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Abstract 

Background: In silico analyses are increasingly being used to support mode-of-action investigations; however many 
such approaches do not utilise the large amounts of inactive data held in chemogenomic repositories. The objective 
of this work is concerned with the integration of such bioactivity data in the target prediction of orphan compounds 
to produce the probability of activity and inactivity for a range of targets. To this end, a novel human bioactivity data 
set was constructed through the assimilation of over 195 million bioactivity data points deposited in the ChEMBL 
and PubChem repositories, and the subsequent application of a sphere-exclusion selection algorithm to oversample 
presumed inactive compounds.

Results: A Bernoulli Naïve Bayes algorithm was trained using the data and evaluated using fivefold cross-validation, 
achieving a mean recall and precision of 67.7 and 63.8 % for active compounds and 99.6 and 99.7 % for inactive 
compounds, respectively. We show the performances of the models are considerably influenced by the underlying 
intraclass training similarity, the size of a given class of compounds, and the degree of additional oversampling. The 
method was also validated using compounds extracted from WOMBAT producing average precision-recall AUC and 
BEDROC scores of 0.56 and 0.85, respectively. Inactive data points used for this test are based on presumed inactivity, 
producing an approximated indication of the true extrapolative ability of the models. A distance-based applicability 
domain analysis was also conducted; indicating an average Tanimoto Coefficient distance of 0.3 or greater between a 
test and training set can be used to give a global measure of confidence in model predictions. A final comparison to 
a method trained solely on active data from ChEMBL performed with precision-recall AUC and BEDROC scores of 0.45 
and 0.76.

Conclusions: The inclusion of inactive data for model training produces models with superior AUC and improved 
early recognition capabilities, although the results from internal and external validation of the models show differing 
performance between the breadth of models. The realised target prediction protocol is available at https://github.
com/lhm30/PIDGIN.
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Background
A principle challenge faced by the information gleaned 
from phenotypic screening is that many of the assessed 
compounds remain orphan ligands, as the respective 
mode-of-action (MOA) remains undetermined in the 
first instance [1]. Consequently, the subsequent identi-
fication of the modulated targets for active compounds, 

known as ‘target deconvolution’, is required [2]. Various 
biochemical affinity purification methods provide direct 
approaches to discover target proteins binding small 
molecules of interest for this purpose [3–6]. Although 
these elucidation experiments can explicitly determine 
compound-target interactions, such procedures are 
costly and time-consuming [4, 7, 8]. These procedures 
require large amounts of protein extract and stringent 
experimental conditions, while many techniques have 
also been deemed best suited for situations where a high 
affinity ligand binds to a protein [1, 9]. Other difficul-
ties involve the challenge of preparing and immobilizing 
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affinity reagents (targets) that still retain their cellular 
activity (i.e. ensuring that proteins still interact with the 
small molecule while it is bound to the solid surface) [10]. 
Such caveats are responsible for the increased interest in 
novel computational target deconvolution strategies for 
drug discovery [11].

In silico protein target prediction is a well-established 
computational technique that offers an alternative ave-
nue to infer target-ligand interactions by utilizing known 
bioactivity information [12]. These methods have played 
an important role in the field of efficacy prediction and 
the prediction of toxicity [13–17]. Such approaches are 
designed to predict targets for orphan compounds early in 
the drug development phase, with the predictions form-
ing the base of an experimental confirmation afterwards. 
Both structure-based and ligand-based methods exist for 
the prediction of protein targets for small molecule ligands 
[12, 18–22]. The former methods generally describe 
approaches that exploit the structural information of the 
protein, combined with scoring functions, in an attempt to 
predict ligand–target pairs [23–25]. Ligand-based meth-
ods investigate an identified structure–activity relationship 
(SAR) space, using similarity searching on large numbers 
of annotated protein–ligand pairs obtained from chem-
ogenomic databases [26–29]. Such predictive models are 
founded upon the principle of chemical similarity, relying 
on the relevant similarities of compound features from tar-
gets which are likely to be responsible for binding activity 
[30, 31]. The focus of this work is concerned with improv-
ing current ligand-based methods for target prediction.

Similarity searching for ligand-based target prediction 
is considered the simplest form of in silico target predic-
tion and has long been established within the literature 
[12, 17, 22, 27, 32–38]. In these models, predictions are 
based on the principle of molecular similarity to identi-
fied bioactive compounds from chemogenomic data-
bases [31, 35]. The simplistic nature of these methods 
means that they are only able to consider the structure 
of a molecule as a whole, which significantly hinders the 
predictive power of these models. Building on this theme, 
data-mining algorithms are capable of considering mul-
tiple combinations of compound fragments by applying 
pattern recognition techniques. They have gained trac-
tion in target prediction due to their demonstrated ability 
to more efficiently extrapolate predictions [12], and are 
less time consuming when compared to other approaches 
such as molecular docking [20]. One of the earliest and 
most widely used examples of data-mining target elucida-
tion is the continuously curated and expanded Prediction 
of Activity Spectra for Substances (PASS) software [21], 
which was assimilated from the bioactivites of more than 
270,000 compound-ligand pairs. The authors trained the 
model on multilevel neighbourhoods of atoms (MNA) 

descriptors, producing predictions based on Bayesian 
estimates of probabilities.

