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enthalpy of formation of hydrocarbons
Ana L Teixeira1,2*, João P Leal2,3 and Andre O Falcao1
Abstract

Background: One of the main topics in the development of quantitative structure-property relationship (QSPR)
predictive models is the identification of the subset of variables that represent the structure of a molecule and
which are predictors for a given property. There are several automated feature selection methods, ranging from
backward, forward or stepwise procedures, to further elaborated methodologies such as evolutionary programming.
The problem lies in selecting the minimum subset of descriptors that can predict a certain property with a good
performance, computationally efficient and in a more robust way, since the presence of irrelevant or redundant
features can cause poor generalization capacity. In this paper an alternative selection method, based on Random
Forests to determine the variable importance is proposed in the context of QSPR regression problems, with an
application to a manually curated dataset for predicting standard enthalpy of formation. The subsequent predictive
models are trained with support vector machines introducing the variables sequentially from a ranked list based on
the variable importance.

Results: The model generalizes well even with a high dimensional dataset and in the presence of highly correlated
variables. The feature selection step was shown to yield lower prediction errors with RMSE values 23% lower than
without feature selection, albeit using only 6% of the total number of variables (89 from the original 1485). The
proposed approach further compared favourably with other feature selection methods and dimension reduction of
the feature space. The predictive model was selected using a 10-fold cross validation procedure and, after selection,
it was validated with an independent set to assess its performance when applied to new data and the results were
similar to the ones obtained for the training set, supporting the robustness of the proposed approach.

Conclusions: The proposed methodology seemingly improves the prediction performance of standard enthalpy of
formation of hydrocarbons using a limited set of molecular descriptors, providing faster and more cost-effective
calculation of descriptors by reducing their numbers, and providing a better understanding of the underlying
relationship between the molecular structure represented by descriptors and the property of interest.
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Background
An area where data-mining techniques are increasingly
playing an important role is chemoinformatics, consider-
ing that the number of known and synthesized chemical
compounds is growing exponentially, but the determin-
ation of their properties as well as biological activities is
a time consuming and costly process and is lagging se-
verely behind [1,2]. These complex non-homogeneous
data lead to the development and application of data-
mining tools to extract and understand the under-
lying quantitative structure-property/activity relationship
(QSPR/QSAR) [3-5]. QSPR/QSAR methods are widely
used for prediction and their goal is to relate molecular
descriptors, from molecular structure, with experimental
chemical, physical and/or biological properties by means
of data-mining methods [6-10]. The three major difficul-
ties in the development of QSPR/QSAR models are (1)
quantifying the inherently abstract molecular structure,
(2) determining which structural features most influ-
ence the given property (representation problem) and
(3) establishing the functional relationship that best
describes the relationship between these structure
descriptors and the property/activity data (mapping
problem) [8-12]. The first difficulty can be overcome by
the use of calculated molecular descriptors, developed to
quantify various aspects of molecular structure [13]. In
fact, this approach is one of the causes of the second dif-
ficulty since thousands of molecular descriptors are cur-
rently extant [13,14]. The problem lies then in the
identification of the appropriate set of descriptors that
allow the desired property of the compound to be ad-
equately predicted. To accomplish this and to find the
optimal subset of descriptors that describes the relation-
ship between the structure and the property/activity
data, several statistical and data-mining methods are
commonly used for feature reduction and selection
[15,16]. Frequently, it has been observed that certain
descriptors appear to be relevant for a specific problem
(for example, the molecular weight of a drug is an im-
portant parameter that may affect the capacity of a drug
to permeate across the blood-brain barrier [17]). How-
ever, in general, this task cannot be completely achieved
manually, given the complex non-linear nature of the
structure-property/activity relationships and the high
number of existing molecular descriptors. An optimal
solution for this problem requires an exhaustive search
over all possible subsets. Considering the high number
of molecular descriptors (n) and the limited knowledge
on the amount of necessary descriptors (p), it is required
to try for each p the sum of the nth row of the binomial
coefficients, which involves 2n possible combinations.
This exhaustive enumeration of each subset is computa-
tionally impractical, except for small problems. There-
fore, a reasonable alternative is then the use of an
heuristic approximation that may be able to find the best
possible subset of descriptors within the available com-
putational resources [18].
Several studies have investigated approaches to solve the

descriptor selection problem in QSPR/QSAR [19-21]. Any
set of descriptors may be used in a QSPR/QSAR model
and therefore techniques to reduce the dimensionality or
select the best combination of descriptors are very import-
ant [21]. The first group of techniques, feature reduction,
aims to map the original high-dimensional data into a
lower-dimensional space obtaining transformed features
(generally linear combinations of the original features)
[21]. The construction of models based on feature reduc-
tion such as principal component analysis (PCA) [22] and
partial least squares regression (PLS) [23] compress the
original dataset generating a smaller number of variables.
PCA transforms the original dataset into orthogonal com-
ponents, constructed by linear combinations of the exist-
ing variables. These are arranged in descending order
according to the percentage of variance each component
explains. Therefore the first components (principal com-
ponents) are expected to translate the main sources of
variability of the data, and may be better suited for model-
ling purposes [21]. However, PCA does not reduce the
number of features needed for prediction, it only reduces
the number of parameters in the model, as all features
may be present in each component. The second group of
techniques, feature selection, aims to choose an optimal
subset of features according to an objective function
[21,24]. The feature selection can be: (1) objective if it uses
only molecular descriptors (independent variables), re-
moving redundancy amongst all the descriptors using the
correlation matrix or (2) subjective if it also uses the prop-
erty of interest (dependent variable) to identify the subset
of descriptors that best map a relationship between struc-
ture and property [25]. For that purpose several search
algorithms have been devised, ranging from simple heuris-
tic approaches [26,27] which perform a "greedy" search of
the best subsets of variables such as forward selection,
backward elimination or stepwise procedures to further
elaborate methodologies including simulated annealing
[28] and evolutionary programming [29] such as genetic
algorithms [30]. These methods allow a stochastic evolu-
tionary search of the possible solution space of a problem
aiming for the selection of an optimal non-redundant set
of variables, if sufficient computational resources are pro-
vided [21]. Other recent articles present multi-phase
methodologies, in which the subsets of descriptors are
selected and assessed using different algorithms [31]. The
problem lies in selecting the minimum subset of descrip-
tors that can predict a certain property with a good per-
formance, less computational/time cost and in a more
robust way, since the presence of irrelevant or redundant
features can cause a poor generalization capacity.
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Due to the high rate of new compounds discovered
each day and the fact that laboratory techniques for ex-
perimental measurements are still expensive, there is a
significant gap between the number of known chemical
compounds and the amount of experimental thermo-
chemical property data in the literature. Thus it is clear
the great need to foster the application of prediction
methods with a good predictive performance when ex-
perimental values are not available. It is also important
to note that generally in QSPR problems and specifically
in the prediction of enthalpy of formation problem,
small improvements in the prediction capacity are very
important, considering that they can result in further
improvements in efficiency and safety of chemical pro-
cesses in the chemical industry.
Some methods have been developed for predicting

