
Bienfait and Ertl Journal of Cheminformatics 2013, 5:24
http://www.jcheminf.com/content/5/1/24
SOFTWARE Open Access
JSME: a free molecule editor in JavaScript
Bruno Bienfait1 and Peter Ertl2*
Abstract

Background: A molecule editor, i.e. a program facilitating graphical input and interactive editing of molecules, is an
indispensable part of every cheminformatics or molecular processing system. Today, when a web browser has
become the universal scientific user interface, a tool to edit molecules directly within the web browser is essential.
One of the most popular tools for molecular structure input on the web is the JME applet. Since its release nearly
15 years ago, however the web environment has changed and Java applets are facing increasing implementation
hurdles due to their maintenance and support requirements, as well as security issues. This prompted us to update
the JME editor and port it to a modern Internet programming language - JavaScript.

Summary: The actual molecule editing Java code of the JME editor was translated into JavaScript with help of the
Google Web Toolkit compiler and a custom library that emulates a subset of the GUI features of the Java runtime
environment. In this process, the editor was enhanced by additional functionalities including a substituent menu,
copy/paste, drag and drop and undo/redo capabilities and an integrated help. In addition to desktop computers,
the editor supports molecule editing on touch devices, including iPhone, iPad and Android phones and tablets. In
analogy to JME the new editor is named JSME. This new molecule editor is compact, easy to use and easy to
incorporate into web pages.

Conclusions: A free molecule editor written in JavaScript was developed and is released under the terms of
permissive BSD license. The editor is compatible with JME, has practically the same user interface as well as the
web application programming interface. The JSME editor is available for download from the project web page
http://peter-ertl.com/jsme/
Background
A program for the input and editing of molecules is an
indispensable part of every cheminformatics or molecu-
lar processing system. Such a program is known as a
molecule editor, molecular editor or structure sketcher.
Its function is to facilitate entry of molecules or reac-
tions into a computer with help of mouse and keyboard
actions, and recently also by using a touch screen.
Molecule editors are used to create chemical illustrations
or as tools to draw queries when searching chemical
databases or entering molecules when calculating various
molecular properties.
One of the most important areas where the interactive

molecule structure input is needed is molecule editing
within web browsers. The World Wide Web, introduced
originally as a medium for the exchange of scientific
* Correspondence: peter.ertl@novartis.com
2Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056, Basel,
Switzerland
Full list of author information is available at the end of the article

© 2013 Bienfait and Ertl; licensee Chemistry C
Creative Commons Attribution License (http:
distribution, and reproduction in any medium
information, is affecting in meantime practically all as-
pects of our life, but scientific and technical applications
still benefit proportionally more from the web technology.
Scientific computing is moving more and more in the dir-
ection of web services and cloud computing, with servers
scattered all around the Internet, and the web browser is
becoming the universal scientific user interface. Chemistry
is no exception from this trend and input of molecular
structures directly within a web browser is therefore of
utmost importance.
Some time ago one of the authors of this article

reviewed various techniques for entering chemical struc-
tures on the web [1]. At that time the web-based molecule
editing was clearly dominated by Java applets, with nearly
20 such programs listed in the review. This situation, how-
ever, is changing fast. This change of paradigm is caused by
several factors. One is an explosive advent of handheld de-
vices, like tablets and smartphones. These devices use touch
screen as a user interface and generally do not support Java
applets. Other reasons for the demise of molecular editing
entral Ltd. This is an Open Access article distributed under the terms of the
//creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

http://peter-ertl.com/jsme/
mailto:peter.ertl@novartis.com
http://creativecommons.org/licenses/by/2.0

Figure 1 Overview of the process of the conversion of the JME
Java source code into a Java applet and the JSME
JavaScript distribution.