The Naïve Bayes (NB) classifiers are a popular family 
of algorithms used for the prediction of bioactivity for 
compounds [39–42]. These methods offer a quick train-
ing and prediction times and are relatively insensitive to 
noise [43]. Nidhi et al. [40], employed a multi-class Naïve 
Bayes classification algorithm trained on a data set com-
prised of over 960 target proteins extracted from the 
‘World Of Molecular BioAcTivity’ (WOMBAT) database 
[44]. Another target prediction algorithm developed by 
Koutsoukas et al. [39], is able to predict structure activ-
ity relationships (SARs) for orphan compounds using 
either a Laplacian-modified Naïve Bayes classifier or a 
Parzen-Rosenblatt Window (PRW) learner. The algo-
rithm was trained on more than 155,000 ligand–protein 
pairs from the ChEMBL14 database [45], encompassing 
894 different human protein targets. After benchmarking 
experiments [39], it was found that the PRW learner out-
performed the Naïve Bayes algorithm overall, achieving a 
recall and precision of 66.6 and 63.3 %, respectively.

Support Vector Machines (SVMs) have also been 
employed for task of target prediction. These models 
have utilised smaller amounts of data in comparison to 
NB models, mostly due to the computational expense of 
the SVM algorithm. Examples of SVM methods include a 
model obtaining more than 80 % sensitivity consistently 
for five different protein targets [42]; however the limi-
tation of this implementation to five molecular targets 
only allows for a very narrow view of compound activ-
ity. Nigsch et  al. [28]. investigated the use of a Winnow 
algorithm for target prediction and compared the learner 
to the performance of a Naïve Bayes model, comprising a 
set of 20 targets extracted from WOMBAT. The compari-
son of the overall performance of the two algorithms did 
not yield significant differences, but the overall findings 
supported the view that ensembled machine-learning 
models could be used to yield superior predictions.

Ligand-based predictions provide a basis for further 
analysis when attempting to rationalise mechanism-of-
action. Liggi et al. [46], extended the predictions from a 
PRW target prediction algorithm, by annotating enriched 
targets implicated with a cytotoxic phenotype, using 
associated pathways from the GO [47, 48] and KEGG 
[49, 50] pathway databases. The annotation of enriched 
targets with pathways gave improved insight into under-
standing the MOA of the phenotype, underlining the 
signalling pathways involved in cytotoxicity. Other exam-
ples include the combination of target prediction and 
classification tree techniques for rationalising phenotypic 
readouts from a rat model for hypnotics [51]. The authors 
derived interpretable decision trees for the observed 
phenotypes and inferred the combination of modulated 
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targets which contribute towards good sleeping patterns. 
A review of the known mechanisms of hypnotics sug-
gested that the results were consistent with current lit-
erature in many cases.

Such publications illustrate the real-world application 
of predictions obtained from in silico target prediction 
methods for both on-target and off-target bioactivity pre-
dictions [14]. Although most of these methods produce 
a probability of activity for an orphan compound against 
a given target, the approaches mentioned here do not 
utilise inactive bioactivity data [39]. The objective of this 
work is hence concerned with the construction of an in 
silico target prediction approach that is able to consider 
both the probability for activity and inactivity of orphan 
compounds against a range of biological targets, thus, 
giving a more holistic perspective of chemical space for 
factors that contribute and counteract bioactivity.

The realized target prediction tool is validated both 
through cross-validation and an external validation set. 
Five-fold cross validation was employed to evaluate the 
model and was also used to generate class-specific activ-
ity thresholds, based on the optimum cut-off value for a 
range of different metrics. The performance of the tool 
when applied to test data extracted from the WOMBAT 
database is also evaluated. This provides insight into the 
models ability to extrapolate predictions to a real-world 
setting. Finally, a comparison to a model generated solely 
from activity data was also conducted to evaluate the 
value of the incorporation of inactivity data in the models.

Results and discussion
Internal validation results
Precision and recall values were computed for each of the 
fivefolds and averaged to give a single metric to measure 
the performance each of the 1080 target classification 
classes (Fig. 1). Overall, the models achieve a mean recall 
and precision of 67.7 and 63.8  % for actives, and 99.6 
and 99.7  % for inactive compounds. Internal validation 
exhibits differing performance profiles across the breadth 
of models. 172 of the targets failed to predict any active 
molecules and so received precision and active recall 
values of 0, with 150 of these (87.2 %) comprising target 
classification classes comprising fewer than 20 active 
training compounds. We also considered a fivefold cross 
validation splits a set of 20 compounds into 5 subsets of 
4 compounds each, so it is unsurprising that the models 
do not maintain their predictive ability for small classes.