thermochemical properties of molecules, ranging from
group/bond additivity, high-level theoretical calcula-
tions and quantitative structure–property relationships
(QSPR) methods. The empirical additivity methods are
heavily-parameterized schemes for interpolating between
experimental values with a different range of applicabil-
ity, different reliability (precision and accuracy) and usu-
ally limited by the high number of parameters which
tends to affect the ability to extrapolate to data outside
the training set and the existence of parameters that
have not been estimated due to the lack of experimental
data [32]. The most frequently used group additivity
method was proposed in 1958 by Benson and Buss [33].
Another frequently used method to predict thermo-
chemical properties is based on bond additivity and it
was proposed by Laidler in 1956 [34]. Laidler’s bond
additivity method has been refined and extended by
other authors (e.g. [35] and [36]). High-level theoretical
calculations can be applied to estimate thermochemical
properties for small to medium sized molecules. These
kinds of methods obtain molecular properties from the
most fundamental level of molecular information: elec-
tronic (such as number of electrons) and spatial molecu-
lar structure (such as location of the nuclei) [37].
However, high-level theoretical calculations are very in-
tensive computationally and require a substantial time
investment, limiting their application to small/medium
size molecules. An additional alternative for modelling
the physical-chemical properties is to resort to the struc-
ture of the molecule through the quantitative structure–
property relationships (QSPR), which also have proved
to be useful in this respect. In the specific case of predic-
tion of enthalpies of formation of specific classes of
compounds, some QSPR models have been used such as
the ones developed by Mercader et al [38] which pre-
dicts enthalpy of formation of hydrocarbons based on a
specific class of molecular descriptors, Ivanciuc et al
[39] which predicts enthalpy of formation of alkanes at
300 K based on 3 atomic structural descriptors derived
from the molecular graph investigated one at a time, Yu
et al [40] which predicts enthalpy of formation of alkyl
derivatives based on a topological index, Yao et al [41]
which predicts enthalpy of formation of alkanes (be-
tween C6 and C10) at 300K based on radial basis func-
tion neural networks using 35 structural/topological
calculated descriptors that were reduced to four princi-
pal components and Vatani et al [42] which predicts en-
thalpy of formation at standard state of different types of
compounds based on a multivariate linear genetic algo-
rithm using 5 structural descriptors calculated and
selected from a pool of 1664 descriptors.
In this manuscript, we present an alternative approach

to select molecular descriptors inspired by a method-
ology proposed by Genuer et al [43] and applied to pre-
diction of standard molar enthalpy of formation of gas
phase at 298.15 K for hydrocarbon compounds. Genuer
et al [43] proposes a two-steps procedure: (1) prelimin-
ary elimination and ranking, sorting the variables in de-
creasing order of standard deviation of Random Forests
scores of importance from a series of runs and elimin-
ation of variables with small importance; (2) variable se-
lection for prediction, starting from the ordered
variables by constructing an ascending sequence of Ran-
dom Forest models, testing the variables stepwise and
retaining it only if the error gain exceeds a certain
threshold. The algorithm Random Forest is widely used
in the prediction context (classification and regression)
given that it has several features that make it suitable for
a QSAR/QSPR dataset [44-46]. These include good pre-
dictive performance even when there are more variables
than observations, capacity to handle a mixture of cat-
egorical and continuous descriptors, measures of de-
scriptor importance and due to its nature encompassing
a large number of simple models, it largely reduces the
problems caused by over fitting [44-46]. However, there
are few works in the literature using Random Forests in
the context of descriptor selection. To the best of our
knowledge, beyond the work of Genuer et al [43] , there
is another study in the literature that uses random for-
ests for gene selection in classification problems [47], for
that purpose several forests are generated iteratively and
at each iteration the variables with the smallest variable
importance are discarded; the selected set of variables is
the one that yields the smallest prediction error. In this
manuscript we propose a hybrid approach that also uses
Random Forests, but differently from Genuer et al [43],
using the quantification of the average variable import-
ance from a series of runs provided by this method, as a
tool for molecular descriptors selection. This ranking
can be used to build a predictive model, without elimin-
ating any variables, using any other machine learning
prediction method, in this case and differently from



Table 1 Summary of the results (10-fold cross validation)
obtained for all the models

Feature
selection

Feature
selection
technique

Number of
variables/PC

Machine
learning
model

RMSE¤ q2cv
§

No 1485 RF‡ 50.28 0.9303

1485 SVM† 44.47 0.9520

Yes PCA* 28 PC# SVM† 34.87 0.9671

GA� 58 SVM† 47.1 0.9391

RF - VIǂ 89 SVM† 34.1 0.9686
¤Root Mean Square Error; §cross validated squared correlation coefficient;
‡Random Forests; †Support Vector Machines; *Principal Components Analysis; #

Principal Components; � Genetic Algorithms; ǂVariable Importance using
Random Forests.
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Genuer et al [43], Support Vector Machines [48], insert-
ing the variables stepwise in order to find a good balance
between the number of variables and prediction error.
The two main objectives of this hybrid methodology are:

(1) obtain a set of descriptors that are most related to the
property of interest using the variable importance index
calculated by random forests and (2) obtain the smallest
possible set of molecular descriptors that can still achieve
a good predictive performance that generalizes well even if
the ratio between the number of variables and number of
observations becomes unfavourable. In order to assess
results, and have a reference of the developed models per-
formance, the results will be compared with the ones
obtained for models without a feature selection step and
for models using other feature selection/reduction techni-
ques such as Principal Components Analysis and Genetic
Algorithms. Finally, the model performance will be tested
using an independent validation set.