Bienfait and Ertl Journal of Cheminformatics 2013, 5:24 Page 2 of 6
http://www.jcheminf.com/content/5/1/24
applets (and applets in general) are increasing requirements
on their maintenance. Vast possible combinations of Java
versions, plugins, browsers and operating systems make
support of applets very demanding. The maintenance
burden, as well as arising Java security issues led to
situation that several companies, as well as public service
providers, completely banned Java applets from their
web sites. It is clear that the web-based cheminformatics
community needs an alternative to Java applets. The
solution seems to be JavaScript.
JavaScript is an interpreted programming language

living in web browsers and, despite its name, has no
direct relation to Java. For many years, JavaScript has
been used only as a tool to add simple interactivity to
web pages. Thanks to the effort of several companies
spearheaded by Google, including development of fast
JavaScript engines and several powerful libraries, that
hide differences in JavaScript implementations between
various browsers, JavaScript gained momentum and
became one of the major components of the so called
Web 2.0 paradigm. JavaScript together with advanced
HTML5 technology supports the development of complex
and powerful applications running within a web browser.
As a result, various cheminformatics applications written
in JavaScript are appearing, including several tools of dif-
ferent level of complexity and user friendliness supporting
drawing of molecules [2-9]. Another example of successful
application of JavaScript in cheminformatics is conversion
of Jmol, a popular 3D molecule viewer from Java into pure
JavaScript-powered JSmol [10].
The situation discussed above prompted the authors

to port the popular JME Java applet to JavaScript and
release it as a free tool to the Internet cheminformatics
community. In analogy to the JME name we decided to
call the new editor JSME.

Implementation
JSME molecule editor development
In this article, a JSME molecule editor written in
JavaScript is described. JSME is a direct successor of the
JME editor, a Java applet for drawing, editing, and
displaying molecules and reactions directly within a web
page [11]. The editor was originally written by one of
the authors of this article at Comenius University in
Bratislava in QuickBASIC. The program was later trans-
lated into Java (and named JME on this occasion) to be
used as a structure input tool for the in-house web-based
cheminformatics system at Ciba-Geigy and later at Novartis
[12]. Due to many requests, the JME editor was released in
1998 to the public and is currently probably still the most
popular molecular entry system on the web. Users value on
JME mostly its simple and intuitive user interface and small
size (only 38 Kbytes) enabling fast loading. But the chan-
ging situation in the web discussed in the previous section
prompted us to look for an alternative to Java. At the
same time, however, it would be of advantage to base
the development of a new molecule editor on the JME
code, incorporating in this way the experience and feedback
of thousands of JME users who helped to make the code
well validated and stable. The answer to this challenge was
conversion of the JME Java code to JavaScript. To perform
this task, we used the Google Web Toolkit (GWT) [13]
and a custom JSApplet library. The whole procedure is
schematically shown in Figure 1.
The GWT features a compiler that compiles Java code

into heavily optimized JavaScript. GWT was developed by
Google to support creation of rich Internet applications
using the Java programming language, taking in this way
advantage of many experienced Java programmers and
numerous development tools, but without the necessity to
deploy the created application as Java applets. GWT han-
dles the differences in JavaScript implementations between
various web browsers by producing the code that is specific
for each browser. Google provides also plugins for the
Eclipse [14] integrated development environment for code
editing, browsing and refactoring. A very useful feature of
the GWT Eclipse plugin is support for easy debugging of
the Java code running inside a web browser. GWT comes
with a library that emulates a small subset of the Java
Runtime Environment (JRE). This subset, however, does
not include the Java Abstract Window Toolkit (AWT) that
is needed to compile the JME Java code into JavaScript.
The Java AWT is a library that provides graphical user
interface elements like windows, buttons or menus, event
management (mouse or keyboard interaction), layout
system, 2D graphics or data transfer with the system
clipboard. Porting the whole library to GWT would be
a very demanding task. Fortunately, JME is a relatively
old Java program written in Java version 1.0 without