Figure  2 depicts how the performance of the models 
differs by target class. The 3 highest performing targets 
tend to be smaller groups of enzymes comprising fewer 
than 5 proteins, for example Ligases, Isomerases and 
Aminoacyltransferase all achieve average F1-Score per-
formances above 0.8. The transcription factor class is 

the highest performing set of targets with a count above 
30, averaging a F1-Score of 0.76. In comparison, Kinases 
comprise one of the largest classification classes of tar-
gets (273), which have comparatively low performance 
of 0.50. This target class has been previously shown to 
be problematical for in silico target prediction due to 
the promiscuity of the targets [39]. In these cases, these 
models have difficulty with predictions due to increased 
dissimilarity within the active training sets and increased 
similarity between active and inactive training sets, 
meaning that the models can not identify signals respon-
sible for activity.

The high density of points towards the top right of the 
plot of Fig. 1 depicts that a significant number of models 
obtained high precision and recall values. Upon further 

Fig. 1 Distribution of Precision/Recall values achieved by the models 
during fivefold cross-validation. Many of the models populate high 
Precision and Recall values towards the top right of the plot
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Fig. 2 Performance of different target classes. The top performing 
classes tend to contain low numbers of targets i.e. The top 3 ranked 
classes, isomerase, ligase and aminoacyltransferase all comprise fewer 
than 5 targets
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investigation, it was found that 141 of the 157 targets 
(89.8 %) that score precision and recall scores above 0.97 
belong to targets comprised of sphere excluded (SE) inac-
tive compounds. Such a high performance is a result of 
the sphere exclusion (SE) algorithm that requires that 
molecules must be suitably dissimilar from actives. In 
these cases, the SE inactive compounds can more eas-
ily be distinguished apart actives in comparison to 
PubChem inactive compounds during cross validation. 
Conversely, due to the absence of a dissimilarity selection 
requirement, experimentally confirmed inactive com-
pounds from PubChem are likely to be more skeletally 
similar to actives from ChEMBL, as inactive compounds 
tend to originate from structurally similar scaffolds to 
actives (Additional file 1: Table S1). This trend blurs the 
boundary of the hyperplane between the active and inac-
tive classes. The results from internal validation also indi-
cate that the models frequently perform with low recall, 
which is most likely a consequence of the class imbalance 
of the data, when active compounds are predicted as false 
negatives due to the apparent over representation of fea-
tures in the inactive classes.

The influence of class size, Top 5 nearest intraclass 
neighbours and F-score performance are explored in 
Fig. 3. Here it is demonstrated that both increasing class 
similarity and size are shown to improve the predictions 
for the models, as the majority of classes larger than 40 
compounds are dominated by high Tc values between 0.9 
and 1.0 (data points past this point tend to line the back 
wall of the plot). In comparison, smaller models below 

40 compounds are shown to have higher variance in the 
nearest neighbour similarity due to the smaller cover-
age of chemical space (bottom left), with Tc values rang-
ing between 0.2 and 0.99. The intraclass similarity of the 
models increases in accordance with target size as the 
likelihood of including a similar neighbour increases with 
a greater coverage of chemical space. In the case of small 
model sizes, models with low Tc values perform poorly 
(as the chance of retaining similar compounds through-
out the folds decreases), while small target models com-
prising similar nearest neighbours perform better. This 
evidence supports the view that smaller sized classes 
below 40 compounds can be reliably utilized, provid-
ing that similar compounds are represented within the 
training sets. The figure also shows the influence of the 
SE algorithm on the performance of the models, with 
the red and blue markers denoting PubChem-only inac-
tive compounds and SE inactive compounds respectively. 
Targets with SE inactive compounds dominate among 
highly performing targets, with 73 of the 420 SE classes 
achieving precision values over 0.95. This can be seen 
via the density of red markers towards limit of the y axis. 
Interestingly, the figure illustrates that PubChem and SE 
classes are both performing poorly in situations with low 
intraclass similarity, with markers populating the base of 
the plot. In these circumstances, the chemical space cov-
ered by the models is too small and diverse, meaning that 
the NB algorithm is not able to establish distinguishing 
features between activity classes.