Results
Prediction models
To verify the importance of feature selection methods for
the prediction of standard enthalpy of formation of gas
phase of hydrocarbons the following methodology was
envisaged: in the first place it is necessary to assess model
behavior without any feature selection. Secondly, three vari-
able reduction strategies were tested, that include the use
of i) support vector machines (SVMs) with principal com-
ponents analysis for all the feature set space; ii) using gen-
etic algorithms coupled with SVMs for feature selection; iii)
use the ranked features list as produced by random forests
for searching a minimal feature set to train a SVM model.

Model development without a feature selection/reduction step
In order to confirm that it is possible to eliminate vari-
ables which are not informative as predictors of the
property of interest, the first step is to present model
results with the whole set of molecular descriptors
(1485). For that purpose both Support Vector Machines
(SVMs) and Random Forests (RFs) were tested.
Random Forests have two model parameters that con-

dition the model results, namely, the number of vari-
ables randomly sampled at each node to be considered
for splitting and the number of trees in the forest. A pre-
liminary systematic evaluation of both parameters on
the training set led us to conclude that 240 variables at
each node and 500 trees in the forest should be used.
Larger values than these did not yield better results. For
each parameter combination, the full dataset of 364
molecules was used within an out-of-the bag cross valid-
ation procedure, as is usual for random forest models.
The best model reached a root mean square error
(RMSE) of 50.28 which corresponds to a cross-validated
proportion of variation explained (q2) of 0.9393 (Table 1).
Using Epilson-SVM with a preliminary tuning of the ra-
dial basis function (RBF) kernel parameters (which
included the cost parameter that controls the trade off
between allowing training errors and forcing rigid mar-
gins with the value 100 and the gamma parameter that
controls the shape of the separating hyper plane with
values ranging from 1 × 10-3 to 1 × 10-6 depending on
the number and nature of descriptors used) the obtained
RMSE of the 10-fold cross validation was 44.47, corre-
sponding to a q2 of 0.9520 (Table 1).

Model development with a feature selection/reduction step

Principal components analysis to reduce the number of
molecular descriptors
Analyzing the correlation matrix between all the vari-
ables in the dataset in study, it is possible to verify that
the variable space presents a significant degree of redun-
dancy. In order to test how the correlation between the
variables affects the model performance we will use
Principal Component Analysis (PCA) to remove linear
correlations and compare the results. To ensure ad-
equate comparison of the values for each variable, each
one was centered and scaled to mean equal to zero and
standard deviation equal to 1.0. The plot represented in
Figure 1 shows the proportion of variance in the dataset
that is explained by each principal component (PC). The
3 first PCs are enough to explain 52.4% of the variance
in the original dataset and the most significant 123 prin-
cipal components are sufficient to explain 99% of the
variance in the original dataset (Additional file 1).
To use PCs as model inputs, the same question of

how many components are necessary for adequate mod-
elling is pertinent. Therefore, a stepwise approach for
model construction was followed. Accordingly, several
SVM models were fitted adding progressively more com-
ponents following the decreasing order of the proportion
of variance explained, until 150 components were
present. Each model was evaluated using a10-fold cross



Figure 1 Proportion of variance in the descriptor set that is
explained by each principal component (for readability the plot
was truncated after the fiftieth variable).
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validation. It was verified that the best model, providing
the minimum RMSE (34.87), was obtained using the first
28 PCs (Table 1), and from this point on the prediction
performance decreases for each PC added (Figure 2).

Genetic algorithms for feature selection
A genetic algorithm procedure for variable selection was
adapted to this problem and implemented. The algo-
rithm parameters were subjected to preliminary screen-
ing in order to ensure that the heuristic is able to
adequately search the variables’ solution space, evaluat-
ing each set of variables found during the process with a
SVM, and using the cross-validated score to rank and
select each proposed subset of variables. The GA strat-
egy that produced the best results was by using a popu-
lation of 80 chromosomes, with a mutation rate of 2.5%,
and cross over was verified as irrelevant. Initial solutions
Figure 2 Comparison of the root mean square error (RMSE) for
each predictive SVM model using an increasing number of
principal components in descending order of proportion of
variance explained (previously determined using principal
components analysis).
used an initial density of 4.0% meaning that, at most, 59
features are being selected for each model. During the
optimization process it was verified that there were no
improvements in the model performance after 1000 gen-
erations. The genetic algorithm heuristic was repeated 10
times and the final result is the average of the best solution
in each run [49]. The obtained RMSE value was 47.10,
corresponding to a q2 of 0.9391, using an average of 58
variables (Table 1). It is important to note that the list of
variables selected with this method varied widely within
models, with only 2 or 3 common variables per run, show-
ing that this method although capable of producing solu-
tions of similar quality than using all the variables, is not
coherent on the set of features selected (Additional file 1).
However, it is noteworthy that approximately half of the
selected descriptors are Daylight fingerprints [50], repre-
senting certain structural fragments.

Variable importance index from Random Forests
In order to find the ordered list of variables according to
their importance, the random forest model fitted previ-
ously was used and the importance of each variable in
the final model was recorded. Due to the stochastic na-
ture of the random forest approach, this procedure was
repeated 10 times, and in the end this rank order was
averaged for each variable. The variables were then
sorted according to the average variable importance in
descending order (Figure 3). These results clearly sug-
gest that there are six very important descriptors and six
moderately important ones while the others are of small
importance and that the group of most important vari-
ables is not interchangeable since they have a clear dif-
ference in the quantity increased in prediction error.
The results appear to be coherent and robust, with the
first 20 descriptors occupying coherently the first posi-
tions in the rank, clearly illustrating the importance of
each in the current problem (Additional file 1).
With the produced descriptor rankings, the procedure

followed was similar to the one used for PCA where each
variable was introduced stepwise into a new model fitted
with SVMs, and recording the statistical results for each
new feature added. The 10-fold cross validation results for
each iteration are shown in Figure 4 and its analysis show
that a minimum RMSE (32.82) corresponding to a q2 of
0.9706 was reached when 385 variables were used. How-
ever it can be verified that the number of variables can be
reduced to 89 without losing much predictive power, with
an RMSE of 34.10 and a q2 of 0.9686 (Table 1). Nonethe-
less, it can be verified that, in general, the predictive power
of the models does not increase after 200 variables.
Table 1 summarizes the results obtained for the differ-

ent approaches presented above, comparing the per-
formance of the models using or not a feature selection/
reduction step.



