; whitespace is insignificant to chemfig.

A convenient method to include the code generated by
mol2chemfig in a LATEX document is to load it from an
external file with \input. Note, however, that \input
cannot be used inside a \chemfig macro; therefore,
the \chemfig macro must be part of the external file.
The -w or --wrap-chemfig option used in Figure 2B
assists with this by enclosing the generated code in a
\chemfigmacro.

Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24 Page 4 of 7
http://www.jcheminf.com/content/4/1/24

1 \chemfig{-[:330]-[:30]=_[:330]-[:30]N(-[:90]-[:150](-[:90](-[:150,,,2]HO)-[:30](%
2 -[:330]-[:30]O-[:330]P(-[:60]\mcfright{O}{ˆ{\mcfminus}})(%
3 -[:240,,,2]ˆ{\mcfminus}O)=[:330]O)-[:90,,,1]OH)-[:210,,,2]HO)-[:330]=_[:30]N%
4 -[:330](=[:30]O)-[:270,,,1]NH-[:210,,1](=[:270]O)-[:150]\lewis{6.,C}(-[:90])%
5 -[:210]\mcfbelow{N}{H}-[:150](-[:90])=_[:210]-[:150](-[:210])=_[:90]}

N

OH O
P

O−

O−
O

OH

OH

N O

NH

O

C
N
H

Figure 3 Structure of FMNH. The structure of FMNH (flavin mononucleotide hydride) contains charges and a radical, which are preserved during
conversion with mol2chemfig. The chemfig code was generated using the --terse option, which removes whitespace and comments from
the output.

A
1 mol2chemfig -w -y delete -i pubchem 31703 > doxo-sdf.tex

1 \chemfig{
2 HO% 3
3 >:[:60.2,,2]% 14
4 (
5 -[:180.2]% 25
6 (
7 -[:240.2]% 30
8 -[:180.2,,,2]HO% 8
9)
10 =[:120.2]O% 7
11)
12 -[:90,1.042]% 15
13 -[:29.6,1.042]% 13
14 ...

HOOH

O

O

O

OOH

OH

OO

NH2

OH

B
1 mol2chemfig -u -p -o -w -y delete -i pubchem 31703 > doxo-recalc.tex

1 \chemfig{
2 OH% 3
3 >[:110,,1]% 14
4 (
5 -[:10]% 25
6 (
7 -[:310]% 30
8 -[:10,,,1]OH% 8
9)
10 =[:70]O% 7
11)
12 -[:90]% 15
13 -[:150]% 13
14 ...

OH
OH

O

O

O

O OH

OH

O

O

NH2

OH

Figure 4 Structure of doxorubicin. The structure of doxorubicin, rendered from a PubChem record without A or with B recalculation of
coordinates. The code examples in both A and B are truncated. See text for additional details.

Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24 Page 5 of 7
http://www.jcheminf.com/content/4/1/24

1 % define two named submols
2 \definesubmol{acetyl}{(=[::60]O)-[::-60]H_3C}
3 \definesubmol{benzoate}{**6(-----(-(=[::60]O)-[::-60]OH)-)}
4
5 \chemfig{
6 {\textsf{\textbf{O}}} % both submols attach here
7 (-[:210]!{acetyl}) % treat this submol as a branch,
8 -[:-30]!{benzoate} % and this one as the main chain
9 }

O

O

CH3

O OH

Figure 5 Structure of aspirin, composed from two sub-molecules. This hand-written example illustrates the use of chemfig’s submol
mechanism. Two named sub-molecules are defined, which can then be referenced to compose the complete molecule.

Charges and radicals

The molfile format can represent radicals and charges,
and these are supported by mol2chemfig. Charges and
radical electrons (as well as implicit hydrogens) are placed
so as to minimize interference with bonds attached to the

atom in question. Figure 3 shows the structure of FMNH
as an example.

Coordinate calculation and transformations
In Figure 4A, the antitumor drug doxorubicin is rendered
from coordinates obtained directly from PubChem;

A
1 mol2chemfig -o -l phe phe.mol > phe1.tex

1 \input{phe1} % load submol definition
2 \chemfig{
3 !{phe}
4 -!{phe}
5 -!{phe}
6 }

O

NH2

O

NH2

O

NH2

B

1 mol2chemfig -onw phe.mol > phe-n.tex
O10

6 2
N11

1

34

7

9 8

5

C
1 mol2chemfig -e 6 -x 11 -o -l phe phe.mol > phe2.tex

1 % manual change to phe2.tex:
2 % -[:30,,,1]NH_2
3 % changed to
4 % -[:30]\chemabove{N}{H}
5
6 \input{phe2}
7 \chemfig{
8 HO
9 -[:-30]!{phe}