External validation results
Validation using WOMBAT
The performance of the models was analysed using 
an external data set extracted from WOMBAT. It is 
important to recognize that the bioactivity informa-
tion included for the compounds-protein associations 
contained in WOMBAT do not contain experimentally 
confirmed inactive compounds, and that molecules with-
out an annotation for a target are simply considered as 
inactive for that protein. Although this assumption may 
be correct in many cases, there are likely to be certain 
instances when a compound may actually be active. If 
these compounds were correctly annotated as active 
by the target prediction tool (a ‘false false positive’, and 
hence a ‘true positive’), this prediction would be penal-
ised as a false positive due to the assumptions applied by 
the test data.

Figure 4 and Table 1 illustrate the performance of the 
models upon application of the different thresholds to 
the predictions of the WOMBAT test data. The default 
threshold, which considers Activity when P (activ-
ity)  >  P (inactivity), produces an average precision and 
recall of 19.2 and 83.3 %. These findings exhibit a drop in 

Fig. 3 Effect of number of active compounds (Class size) and intra-
target Tanimoto similarity (Class Tc) on F1 Score performance. Sphere 
excluded targets perform better in comparison to under-sampled 
targets. Targets with high Tc and consisting of more than 40 active 
compounds perform well overall. In contrast, targets comprising a 
small number of active compounds, e.g. 40 or fewer, display a large 
variation in target similarity and performance. Marker colour intensity 
represents depth in 3D space (transparency indicates markers that 
are further away). Class Tc is calculated using the average of the top 5 
nearest neighbours of the training compounds
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performance that is experienced during external valida-
tion, for situations when orphan compounds are distinct 
from the training set. Compounds inhabiting dissimilar 

realms of chemical space are considered to be ‘near to’ or 
‘outside’ the applicability domain, a key limitation of the 
models. The precision performance on the WOMBAT 

Fig. 4 Precision and Recall distributions achieved by the models for the WOMBAT test data after application of thresholds. The precision, accuracy, 
F-score thresholds produce similar performance profiles, while the recall threshold produce a profile with elevated recall and lowered precision. 
Hence, different precision, accuracy and F-score metrics can be used to generate thresholds with high precision and lowered recall, while recall 
thresholds can be used to generate thresholds with improved recall at the cost of precision
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database is also reduced due to the failure of the some 
classes to predict any true-positive compounds, generat-
ing values of 0. The SE of negative samples in the training 
data is also likely to have limitations on its applicability 
on external test data, since compounds are sampled from 
a predefined area of therapeutically relevant chemical 
space.

The precision values achieved by the models may ini-
tially seem low, but when this is compared to the values 
expected at random across all of the 1080 models (which 
would be in the area of ca. 1/1080, so about 0.1  % for 
each), the models are actually capable of retaining com-
parably high precision. The performance for the appli-
cation of the F1-score, accuracy, precision and recall 
decision-based thresholds are also shown in Fig.  4. The 
results show a trade-off between precision and recall 
metrics for the models, with the F1-score, accuracy and 
precision metrics obtaining visually similar distributions. 
In comparison to the other metrics, the recall-based 
thresholds produce a distinctly separate profile with 
elevated recall and lowered precision, with many of the 
model performances populating an area of high recall 
and precision.

The varying performance profiles generated for each 
metric produce different model behaviour, and an ideal 
activity cut-off is dependent on the question proposed 
by a user and the application of the target predictions. 
For example, the stringent thresholds generated using 
the precision metric can be applied in cases such as can-
didate safety profiling, when outputs require few false 
negatives and accurate identification of dangerous com-
pounds. Conversely, recall-based thresholds may be 
applied in circumstances requiring lenient assurance of 
predicted targets, perhaps during hit identification stages 
and mechanism-of-action studies. These thresholds will 
increase the chance of returning a more complete list of 
truly targeted proteins, at the cost of increasing the num-
bers of false positives.

Table  2 and Fig.  5 display the results of the R score 
enrichment analysis, and demonstrate the similar 

performance profiles that are obtained using the F1, 
accuracy and precision decision thresholds. The posi-
tively skewed bell curves observed on these histogram 
plots peak around the same areas (approx. 0.3) with 
the majority of enrichment scores encompassing posi-
tive values, indicating that these thresholds frequently 
give improved F1-score performance. These findings 
mirror the previous conclusions that are drawn from 
Fig. 4 showing that the performance of these three sets 
of thresholds are similar. The enrichment score distri-
butions for the recall-based thresholds glean a very dif-
ferent profile, exhibiting a negatively skewed bell curve 
with many negative enrichment values. These findings 
denote that many of the models achieved a higher F1 in 
the absence of this threshold, however this result does 
not indicate that this threshold metric is inferior to the 
other choices. Instead these results indicate that these 
values make for a poor choice when considering both 
recall and precision simultaneously (which is the case for 
the F1-score).