Figure 3 Boxplots depicting the distribution of the importance score (percentage of prediction error increased when the variable is
permuted randomly) of each variable, ordered by mean importance (marked with red dots) resulting from 10 runs of the model.
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Random forests are robust techniques, however due to
the orthogonal division of the space their predictive per-
formance (RMSE = 50.28) is not as good as the one
obtained with SVMs (RMSE = 44,47) even in the ab-
sence of the feature selection step. SVM models, on the
other hand, are sensitive to the number of input vari-
ables, and using a smaller descriptor set have, in general,
better predictive power than larger descriptor sets. The
use of genetic algorithms has produced descriptor sets
that are able to produce good results with a limited
amount of variables, yet we did not found any coherency
in the descriptors selected, which precludes the use of
this technique as a reliable tool for selecting variables.
PCA has produced model results that are statistically
similar to the variable ranking approach as considered
by random forests, yet, PCA still requires the computa-
tion of all 1485 descriptors for its application which is a
relevant shortcoming. The fact that the results produced
by PCA and variable ranking approach as considered by
random forests are similar is an evidence, as also argued
Figure 4 Comparison of the root mean square error (RMSE) for each
descending order of importance (previously determined using random
by some authors [51], that the effects of correlation be-
tween descriptors mostly affects the interpretation of the
model, with only slight effect on its predictive power.
Thus the random forest based variable ranking approach
is the natural choice for a final model, which, for the
present problem, is able to reach robust models using
only 89 molecular descriptors.

Model Validation with an Independent Validation Set
All the results presented so far have been obtained using
10-fold cross validation. It is important nevertheless to
use an external and independent validation set to per-
form an unbiased validation of the selected model
[8,10,52]. Therefore to assess the model validity, it was
tested with an independent validation set of 100 mole-
cules, which were never considered in any of the training
phases. The predictive performance of the 89-features
model to this data was similar to the one obtained with
10-fold cross-validation, with an RMSE of 48.64 and a
predictive proportion of variation explained (Q2) of
predictive SVM model using an increasing number of variables in
forests).
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0.9607. These values confirm the robustness of the ap-
proach and the effectiveness of the feature selection
phase in capturing the relevant information for
modelling.

Discussion
Selected chemical descriptors
Different feature selection/reduction techniques were
applied to select the most important descriptors in order
to predict the property of interest. The stability of these
methods is very important, since ideally, in the same
conditions, different runs of each method should not in-
fluence the feature subset selection. The most important
descriptors selected by the three methods are very differ-
ent between each other, however the descriptor average
molecular weight (AMW) appears as important to both
genetic algorithms and variable importance calculated by
random forests. Genetic algorithms select mostly Day-
light fingerprints, while variable importance calculated
by random forests give more importance to the 2D and
3D descriptors calculated by E-DRAGON. In terms of
stability, genetic algorithms are not coherent on the set
of features selected since, in general, only 2 or 3 vari-
ables are common per run while using variable import-
ance calculated by random forests the list of most
important descriptor is coherent. It is difficult to assess
the relative importance/contribution of each variable in
the principal components calculated by principal com-
ponents analysis.
The 89 most important descriptors selected using vari-

able importance calculated by random forests were indi-
vidually analyzed. In a first step these were grouped into
general classes (Figure 5). These descriptors are derived
from different models and approaches, but they can be
Figure 5 Distribution of the 89 most important variables by classes o
loosely grouped according to their information content:
a) Constitutional descriptors, reflecting the molecular
constitution and independent from molecular connectiv-
ity and conformations; b) Connectivity indices and Topo-
logical descriptors, reflecting the topology of a given
structure, calculated from the vertex of the atoms in the
H-depleted molecular graph; c) Information content in-
dices, reflecting the neighborhood of an atom and edge
multiplicity; d) BCUT descriptors, reflecting atomic
properties relevant to intermolecular interactions, calcu-
lated from the eigenvalues of the adjacency matrix; e)
Atom-centred fragments, reflecting the presence of a set
of defined structural fragments; f ) Radial Distribution
Function (RDF) descriptors, reflecting the molecular con-
formation/geometry in 3D, based on the distance distri-
bution in the molecule; g) 3D-Molecule Representation
of Structures based on Electron diffraction (MoRSE)
descriptors, reflecting 3D information based on the 3D
coordinates of the atoms by using the same transform-
ation as in electron diffraction; h) GEometry, Topology
and Atom-Weights AssemblY (GETAWAY) descriptors,
reflecting the 3D molecular geometry provided by the le-
verage matrix of the atomic coordinates; i) Geometrical
descriptors, reflecting the conformation of a molecule
based on their geometry; j) Molecular Properties, calcu-
lated using models or semi empirical descriptors [14]. A
list of the 89 descriptors in decreasing order of variable
importance is provided in the Additional file 2.
Although the 10 most important variables reflect

mainly 2D information (constitutional, connectivity, in-
formation content and atom-centred fragments descrip-
tors), the most common type of descriptors, with 40
variables, reflects 3D information (3D-MoRSE descrip-
tors). The most important variable found for the
f descriptors.
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prediction of the standard enthalpy of formation of gas
phase is the average molecular weight, which represents
the sum of the atomic weights of the atoms in the mol-
ecule divided by the number of atoms in the molecule
(including hydrogen atoms). Unlike the molecular
weight, this descriptor does not give an idea of the size
of the molecule, but about the branching, type of atoms
and bonds and therefore it has a good capacity to distin-
guish different families of hydrocarbons. Contrasting to
the sets of variables selected by the model trained with
genetic algorithms, which have a high accounting for
fingerprints, this set of variables does not contain
fingerprints.