10 -[:-30]!{phe}
11 -[:-30]!{phe}
12 -[:-30]H
13 }

HO

O

H
N

O

H
N

O

H
N

H

Figure 6 Construction of a tripeptide from a mol2chemfig-generated aminoacyl residue. The file containing the coordinates for a
phenylalanyl residue was rendered to a \submol definition, and three copies of the latter were concatenated. In A, mol2chemfigwas allowed to
arbitrarily pick the first and last atoms of the sub-molecule’s main chain, which causes the connecting bonds to bemisplaced. In B, the atom numbers
of the molfile were displayed using the -n or --atom-numbers option. In C, atoms 6 and 11 were specified as the main chain entry and exit
points, respectively; this causes the connecting bonds to be placed as intended. In the generated code, the amino group was manually adjusted.

Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24 Page 6 of 7
http://www.jcheminf.com/content/4/1/24

this is achieved using the -i pubchem or --input=
pubchem option. Also used in this figure is the -y
delete or --hydrogens=delete option, which
converts all explicit hydrogens to implicit ones.
In the rendered structure, the bond angles seem just

a little off; this is confirmed by looking at the gener-
ated code, which shows angles that are close to, but
not quite exactly the multiples of 30 degrees. Instead
of fixing up all those angles manually, we can ask
mol2chemfig to recalculate them for us with the -u or
--recalculate-coordinates option; this is shown
in Figure 4B. This example also illustrates the -p or
--flip option to horizontally flip the molecule; other
options allow vertical flipping and rotation. Finally, the
-o or --aromatic-circles option renders aromatic
rings with circles instead of discrete bonds.
Note that, in the recalculated structure, the orientations

of some substituents are changed. These decisions are
made by indigo, from which mol2chemfig adopts the
coordinate calculation wholesale.

Working with sub-molecules
The chemfig package allows us to define sub-molecules
that we can reuse as parts of larger assemblies. Figure 5
illustrates this with a simple hand-coded example, in
which the aspirin molecule is built using two sub-
molecule definitions, named acetyl and benzoate,
respectively.
Let us assume we want to build the tripeptide shown

in Figure 6C. We can use the -l phe or --submol-
name=phe option to render the phenylalanyl-residue to
a named sub-molecule definition (using the name phe).
However, a naive first attempt fails (Figure 6A), since
it connects the wrong atoms between successive sub-
molecules.
The submol mechanism operates essentially through

string substitution; therefore, subsequent sub-molecules
are simply connected across the last and first atoms of
their respective main chains. In order to place those con-
necting bonds correctly, we thus need to take control of
the entry and exit atoms for the sub-molecules. To find the
correct ones, we can let mol2chemfig print the atom
numbers, as illustrated in Figure 6B. Setting atoms 6 and
11 as entry and exit atoms, respectively, then produces the
structure shown in Figure 6C.
Note that, in the sub-molecule definition generated

for Figure 6C, the primary amino group was manu-
ally changed to a secondary one. Generally speaking,
while basic usage of mol2chemfig does not require
familiarity with chemfig’s syntax, the ability to man-
ually touch up the generated code will notably increase
the usefulness of this program. The chemfig package
offers a plethora of settings for bond lengths, colors and
patterns as well as font sizes and shapes that allow the

user to tweak the appearance of the rendered structures.
It also provides facilities to depict reaction mechanisms
and schemes; structures generated with mol2chemfig
can be manually modified and incorporated into
such schemes.

Conclusion
The mol2chemfig program introduced here allows
the conversion of molecules specified in molfile or
SMILES format to the TEX-compatible format defined
by the chemfig package. The generated code can be
included in documents as is, or can be edited and
integrated into larger chemfig graphics. We hope the
program will be useful for authors who wish to illustrate
the structures of organic molecules and reactions in LATEX
documents.

Availability and requirements
Project Name:mol2chemfig
Projecthomepage:http://chimpsky.uwaterloo.ca/mol2chemfig/
Operating system(s): Linux, Windows, Mac
Programming language: Python 2.7
Other requirements: For full version: Python 2.7,
the indigo toolkit and its prerequisite libraries; for
thin client: a Lua interpreter. The LuaTeX binary that
is available through TeXLive or MikTeX satisfies this
requirement. (The manual installation of indigo
is described at https://github.com/ggasoftware/indigo/
blob/master/README.txt; binary packages are available
for several Linux distributions.)
Any Restrictions to use by non-academics: None. The
code is freely available under the LATEX public license.
The locally installable full version and the thin web

client are packaged and available for download from the
project’s website. The server setup that is used by both
the web interface and the web client is not routinely avail-
able, but the required code and setup instructions will be
shared upon request.