The precision threshold is calculated to be the most 
enriched metric when considering the average and 
median enrichment scores for the models (Table  2). 
Upon application of this threshold boundary, 374 of the 
418 targets benefitted, producing a positive enrichment 
score. Indeed, 154 of the targets show significantly high 
(≥0.5) enrichment values, revealing that the binary pre-
dictions produce considerably superior predictions in 
many cases. Overall, the enrichments in F1 values sup-
port the view that Precision-based thresholds provide 
the optimal metric when considering a medium between 
precision and recall.

Analysis of the applicability domain
This section aims to explore the AD through the rela-
tionship between the target prediction probabilities and 
the similarity of compounds of the training and WOM-
BAT test set. Figure  6 shows the relationship between 
the similarity among the test and training molecules 
and the consistency of the true-active target prediction 

Table 1 Average precision and  recall for  the different set 
of thresholds applied to WOMBAT

The Recall thresholds produce the most elevated recall with lowered 
precision, while the Precision threshold produces the highest precision whilst 
compromising recall

Threshold Recall (%) Precision (%)

Default 0.5 83.3 18.6

F1-Score 80.1 23.7

Accuracy 80.4 23.9

Precision 79.5 24.3

Recall 87.1 13.2

Table 2 A summary of  decision threshold performance 
upon application to the WOMBAT database

F1 Score, accuracy and precision thresholds all glean similar performance values, 
while the recall shows a significantly separate profile with lowered performance 
values

Threshold Average 
score

St. deviation Median Min Max

F1 Score 0.349 0.341 0.333 −0.916 1.551

Accuracy 0.364 0.344 0.351 −0.916 1.551

Precision 0.402 0.327 0.380 −0.662 1.551

Recall −0.527 0.330 −0.520 −2.064 1.918
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probabilities. The figure illustrates that increasing the 
similarity between the training and test set appears to 
reduce the number of targets that are frequently under-
predicted. A Tc over 0.3 tends to lead reliable predictions, 
with over 96  % of scores achieving 0.98 and above. In 
comparison, a region between 0.1 and 0.2 depicts a grey 
area, in which 59 thousand WOMBAT predictions obtain 
varied scores between 1 and 0 (a standard deviation of 
0.34). Many of the scores span extreme probability val-
ues above 0.5 (50,758) and below 0.5 (9084) as shown by 
the density and histograms seen in the figure. This phe-
nomenon is often expected as the absence or presence of 
a binary feature can heavily influence range of a predic-
tion value when employing the Naïve Bayes algorithm 
[43]. The overall results from this plot suggest that a Tc 
cut-off of around 0.3 could be applied if a distance-based 
approach toward the AD is employed for this target pre-
diction methodology. If a query molecule were above this 
threshold, this would indicate confidence in the reliability 
of the probabilities generated for the models. In compari-
son, a Tc value below this threshold would indicate that 
the probabilities produced by the models are not consist-
ently dependable. Notably, the models are able to retain 
some good performance in conditions of low Tc values 
between 0.2 and 0.1, which suggest that all probabilities 

for these classes should not be discarded. Predictions 
for targets with a query-to-train distance below 0.03 
should be considered unreliable, as these models do not 
encapsulate sufficient chemical space for a given query 
compound.

One way to address the influence of SE data with 
respect to the external model applicability domain is to 
make a comparison with and without SE training data for 
target models. This analysis was conducted for targets 
encompassing a good number (more than 1000) of inac-
tives, which still require additional SE sampling of com-
pounds to gain the 1:100 class ratio. 20 targets containing 
WOMBAT testing data fit this description. In 19 of the 
20 cases, SE sampling improved the WOMBAT prevision 
performance (Table 3). Q14833, was the only target with 
decreased precision, which was assigned values of 0 due 
to the absence of active predictions caused by increased 
class imbalance.

Comparison to an activity‑only based model and other 
tools for target prediction
Predictions were generated for the compounds in the 
WOMBAT database using a model created solely on 
activity data from ChEMBL. The recall and precision 
results for the top-k ranking target positions for the 

Fig. 5 Distributions of R enrichment scores for the thresholds when applied to WOMBAT predictions. The F-score, accuracy and precision distribu-
tions show value in employing the thresholds when considering both recall and precision simultaneously, while the recall threshold produces a 
negative enrichment profile. Hence, the recall thresholds can be used when precision is not a predominant requirement
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predictions are shown in Table  4 and Additional file  1: 
Figure  S1. The analysis exhibits the increase in recall 
and decrease in precision from 0.5 and 0.48 to 0.909 and 
0.079  respectively, as the numbers of top-k ranking tar-
gets are increased from 3 to 180 positions. Table 4 shows 
that in order to achieve a comparable recall of 79.5 %, as 
achieved by precision thresholds, the activity-only model 
requires more than 54 ranked targets to be included. The 
corresponding precision value for a top-k position of 54 
is approximately 14  %, considerably lower than the cor-
responding inactivity inclusive model precision of 24.3 %, 
indicating that methods including inactivity predict com-
paratively fewer false positives.