Prediction errors analysis
The experimental values of enthalpy of formation of gas
phase (kJ/mol) were compared to the predicted values
using the independent validation set and represented in
a scatter plot, with an RMSE of 48.64 and a Q2 of 0.9607
(Figure 6a). The majority of the data points are concen-
trated around the line of equality between the experi-
mental and predicted value of the property (45-degree
line) therefore, the relationship between them is strong.
The distance of each symbol from the 45-degree line
corresponds to its deviation from the related experimen-
tal value. The regression line indicates that generally the
model predicts values close to the equality with a small
deviation showing that the model is predicting with
smaller values than the observed ones. The prediction
errors obtained for the independent validation set were
then further analyzed and are represented in the Figure 6
- b). Similarly to what has already been observed, the
model is predicting the enthalpy of formation with a left
bias (smaller values than expected) and the most prob-
able error is 4.10. The compounds with higher errors are
Figure 6 a) Plot of experimental versus predicted values of enthalpy
validation set. b) Density plot of the differences between the observe
validation set. The structure of the compounds with most extreme predic
with triple bonds (hexa-2,4-diyne and hex-1-ynylbenzene) and the negative
(coronene and bicyclo[4.4.1]undeca-2,4,7,9-tetraene).
the alkynes, probably due to the fact that this type of
compounds are over-represented in the validation set
with 12 compounds while only 4 alkynes exist in the
training set and the latter is more than 3.5 times larger
than the former. Therefore, this under-representation
may be affecting the selection of descriptors to represent
this type of compounds and their relationship with the
property of interest. Removing the two alkynes (hexa-
2,4-diyne and hex-1-ynylbenzene) with higher prediction
errors, the RMSE decreases around 11.6% to 42.99 and a
Q2 of 0.9684, which is an indicator that these type of
compounds are not well represented in the training set.
Another class of hydrocarbons with high error rate are
the polycyclic compounds, although the experimental
confidence on these values is lower than for the rest of
the dataset, the fact that they have complex structures
and conformations may be the cause for a higher diffi-
culty establishing a relationship between their represen-
tation and the property of interest.

Conclusions
It is unrealistic to think that all descriptors of a molecule
contain useful information for a specific modelling prob-
lem. It is further acknowledged that models with larger
numbers of variables are not necessarily better. Further-
more, smaller models tend to generalize better than lar-
ger models, and tend to be more robust statistically.
Therefore, after numerical descriptors have been calcu-
lated for each compound, its number should be reduced
to a set of them that are information rich while being as
small as possible. The proposed approach uses random
forests, not as modelling tools for themselves, but as a
method capable of identifying the most important fea-
tures of a given modelling problem, which are then used
as input variables to SVM models. It is important to
of formation of gas phase (kJ/mol) using the independent
d values and the predicted values using the independent
tion errors are indicated, the positive errors correspond to compounds
errors correspond to compounds with more than one cycle
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note that random forests were the selected algorithm
due to the enumerated advantages; however, in principle,
any machine learning able to produce a ranking of vari-
able importance could be applied. The second part of
this hybrid algorithm uses a ranked list of the variables,
ranging from the most to the least important, to train
SVM models using a stepwise approach of adding one
variable for each model according to its predefined rank.
Once again it is important to note that, in principle, any
non-linear machine learning method could be applied.
The parameters of both models were optimized and the
effect of correlated variables studied. From the analysis
of the obtained results for a manually curated QSPR
dataset, we can conclude that the presented method-
ology performs well for high-dimensional data and it is
robust even in the presence of highly correlated vari-
ables. The feature selection step yields lower prediction
errors (RMSE = 34.10) with a small number of variables
(89). When comparing it to using the model with all the
available descriptors (1485), the current 89-variable
model was able to produce models with an RMSE 23%
lower. These reduced errors are relevant in thermo-
chemistry with significant chemical and economical im-
portance. It is then safe to conclude that SVMs alone
are not able to perform a good optimization, and by
combining with a variable selection step we can obtain a
minimum subset of important variables to train a faster
and more robust model, yielding better prediction
performance.
The predictive model was validated with an independ-

ent set to assess its performance in new data and the
results were similar to the ones obtained for the training
set with 10-fold cross validation.
The purpose of the current work was to suggest and

apply a methodology able to reduce the variable space
while preserving (even increasing) the model prediction
capabilities, thus reducing the redundancy and correl-
ation between variables. The final suggested model used
only 6% of the full set of descriptors and produced better
results than a model using all of them. Nonetheless, the
full model uses 89 variables, and we cannot exclude the
possibility of variable correlation and/or overfiting. Yet,
the use of cross validation throughout the full model se-
lection process coupled with a very stringent model
evaluation with an independent data set with data from
different sources, which produced similar results to the
training-validation dataset, is a guarantee that these pro-
blems are minimized and of reduced impact respective
to its application to a real world scenario.
In summary, the proposed methodology improves the

prediction performance of standard enthalpy of forma-
tion of hydrocarbons using as molecular representation
a set of molecular descriptors, providing faster and more
cost-effective calculation of descriptors by reducing their
number, and providing a better understanding of the
underlying relationship between the molecular structure
represented by descriptors and the property of interest.

Data and methods
The process of model development in QSPR is generally
divided into three steps: data preparation, data analysis, and
model validation [8-11]. The first stage includes the collec-
tion and cleaning of a dataset for the study and the selec-
tion of the best molecular representations [8-10]. The
second stage deals with the selection of a statistical multi-
variate data analysis and correlation techniques [8-10,12].
The third stage validates and evaluates the developed
model [10,52]. As the problem discussed in this study is
centered on models for feature selection, the second stage
was performed several times as the purpose was to itera-
tively search for the optimal parameters for a model or for
establishing the minimal number of variables necessary for
adequately fitting a model without losing its predictive
power. In order to ensure minimal bias in evaluating our
results an exhaustive validation procedure was followed,
both for model selection as well as for final model assess-
ment. Therefore, during the model evaluation phase, each
model was always internally validated using ten-fold cross
validation (for SVMs) or out-of-bag prediction (for Random
Forests). After selecting a final model with a predefined set
of variables, it was further validated with an external valid-
ation set never used on any phase of the training process
and descriptor selection, and with a different origin.
For the present section, initially the training set and

the independent validation set are described, followed by
the main modelling methodologies used, namely support
vector machines and random forests. Also described are
the procedures used for variable reduction/selection ei-
ther based on random forests variable ranking, principal
components analysis and genetic algorithms.