Bienfait and Ertl Journal of Cheminformatics 2013, 5:24 Page 3 of 6
http://www.jcheminf.com/content/5/1/24
any sophisticated Java GUI features that would require
the Swing toolkit (the Swing graphics is more recent
and considerably more complex than AWT). To support
the conversion we implemented the JSApplet (JSA) library
that provides the subset of AWT functionalities that are
needed by JME. In JME the AWT java class Graphics is
used to depict the molecular structures. The JSA im-
plementation of this class maps the primitive graphics
command (e.g. drawLine, drawRectangle, …) to the Scalar
Vector Graphics (SVG) engine that is available in most web
browsers, except Internet Explorer version 6, 7 and 8 where
the Vector Markup Language (VML) is used instead. The
AWT layout system was implemented using the Apache
Harmony library from the Apache Foundation [15]. The
AWT widgets buttons, labels, text fields and multiple
choice menu were mapped one to one to browser corre-
sponding native widgets. The AWT Frame and popup
menu were implemented with the help of the GWTMosaic
library [16]. The GWT browser independent events were
used to create the AWT events.

JSME installation
When adding the JSME editor into a HTML page one has
to provide a placeholder for the editor in the document
(typically a HTML DIV element), include a bootstrap
JavaScript file and define a JavaScript function to initialize
the JSME. The JSME distribution itself consists of already
mentioned bootstrap JavaScript file and six HTML files.
Each HTML file contains highly optimized JavaScript code
for one or several specific browsers. The main purpose of
the bootstrap file is to detect the browser type, select the
matching HTML file and load it. The JSME distribution
package contains also a HTML page (JSME.html) with an
example editor installation. The appearance of the JSME
editor may be modified by calling the options() function
with respective parameters. In this way the web developer
can choose between the “classical” and new editor look,
determine whether query or reaction input should be
enabled, how the stereochemistry should be handled,
whether nitro or related groups should appear in polar
form or with symmetrical pentavalent nitrogen atoms
(often a source of serious disagreement between
cheminformatics experts) and so on. The full list of
keywords is available at the JSME Homepage. These
options are the same as used in the JME editor, therefore
update from JME to JSME should be easy.
The size of the JSME code varies between 257 and 271

Kbytes according to the browser. The Java code that is
common to JSME and JME accounts for about 31% of
the JavaScript code generated by GWT. The size of the
compiled JME used as a basis for JSME translation is 55
Kbytes, slightly larger than that of stand-alone JME,
since this code contains several additional features. In prac-
tice the actual download size of JSME is about 110 Kbytes
because most web servers provides on the fly compression
of the downloaded files. Unlike JavaScript files, the down-
load size of the Java applet jar file (a compressed archive file)
cannot be reduced by the web server. Thus the JSME
download size is only about two times larger than that of
JME itself. In practice, the JSME is ready to be used even
sooner than the JME, because the applets are delayed by
the Java Runtime Environment initialization phase.
JSME has been tested with success on all major

browsers (Internet Explorer, Firefox, Google Chrome,
Safari and Opera). Close attention was given to support
also the older versions of Internet Explorer (6 and 7)
because several large industrial companies still use these
legacy versions as their standard browser. Figure 2 shows
a screenshot of JSME running within the eTOXsys system
[17] in Internet Explorer 6 where it provides a seamless
replacement of the JME applet.
In addition to desktop computers running Windows,

OS X and Linux operating systems, JSME has been
tested also on several touch devices including Apple’s
iPhone and iPad and Android smartphones and tablets.
Practically all JSME editing features are fully supported
(with exception of molecule rotation on Android devices),
showing that JSME may be used to edit molecules on
many modern smartphones and tablets.
The quality of the graphical display of JSME is browser

dependent. On the Internet Explorer versions 6, 7 and 8
(using the VML) when line antialiasing is turned off, the
depiction of structures is almost identical to the original
Java implementation. Surprisingly, the Google Chrome
(tested on version 25 and earlier) provides the worse display
quality, where some bonds with a particular angle are not
visible when antialiasing is not used. Generally SVG im-
plementation in many browsers seems to have difficulties
to render nicely one pixel thick lines without antialiasing.
To fine tune the molecule display JSME provides options
to change the line thickness of the molecular drawing area
and to turn antialiasing on or off.