Figure  7 illustrates the improved performance for 
models with inactivity data when considering averaged 
precision and recall curves for each method. Figure  8 
demonstrates the boxplot precision-recall AUC metrics 
for individual models, with active and inactive mod-
els producing an average AUC value of 0.56, compared 
to actives-only models which produce an average AUC 
value of 0.45. Figure 8 also indicates the improved early 
recognition potential when including negative training 
instances, with the active and inactive models performing 
with an averaged BEDROC score of 0.85, compared to 
0.76 obtained by active-only models. A Wilcoxon signed-
rank test was conducted for the BEDROC and AUC 

Fig. 6 AD analysis of the True Positives from the WOMBAT test set. 
The models perform better overall when the similarity between 
the test and training sets are high. The area between 0.25 and 0.1 
shows the largest variation in performance, when models can have 
problems distinguishing between activity classes. Similarities below 
0.1 consistently predict true positives as inactive. Hence, a cut-off 
around 0.3 can be employed to give insight into the reliability of the 
predictions generated by models

Table 3 Influence of sphere excluded molecules for targets with 1000 or more confirmed inactives

Sphere Excluded molecules improves precision of the models at the cost of recall

Uniprot Precision Recall SE Precision SE Recall ∆Precision ∆Recall

O75116 0.006 0.960 0.012 0.960 0.006 0.000

P00374 0.187 0.982 0.520 0.968 0.333 −0.014

P00797 0.174 1.000 0.297 0.982 0.124 −0.018

P08172 0.091 0.912 0.307 0.829 0.216 −0.082

P08908 0.134 0.850 0.159 0.833 0.025 −0.017

P09237 0.013 0.991 0.046 0.981 0.033 −0.009

P11511 0.096 0.970 0.358 0.975 0.261 0.004

P25024 0.750 0.414 0.750 0.414 0.000 0.000

P28221 0.220 0.849 0.251 0.847 0.031 −0.002

P28222 0.225 0.859 0.282 0.839 0.058 −0.020

P31645 0.010 1.000 0.153 0.914 0.143 −0.086

P34913 0.146 0.980 0.191 0.975 0.045 −0.005

P34972 0.048 0.931 0.366 0.813 0.318 −0.117

P34995 0.026 0.935 0.232 0.761 0.206 −0.174

P41146 0.086 0.971 0.210 0.953 0.125 −0.018

P43115 0.090 0.743 0.700 0.700 0.610 −0.043

Q14833 0.004 0.500 0.000 0.000 −0.004 −0.500

Q15722 0.180 0.923 0.362 0.836 0.181 −0.086

Q99572 0.081 0.627 0.142 0.591 0.061 −0.036

Q99705 0.087 0.969 0.306 0.881 0.218 −0.089
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scores, producing p values of 7.08e−08 and 4.96e−05 
respectively, indicating the mean BEDROC and AUC val-
ues for the active and inactives model are statistically dif-
ferent from the mean BEDROC and AUC values for the 
actives-only model. When comparing the models built 
here to the Naïve Bayes method proposed by Koutsoukas 
et  al. [39], in order to achieve a recall of between 80 
and 87 % as reported in this study, the author’s method 
requires top-k positions between 6 and 27 in order to 
achieve comparable recall performance. It is not possi-
ble to comment on differences in the precision obtained 
between the prediction tools, as the authors did not 
report precision values.

Experimental
Model workflow
The overall flow of data for the realised tool is depicted 
in Fig. 9. Data flow can be split into three main sections; 
Step 1 is concerned with the extraction of data from the 
PubChem and ChEMBL18 repositories for use in the 
models. Step 2 involves the training of the machine learn-
ing methods using the bioactivity training data on a per 
class basis. Input compound queries are converted into 
2048 bit Morgan fingerprints using Rdkit [52], imported 
into NumPy vectors, and passed to the BernoulliNB 
Scikit-learn module. For future model usage, the mod-
els are exported to file using the ‘cPickle’ Python library, 
enabling quick access and compact storage of the data. 
Step 3 shows the optional application of the binary deci-
sion thresholds, as the software allows either output 
binary predictions or the raw probabilistic output of the 
predictions.