Data and data pre-processing
Training set
Hydrocarbon compounds consist entirely of hydrogen
and carbon. For this reason and because hydrocarbon
fragments are found in most types of compounds, a
good prediction method should give an accurate and
consistent estimation. Considering that the quality and
prediction capabilities of any method strongly depend
on the amount and quality of the experimental data used
for its development, the dataset used to model develop-
ment was collected and manually curated by chemistry
experts and it is available online on the ThermInfo data-
base (http://www.therminfo.com). The dataset covers
different types of hydrocarbons (Table 2) and it contains
364 compounds structurally characterized and with ex-
perimental values for the standard molar enthalpy of for-
mation of gas phase at 298.15 K (ΔfH

0).

http://www.therminfo.com/


Table 2 Distribution of the compounds in the training
and independent validation sets into the different types
of hydrocarbons

Type of
hydrocarbon

Number of
compounds in
the training set

Number of compounds
in the independent

validation set

Non-Cyclic 131 35

- Alkanes 66 7

- Alkenes 61 16

- Alkynes 4 12

Cyclic 233 65

- Aromatic 85 19

- Polycyclic 62 15

- Non-Aromatic 148 46

- Polycyclic 67 25

Hydrocarbons - Total 364 100
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The values range from −705.8 kJ/mol to 780.9 kJ/mol,
with a mean value of −33.6 kJ/mol and standard deviation
of 190.8 kJ/mol. The distribution and variation of the
dependent variable is shown in Figure 7a). Although the
values have a large range of distribution, the major part of
the compounds' enthalpy is located between -500 and 500
kJ/mol. A complete table with ThermInfo ID, CASRN,
compound name, SMILES and experimental values for the
standard molar enthalpy of formation of gas phase at
298.15 K is provided in the Additional file 3.
Figure 7 Density plot showing the distribution and variation of the st
training set, indicating the structure of the compounds with the mos
anthracene and pentacyclo[4.2.0.02,5.03,8.04,7]octane; minimum: dotria
set, indicating the structure of the compounds with the most extrem
[fg]acenaphthylene; minimum: hexadecylcyclohexane and eicosane).
Independent validation set
One of the simplest and most widely used measures of
generalization is testing the model performance on an inde-
pendent validation set. The validation set was collected
from two different sources, NIST Web book (version 2012)
[53] and CRC Handbook of Chemistry and Physics (version
2010) [54]. The validation set covers different molecules
that were not part of the training set and it contains 100
compounds structurally characterized and with experimen-
tal values for the standard molar enthalpy of formation of
gas phase at 298.15 K (ΔfH

0) for which the same molecular
descriptors used in the training set were calculated (Table 2).
The ΔfH

0 values range from -460.50 kJ/mol to 551.50 kJ/
mol, with a mean value of 30.02 kJ/mol and standard devi-
ation of 221.2 kJ/mol. The distribution and variation of the
dependent variable is shown in Figure 7 – b) and it is simi-
lar to the one obtained for the training set (Figure 7 – a)).
A complete table with NIST Web book/CRC ID, CASRN,
compound name, SMILES and experimental values for the
standard molar enthalpy of formation of gas phase at
298.15 K is provided in the Additional file 4.

Molecular descriptors
This research is based on the assumption that there is
an underlying relationship between molecular structure
and properties. Also, it is assumed that the multivariate
molecular representation of the set of compounds
reveals these analogies, i.e. physical and chemical prop-
erties of a chemical substance can be computed from its
andard enthalpy of formation of gas phase at 298.15 K in the: a)
t extreme values (maximum: 5,6,11,12-tetraphenylbenzo[b]
contane and 11-decylheneicosane); b) independent validation
e values (maximum: (1Z,3Z,5Z,7Z,9Z,11Z)-octalene and cyclopenta



Teixeira et al. Journal of Cheminformatics 2013, 5:9 Page 11 of 15
http://www.jcheminf.com/content/5/1/9
molecular structure, encoded in a numerical form with
the aid of various descriptors. The key step in developing
models is the selection of an informative and representa-
tive dataset. A total of 1485 molecular descriptors are used
in this work and they were calculated using three main
sources. The full descriptor set for each molecule of the
training and independent validation sets is provided as
supplementary material (Additional files 3 and 4):

� Molecular Descriptors generated by E-DRAGON
[55,56] - E-DRAGON is the free online version of
DRAGON and it generates a matrix of 1666
molecular descriptors for the dataset based on
the compounds’ structure [13]. The 3D atomic
coordinates of the lower energy conformation for
the provided molecules were calculated using
CORINA [57]. A preprocessing step was carried
out and all zero variance variables (i.e. all the
observations are the same) were removed, reducing
the initial set to 1273 molecular descriptors. The
high number of zero variance variables is due to the
fact that this study deals only with hydrocarbons,
therefore all descriptors related to other atoms than
carbon and hydrogen have the value zero;

� Simple Structural Descriptors - The calculation of
eight specific molecular features (such as molecular
weight, average molecular weight, number of ring(s),
number of bonds in ring(s) and atom multiplicity
(number of primary, secondary, tertiary and
quaternary carbon atoms)) was performed using the
molecular structure and the descriptors were added,
one-by-one, based on a preliminary analysis of the
results obtained with different combinations of
descriptors;

� Daylight Fingerprints [50] - are binary hashed bit-
strings of 1024 bits (FP2) representing fragments up
to seven atoms, calculated using OpenBabel [58]. A
preprocessing step was carried out and all zero
variance variables were removed, reducing the initial
set to 204 descriptors [58].