Additional file

Additional file 1: mol2chemfig sample LATEX document.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
EB-M: code implementation and testing, preparation of manuscript; MP: code
implementation, preparation of manuscript. Both authors have read and
approved the manuscript.

Acknowledgements
We thank the author of the chemfig package, Christian Tellechea, for helpful
discussion and for the contribution of some auxiliary TEX code.

Received: 21 August 2012 Accepted: 25 September 2012
Published: 2 October 2012

https://github.com/ggasoftware/indigo/blob/master/README.txt
https://github.com/ggasoftware/indigo/blob/master/README.txt
http://www.biomedcentral.com/content/supplementary/1758-2946-4-24-S1.zip

Brefo-Mensah and Palmer Journal of Cheminformatics 2012, 4:24 Page 7 of 7
http://www.jcheminf.com/content/4/1/24

References
1. Fujitaa S: The XyMTeX System for Drawing Chemical Structures. 2010.

[http://xymtex.com/fujitas3/xymtex/indexe.html]
2. Hagen J, Otten AF: PPCHTEX, a macropackage for typesetting

chemical structure formulas. 2001.
[www.pragma-ade.com/general/manuals/mp-ch-en.pdf]

3. Tellechea C: chemfig: Drawmolecules with easy syntax. 2012. [http://
www.ctan.org/pkg/chemfig/]

4. Tantau T, Feuersaenger C: PGF and TikZ - Graphic systems for TeX.
2011. [http://sourceforge.net/projects/pgf/]

5. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA,
Laufer J: Description of several chemical structure file formats used
by computer programs developed at Molecular Design Limited.
J Chem Inform Comp Sci 1992, 32:244–255. [http://pubs.acs.org/doi/abs/
10.1021/ci00007a012]

6. Weininger D: SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Model
1988, 28:31–36.

7. The PubChem database. 2012. [http://pubchem.ncbi.nlm.nih.gov/]
8. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison

GR: Open Babel: An open chemical toolbox. J Cheminform 2011,
3:33. [http://view.ncbi.nlm.nih.gov/pubmed/21982300]

9. The Python programming language. 2012. [http://www.python.org/]
10. Pavlov D, Rybalkin M, Karulin B, Kozhevnikov M, Savelyev A, Churinov A:

Indigo: universal cheminformatics API. J Cheminform 2011,
3(Suppl 1):P4. [http://dx.doi.org/10.1186/1758-2946-3-S1-P4]

11. The indigo cheminformatics toolkit. 2012. [http://ggasoftware.com/
opensource/indigo/]

12. Wright J: Exploring ChemFig: Basics. 2012. [http://www.texdev.net/
2012/08/25/exploring-chemfig-basics/]

13. Paczkowski A: 99 bottles of beer. One program in 1500 variations:
Language brainfuck. 2005. [http://www.99-bottles-of-beer.net/
language-brainfuck-101.html]

doi:10.1186/1758-2946-4-24
Cite this article as: Brefo-Mensah and Palmer: mol2chemfig, a tool for
rendering chemical structures from molfile or SMILES format to LATEX
code. Journal of Cheminformatics 2012 4:24.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://xymtex.com/fujitas3/xymtex/indexe.html
http://www.ctan.org/pkg/chemfig/
http://www.ctan.org/pkg/chemfig/
http://sourceforge.net/projects/pgf/
http://pubs.acs.org/doi/abs/10.1021/ci00007a012
http://pubs.acs.org/doi/abs/10.1021/ci00007a012
http://pubchem.ncbi.nlm.nih.gov/
http://view.ncbi.nlm.nih.gov/pubmed/21982300
http://www.python.org/
http://dx.doi.org/10.1186/1758-2946-3-S1-P4
http://ggasoftware.com/opensource/indigo/
http://ggasoftware.com/opensource/indigo/
http://www.texdev.net/2012/08/25/exploring-chemfig-basics/
http://www.texdev.net/2012/08/25/exploring-chemfig-basics/
http://www.99-bottles-of-beer.net/language-brainfuck-101.html
http://www.99-bottles-of-beer.net/language-brainfuck-101.html

	Abstract
	Keywords

	Background
	Implementation
	Results and discussion
	Basics of operation
	Hand-written versus mol2chemfig-generated chemfig code
	Charges and radicals
	Coordinate calculation and transformations
	Working with sub-molecules

	Conclusion
	Availability and requirements
	Additional file*-3pt
	Additional file 1

	Competing interests
	Author's contributions
	Acknowledgements
	References