Table 4 Average precision and recall in the Top-k positions 
achieved for WOMBAT using the activity-only based model

Increasing the number of top-k positions increases the recall and decreases the 
precision of the models

Top‑k positions Recall (%) Precision (%)

3 50.0 48.5

6 58.8 41.1

9 62.5 36.3

27 72.5 24.8

54 79.2 18.7

72 82.2 16.3

90 84.2 14.0

180 90.9 7.9

Fig. 7 Precision-recall curve for the models including inactive data, 
and actives-only models. Including inactive data for models improves 
the recall and precision as shown by the AUC values for both plots, 
showing value for including inactive data when compared to models 
built exclusively on ChEMBL data

Fig. 8 Boxplot of precision-recall curve AUC and BEDROC values for the models including inactive data, and actives-only models. Including inactive 
data for models improves the recall and precision AUC and BEDROC performance
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Active data set
ChEMBL [45] (Version 18) was used to construct the 
active bioactivity training data set. This version of the 
database encompasses over 12 million manually curated 
bioactivites, spanning over more than 9000 protein tar-
gets and over 1 million distinct compounds. Bioactivities 
were extracted for activity values (IC50/EC50/Ki/Kd) of 
10  μM or lower, with a CONFIDENCE_SCORE of 5 or 
greater for ‘binding’ or ‘functional’ human protein assays. 
The 10 μM cut-off for activity specified here is in accord-
ance with the method employed in the study of Kout-
soukas et al. [39], representing both marginally and highly 
active compounds. Finally, ChEMBL polymer_flag and 
inorganic_type flags were included to ensure only suitable 
compounds qualified for the resulting training set.

After extraction, compound SMILES were standardized 
using the ChemAxon Command-Line Standardizer [53], 
with options “Remove Fragment” (keep largest), “Neu-
tralize”, “RemoveExplicitH”, “Clean2d”, “Mesomerize”, and 
“Tautomerize” specified in the configuration file. The stand-
ardized canonical SMILES were then filtered for small or 
large compounds (100  Da  <  MW  <  900  Da) and checked 
for duplicate ligand structures to ensure only one set of pro-
tein–ligand pairs were retained. Protein classes comprising 
less than 10 compounds were discarded since they did not 
comprise sufficient amounts of training data to learn from.

The complete active data set encompasses over 
295,000 bioactivities covering 1080 protein classes. A 
large proportion of the classes included in the model are 

enzymes and membrane receptors, encompassing 57 
and 17  % of the data respectively. A considerable per-
centage of compounds (33 %) were annotated for more 
than one target.

Effect of confidence score on activity data sets
The allocation of a confidence score forms part of the 
manual curation processes that is applied to ChEMBL, 
and is used to describe the assay-to-target relationships 
represented in the database. Recent studies utilizing the 
ChEMBL database as a bioactivity data source have speci-
fied stringent confidence scores of 8 or 9 [39, 46, 51], and 
in order to explore this parameter more fully we sought to 
analyse the differences in the data sets that are extracted 
from the ChEMBL database when a variety of confidence 
scores are specified (Table 5). This parameter is unexplored 
throughout literature and its influence on resulting train-
ing-sets for target prediction is relatively undocumented.

Ranges of confidence scores (between ≥5 and ≥9) were 
applied to the ChEMBL18 database and the structure of 
the data sets extracted and the number of classes were 
calculated (Additional file 1: Table S2). A confidence score 
of 5 gives 1080 target activity classes containing 10 or 
more data points, with the number of classes decreasing 
with higher scores. A total of 306 classes (28.4  % of the 
data) were removed between the scores 5 to 9. The sharp-
est increase in mean and median class size and the total 
number of classes are observed between the scores 9 to 
8, increasing from 774 to 959, respectively. A confidence 
score of 5 was applied in this study, since this threshold 
enables data with “multiple direct protein targets”, provid-
ing a suitable trade-off between confidence of the reliabil-
ity of the data and training data size. Higher score values 
exclude “Homologous multi-domain protein associations” 

Fig. 9 Flow of training and query data through the prediction 
approach described in this work. 1. The PubChem inactives and 
ChEMBL actives used to train the Bernoulli Naïve Bayes classifier. 2. 
The query data is imported and classification is performed producing 
probability scores. 3. If binary predictions are required, class-specific 
cut-off thresholds can be applied. F, A, P and R represent the F1, 
accuracy, precision and recall metrics used to calculate thresholds. 
Block arrows represent the flow of training data, while dashed arrows 
represent query fingerprint or prediction score data flow

Table 5 Descriptions used for  the ChEMBL confidence 
scores

A confidence score of 5 was used in this study to ensure that multi-domain 
proteins are not excluded from training data. Confidence scores of 9 or 8 are 
frequently used which specify homologous or direct proteins to be assigneds

Confidence score Description

0 Default value—target assignment has yet to be 
curated

1 Target assigned is non-molecular

3 Target assigned is molecular non-protein target

4 Multiple homologous protein targets may be 
assigned

5 Multiple direct protein targets may be assigned

6 Homologous protein complex subunits assigned

7 Direct protein complex subunits assigned

8 Homologous single protein target assigned

9 Direct single protein target assigned
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(scores ≥6) and “Direct multi-domain protein associa-
tions” (scores ≥7), such as the GABA receptors.