Support vector machines
Support Vector Machines (SVMs) [48] are non-linear
supervised learning methods for classification or predic-
tion. SVMs construct a decision hyper plane or set of
hyper planes in a high-dimensional feature space that
minimizes the margin using a kernel function to trans-
form the data, i.e., separate them based on the largest
distance to the nearest training data points. This algo-
rithm can optimize the function to a global optimum
and the results have good predictive performance
[59,60], being currently one of the most used method-
ologies for QSAR/QSPR studies. The disadvantage of
SVMs is the lack of transparency of results due to its
non-parametric nature and the sensitivity of the algo-
rithm to the choice of kernel parameters. It produces
good results and generalizes well even if the ratio be-
tween the number of variables and the number of obser-
vations becomes very unfavourable or in the presence of
highly correlated predictors. Another advantage is the
kernel-based system since it is possible to construct a
non-linear model without explicitly having to produce
new descriptors. The accuracy of an SVM model is
dependent on the selection of the model parameters. An
Epsilon-Support Vector Regression analysis using the
Gaussian radial basis function (RBF) kernel (general-pur-
pose kernel used when there is no prior knowledge about
the data) has two parameters: cost (represents the penalty
associated with large errors, increasing this value causes
closer fitting to the training data) and gamma (controls
the shape of the separating hyper plane, increasing this
value usually increases the number of support vectors).
For the present study, the SVM implementation used

was provided by the e1071 [61] package from R. This li-
brary provides an interface to libsvm which allows classi-
fication or regression [62,63]. Hyperparameter tuning in
SVM models is done using the tune framework which is
computationally expensive, considering that it performs
a grid search over cost and gamma ranges.

Random forests
Random Forests [46,64] are a non-linear consensus
method for classification or regression that ensemble
unpruned decision trees for a good generalization. In the
decision tree the leaves represent the property/activities
values and branches represent conjunctions of descrip-
tors that lead to those properties/activities. Each tree is
constructed independently of previous trees using a dif-
ferent bootstrap sample of data with replacement and
where each node is split using the best subset of predic-
tors randomly chosen at that node. The generalization
of this method depends on the strength of the individual
trees in the forest and the correlation between them.
This algorithm only requires the selection of two para-
meters and it is usually not very sensitive to their values:
the number of variables in the random subset at each
node and the number of trees in the forest. In the end,
new data is predicted by averaging the predictions made
by all the trees in the forest. The algorithm Random For-
est has several characteristics that make it suitable for
QSAR/QSPR datasets [44-46]: a) it can be used when
there are more variables than observations; b) it has a
good predictive performance even when noisy variables
are present; c) it is not very sensitive to the algorithm
parameters, therefore there is a minimal necessity to
tune the default parameters to achieve a good perform-
ance; d) due to its nature encompassing a large number
of simple models, it largely reduces the problems caused
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by over fitting; e) it can handle a mixture of categorical
and continuous descriptors; f ) it returns measures of de-
scriptor importance; g) there are high quality and free
implementations of the method [44-46]. In random for-
ests, there is no need for cross-validation or a separate
test set to get an unbiased estimate of the test set error.
It is estimated internally considering that each tree is
constructed using a different bootstrap sample from the
original data. About one-third of the cases are left out of
the bootstrap sample (out of the bag (OOB) samples)
and not used in the construction of the forest. These
OOB samples are used to get a running unbiased esti-
mate of the regression error as trees are added to the
forest and they are also used to get estimates of variable
importance. The proportion of variation explained indi-
cates how well the set of molecular descriptors is able to
explain the variation in the property/activity value.
The Random Forest implementation used in this work

was provided by the R library randomForest [65].

Variable importance
The ensemble voting procedure of random forests allows
for the calculation of an importance score for each vari-
able in the model. There are several available measures of
variable importance. One of the most common measures
is determined by looking at how much prediction error
increases when the value of a variable in a node of a tree is
permuted randomly while all others are left unchanged
[43,45,46,64]. However, there is an issue in determining
the variable importance of correlated variables, consider-
ing that in this determination it is assumed that each vari-
able is independent of the response variable as well as
from all other predictors [66]. Therefore, if correlated pre-
dictors are not independent, they obtain high importance
scores and consequently, a higher probability of being
selected for the split. Nevertheless, some correlated vari-
ables do hold predictive value, but only because of the
truly important variable [66].

Variable importance for feature selection
It is possible to use the variable rankings according to
their importance in RFs models as a criterion for vari-
able selection in other models [43,45]. The procedure
followed in this work involved a sequence of steps in
order to ensure coherence and results reproducibility.
Therefore the procedure followed can be schematized
with the following sequence of steps: (1) For the study
problem, an initial systematic evaluation of the optimal
model parameters was performed, and the results with
the out-of-bag (OOB) root mean square error were eval-
uated for selecting the best possible parameter combin-
ation; (2) With the best parameter set, perform 10
model runs and record each variable importance score
and rank, and using this new consensus ranking, define
a sorted list starting with the most relevant variables and
ending with the less important ones; (3) Proceed step-
wise by feeding another prediction model (as an SVM) a
progressively larger vector of input variables, following
the ranked order. With such procedure it is expected
that a minimal descriptor set, significantly smaller than
the initial variable list may be found.

Genetic algorithms
A genetic algorithm [67,68] is a meta-heuristic based on
the application of a computational simplification of the
biological evolutionary model over binary representa-
tions of solutions of a combinatorial optimization prob-
lem. Each solution is named a chromosome (or an
individual), and its fitness is determined according to its
result using an evaluation function. The algorithm starts
by initiating a randomly generated set of solutions
(named a population of chromosomes) and iteratively
applies the evolutionary concepts of mutation, crossover
and Darwinian selection to produce a new population.
The process of selection is particularly important as an
individual has a larger probability of being selected for
the new generation according to its fitness, leading each
generation to become progressively better than the ori-
ginal one. The meta-heuristic process is repeated for a
given number of iterations.
Genetic algorithms have been used for feature selec-

tion problems in QSPR and QSAR studies [49,69,70].
For feature selection, generally a chromosome is mod-
elled as a binary string identifying the selected features
for a given prediction model. Typical models can be lin-
ear regression, Support Vector Machines or Neural Net-
works [69,71-73]. The evaluation function for each
chromosome can then be a statistic of the application of
the selected features using the predefined model to a
validation set. Chromosomes with better validation
results will tend to have a larger representation in the
new population. The new population can then be chan-
ged using the cross over and mutation operators. Muta-
tion changes randomly the solution by a fixed amount,
causing some new features appear in the solution and
others disappear, therefore guaranteeing that all available
features will have a chance of being evaluated during a
set of generations. Cross over, on the other hand, will
allow the exchange of features selected between chromo-
somes within the same generation. After mutation and
crossover the new population is evaluated again and the
process is repeated for a number of iterations or until a
suitable solution has been found.
A genetic algorithm was adapted to this problem and