Results and discussion
JSME molecule editor features
The capabilities of JSME are practically identical to those
of JME. JSME supports creation and editing of molecules
and reactions (Figure 3). A built-in substituent menu
and several keyboard shortcuts provide speedy access to
the most common editing features and allow easy and
fast creation of even large and complex molecules. The
editor is able to export molecules as SMILES [18],
MDL/Symyx/Accelrys Molfile [19] or in the compact
“JME” format (one line textual representation of a molecule
or reaction including also 2D atomic coordinates). The
SMILES code generated by JSME is canonical, i.e. inde-
pendent on the way how the molecule was drawn. The
editor can also serve as a query input tool for searching

Figure 2 The JSME editor in the “classics” look running in the development version of the eTOXsys system in Internet Explorer 6.

Figure 3 The JSME editor with an open substituent menu.

Bienfait and Ertl Journal of Cheminformatics 2013, 5:24 Page 4 of 6
http://www.jcheminf.com/content/5/1/24

Figure 4 JSME supports generation of complex substructure queries.

Bienfait and Ertl Journal of Cheminformatics 2013, 5:24 Page 5 of 6
http://www.jcheminf.com/content/5/1/24
molecular databases by supporting generation of complex
substructure queries (Figure 4), which are automatically
translated into SMARTS [20]. Input of reactions is also
supported (Figure 5), including generation of reaction
SMILES and SMIRKS [21]. Molecular structures and
reactions can be imported and exported using the system
clipboard or the drag and drop feature provided by
HTML5 compatible browsers.
Further customization of the editor is possible by

executing arbitrary defined JavaScript callback functions
when the structure in the editor is modified or when the
mouse pointer moves over an atom. It is also possible to
Figure 5 Input of a reaction with atom mapping.
change background color of specified atoms and bonds
programmatically.
The JSME editor can communicate with other elements

on the HTML page via its public functions. These functions
are used, among others, to retrieve created molecules,
change the editor appearance or programmatically display
new molecules. Detailed description of JSME functions is
available on-line in the JSME documentation page [22].
To support cheminformatics web community we decided

to release the JSME Editor under the terms of permissive
BSD license (the license text is included in the distribution
package). The editor is available for download from the

Bienfait and Ertl Journal of Cheminformatics 2013, 5:24 Page 6 of 6
http://www.jcheminf.com/content/5/1/24
JSME Home Page http://peter-ertl.com/jsme/ as optimized
JavaScript code (the underlying Java code is not provided).
We plan to update the JSME distribution on this web page
regularly when the new program versions become available.

Conclusions
We described development and the capabilities of JSME,
a free molecule editor written in JavaScript. JSME was
developed as direct successor of the popular JME applet,
using the JME codebase, therefore although being a new
program, it benefits from 15 years of user feedback and
bug fixing. JSME is released under the permissive BSD
license, which allows the editor to be used freely in both
nonprofit and commercial environments. Implementation
of JSME in web pages is very simple; therefore we hope that
this new molecule editor will become a useful component
of numerous new, exciting cheminformatics Internet tools
and web services.

Availability and requirements
The editor is available for download from the JSME
Home Page http://peter-ertl.com/jsme/.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PE has written the original JME program and modified its Java code to
support the translation to JavaScript. BB modified the original Java code,
implemented several additional features, did the actual translation to
JavaScript and has developed the JSApplet library used in the translation.
Both authors wrote the article together. Both authors read and approved the
final manuscript.

Authors’ information
Bruno Bienfait: http://www.molecular-networks.com.
Peter Ertl: http://peter-ertl.com.

Acknowledgements
The authors would like to thank Markus Sitzmann, Oliver Sacher and Luc
Patiny for testing the development version of JSME and for helpful
comments and suggestions.