implemented considering the following parameters: a)
the number of chromosomes – this parameter indicates
how many solutions are being evolved simultaneously; b)
the mutation rate – indicates the likelihood of a given
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feature is swapped into or out from a solution (chromo-
some) a value of 0.05 indicates that each feature has a
probability of 5% of being changed. To avoid large drifts,
the only mutation possibility is a swap, meaning that for
each feature that leaves the solution, another one, not
previously there, has to enter; c) the crossover rate –
indicates how likely two chromosomes can exchange
variables in the models; d) the solution density – indi-
cates how many features can be selected for each solu-
tion; e) the selection factor – indicates the likelihood
that a given solution can be selected for the new popula-
tion and it is a function of its rank among the current
population, better chromosomes mean that the respect-
ive solution or combination of features produces an
improved model compared to the others. Superior mod-
els are ranked higher, and higher ranking models have
an increasingly large probability of selection using a
negative exponential distribution. Smaller values of the
selection factor indicate a very small probability of
selecting the worst solutions for the new generation,
while larger values emphasize the possibility of selecting
substandard solutions. All parameters were subject to a
preliminary optimization process, so that it was possible
that the implementation could explore a significant
fraction of the solution space.

Principal component analysis
Principal Component Analysis (PCA) [74] is a procedure
based on the transformation of the variable space into
linear orthogonal combinations that are ranked accord-
ing to the explained variance of each combination
(named a principal component). Thus, the first principal
component is a linear combination of optimally-weighted
observed variables that accounts for the maximal amount
of total variance. The following components account for
a maximal amount of variance in the observed variables
that was not accounted for by the preceding components
and they are linearly uncorrelated with all of the preced-
ing components. PCA is fast to compute, easy to imple-
ment and several computer applications implement it
[75]. This method guarantees to find a lower dimensional
representation of the data on a linear subspace if such
representation exists. PCA method can only identify
gross variability as opposed to distinguishing among and
within groups’ variability and the non linear combinations
in the data cannot be efficiently exploited [24,76,77].
Principal components have been used as model inputs,
when the variable space is too large and, specially, when
models are particularly sensitive to the number of variables
(e.g. Neural Networks) [78].
The procedure followed involved a sequence of steps

in order to ensure coherence and reproducibility of
results. This procedure can be schematized with the fol-
lowing sequence of steps: (1) The descriptor set in study
was centered and scaled to mean equal to zero and
standard deviation equal to one. (2) The PCA was used
and the obtained principal components were organized
in descending order of variance explained. (3) The PCs
were used as a SVM model input following a stepwise
procedure using the defined order. This method is aimed
mainly to simplify the model fitting phase, as it does still
require that all variables are computed.

Model evaluation
The examination of the models’ fitness is performed
through the comparison of the experimental and predicted
properties and is needed to statistically ensure that the
models are sound. The proportion of variation explained
by the model and the root mean squared error (RMSE)
are performed to determine the goodness of fit of the
model. The explained variation measures the proportion
to which a model accounts for the variance of the given
data set. The concept of variation explained is, in many
cases, equivalent to the correlation coefficient, however,
for non linear models it is more adequate to present the
explained variance [79]. Nevertheless, since in QSPR/
QSAR studies it is standard to use the cross-validated
squared correlation coefficient (q2), this terminology is
adopted through the manuscript. In order to validate the
robustness and predictive ability of the models, all results
presented in this manuscript are the outcome of 10-fold
cross validation or out-of-bag prediction. The process of
cross-validation begins with the random division of the
dataset into 10-folds of compounds. One partition is
removed and used as test set and the model is created
from the remaining data points, this process is repeated
10 times. The validation statistics are averaged over the
rounds. An external validation with an independent data-
set is considered optimal when evaluating how well the
equation generalizes the data. The training set was used to
derive a model that was further used to predict the prop-
erties of the test set instances, which were not used in the
model development. The predictive proportion of vari-
ation explained (Q2) by the model and the root mean
squared error (RMSE) are performed to determine the ex-
ternal predictive ability of the model.

Additional files

Additional file 1: List of descriptors selected using different selection/
reduction methods: principal components analysis, genetic algorithms
and variable importance calculated by random forests. For principal
components analysis, the list of variables and respective factor loadings
are presented for the ten fist principal components (PC1 – PC10) , which
are enough to explain 70.87% of the variance in the original dataset. For
genetic algorithms, the number of times that each variable is selected in
a total of 10 runs is presented. For variable importance calculated by
random forests, a list of the variables is presented, along with their
average and standard deviation of the importance score in the ten runs
(ordered according to the average variable importance score).

http://www.biomedcentral.com/content/supplementary/1758-2946-5-9-S1.xlsx
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Additional file 2: List of the 89 most important descriptors. Table
containing the 89 most important descriptors selected using variable
importance calculated by random forests. The descriptors are presented
in decreasing order of variable importance.

Additional file 3: Training Set. Table containing information about the
structure (ThermInfo ID, CASRN, compound name and SMILES) , the
corresponding experimental values for the standard molar enthalpy of
formation (kJ/mol) of gas phase at 298.15 K and the complete list of
molecular descriptors for the compounds in the training set used in this
study. More information about each compound can be found at
http://therminfo.lasige.di.fc.ul.pt.

Additional file 4: Independent Validation Set. Table containing
information about the structure (NIST Web book/CRC ID, CASRN,
compound name and SMILES), the corresponding experimental values
for the standard molar enthalpy of formation (kJ/mol) of gas phase at
298.15 K and the complete list of molecular descriptors for the
compounds in the independent validation set used in this study. More
information about each compound can be found in the CRC Handbook
of Chemistry and Physics or NIST Chemistry WebBook (http://webbook.
nist.gov/chemistry/).
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