Author details
1Molecular Networks GmbH, Henkestrasse 91, D-91052, Erlangen, Germany.
2Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056, Basel,
Switzerland.

Received: 20 March 2013 Accepted: 16 May 2013
Published: 21 May 2013

References
1. Ertl P: Molecular structure input on the Web. J Cheminf 2010, 2:1.
2. ChemDoodle 2D Sketcher. http://web.chemdoodle.com/demos/sketcher.
3. ChemWriter: http://metamolecular.com/chemwriter/.
4. Elemental: http://www.dotmatics.com/products/elemental/.
5. JSDraw: http://www.scilligence.com/Web/JSDraw.aspx.
6. jsMolEditor: https://github.com/chemhack/jsmoleditor/.
7. Ketcher: http://ggasoftware.com/opensource/ketcher.
8. Marvin for JavaScript: http://www.chemaxon.com/blog/marvin-for-

javascript-released/.
9. VectorMol: http://sciformation.com/vectormol.html.
10. JSmol: http://chemapps.stolaf.edu/jmol/jsmol/test2.htm.
11. JME Molecule Editor. http://www.molinspiration.com/jme/.
12. Ertl P, Muehlbacher J, Rohde B, Selzer P: Web-based cheminformatics and
molecular property prediction tools supporting drug design and
development at Novartis. SAR QSAR Env Res 2003, 14:321–328.

13. GWT - Google Web Toolkit: https://developers.google.com/web-toolkit/.
14. The Eclipse Foundation: http://www.eclipse.org.
15. Apache Harmony: http://harmony.apache.org/.
16. GWT Mosaic: http://code.google.com/p/gwt-mosaic/.
17. Briggs K, Cases M, Heard DJ, Pastor M, Pognan F, Sanz F, Schwab CH,

Steger-Hartmann T, Sutter A, Watson DK, Wichard JD: Inroads to predict
in vivo toxicology—an introduction to the eTOX project. Int J Mol Sci
2012, 13:3820–3846.

18. SMILES - A Simplified Chemical Language: http://www.daylight.com/
dayhtml/doc/theory/theory.smiles.html.

19. Chemical Table File: http://en.wikipedia.org/wiki/MDL_molfile.
20. SMARTS - A Language for Describing Molecular Patterns: http://www.

daylight.com/dayhtml/doc/theory/theory.smarts.html.
21. SMIRKS - A Reaction Transform Language: http://www.daylight.com/

dayhtml/doc/theory/theory.smirks.html.
22. JSME Homepage: http://peter-ertl.com/jsme/.

doi:10.1186/1758-2946-5-24
Cite this article as: Bienfait and Ertl: JSME: a free molecule editor in
JavaScript. Journal of Cheminformatics 2013 5:24.
Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://peter-ertl.com/jsme/
http://www.molecular-networks.com
http://peter-ertl.com
http://web.chemdoodle.com/demos/sketcher
http://metamolecular.com/chemwriter/
http://www.dotmatics.com/products/elemental/
http://www.scilligence.com/Web/JSDraw.aspx
https://github.com/chemhack/jsmoleditor/
http://ggasoftware.com/opensource/ketcher
http://www.chemaxon.com/blog/marvin-for-javascript-released/
http://www.chemaxon.com/blog/marvin-for-javascript-released/
http://sciformation.com/vectormol.html
http://chemapps.stolaf.edu/jmol/jsmol/test2.htm
http://www.molinspiration.com/jme/
https://developers.google.com/web-toolkit/
http://www.eclipse.org
http://harmony.apache.org/
http://code.google.com/p/gwt-mosaic/
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://en.wikipedia.org/wiki/MDL_molfile
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
http://peter-ertl.com/jsme/

	Abstract
	Background
	Summary
	Conclusions

	Background
	Implementation
	JSME molecule editor development
	JSME installation

	Results and discussion
	JSME molecule editor features

	Conclusions
	Availability and requirements
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