Inactive data set
For the purpose of this study, the PubChem Compound 
and PubChem BioAssay databases were mined for inac-
tive compounds, and an automated extraction pipe-
line was developed to obtain inactive compound-ligand 
pairs from the PubChem database using the Entrez Pro-
gramming Utilities (EUtils) [54, 55]. The EUtils are a 
set of server-side programs that provide an interface to 
query the various databases at NCBI [55]. Contrary to 
ChEMBL, the data contained in PubChem BioAssay are 
not manually curated, and the metadata for targets that 
are listed on assay records are as provided by the sub-
mitting researchers. The flowchart for the script is out-
lined in Fig. 10, which involves both ‘ESearch’ (to query 
the gene and protein databases) and ‘ELink’ (to connect 
to the assay database) procedures to obtain all Gene IDs 
(GIDs) and Protein IDs (PIDs) for a given UniProt Acces-
sion (including any IDs that are not included in UniProt) 
[56]. The script retrieves assays for the GIDs and PIDs 
from the BioAssay database and links to the Compound 
database to identify Compound IDs (CIDs) annotated by 
the submitting researcher as inactive when assayed in the 
studies. In a final step, the pipeline retrieves the SMILES 
for the compounds using the PubChem Power User 
Gateway (PUG) REST service [57], a protocol preferred 

for the final step as it is optimized for the bulk retrieval 
of data [58]. This methodology ensures that regardless 
whether an assay has a UniProt Accession, GenPept ID, 
RefSeq ID or GeneID etc. specified for an assay, we were 
able to retrieve all bioactivites with a defined target the 
same as indicated by the UniProt accession.

In order to ensure only appropriate molecules are 
retained in the inactive data set, RDKit was used to flag 
structures without a carbon molecule and molecules 
containing unwanted heavy metals, such as Lithium, 
Beryllium, Boron, Fluorine, Sodium, Aluminum, Silicon, 
Argon, Titanium, Iron, Zinc and Bromine. The filtered 
SMILES were subject to the same ChemAxon standardi-
zation filtering as the active ChEMBL bioactivity data set, 
i.e. duplicate molecules were removed, including com-
pounds with a MW of below 100 or above 900 Da.

The PubChem inactive data set includes more than 
194 million protein–ligand pairs spanning approximately 
648,000 distinct compound structures  (Additional file  1: 
Table S3). More than 647,900 of these compounds were 
annotated for two or more protein targets, producing a 
well-populated matrix of inactive-compound annotations. 
The annotation overlap for target-annotated chemistry is 
due to PubChem being initially established to be the stor-
age site for automated high-throughput biological assays 
testing standardized libraries of compounds [58]. Sec-
ondly, it was also the central intention for the National 
Institutes of Health (NIH) Molecular Libraries program to 
have many of the laboratories test the same compounds 
on a wide range of targets, in an attempt to create a useful 
repository for mining in the future [59, 60].

Sphere exclusion for putative inactive sampling
The data extracted from PubChem contains a very large 
variance in the number of inactives extracted for each of 
the targets, with some encompassing little or no experi-
mental inactives. Mixing experimental inactives with 
putative inactives would alleviate this issue, at the cost 
of producing models that are no longer trained solely on 
confirmed evidence of inactivity. Although this caveat 
may remove the benefit of predicting on truly inactive 
data from the current state of the models, refraining from 
any additional sampling would result in overtly imbal-
anced training data for 480 targets, which would other-
wise require removal.

A sphere exclusion (SE) algorithm was utilized to ran-
domly sample ‘presumed inactive’ compounds from a 
pool of ChEMBL compounds using a dissimilarity radius 
from known actives. Figure 11 shows a plot of the near-
est neighbours for the classes from the active data set. A 
Tanimoto coefficient (Tc) of 0.424 was used as the radius 
of the exclusion sphere as it encompassed 95  % of the 
active neighbours. This value was considered a suitable 

Fig. 10 Flow chart for PubChem inactives retrieval. The process 
involves translating from the UniProt target name, to the Gene ID 
(GID) and (potentially) a Protein ID (PID), to identify BioAssay ID’s 
(AID) with annotated inactive Compound ID’s (CID). The “PUBCHEM 
ACTIVITY OUTCOME” field, completed by the publishing author or an 
equivalent expert in the field, is used to identify inactive compounds. 
EUtils is used to extract all assays and respective bioactivity outcome 
annotations to obtain chemicals declared to be “inactive” against a 
given target from an assay. PubChem PUG REST is used for the subse-
quent batch translation of CID’s to SMILES
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threshold for the exclusion radius as defined by the value 
that encapsulates a large proportion of the similarity of the 
active data points, whilst also not requiring such dissimi-
lar compounds as to select strange or undesirable chemis-
try. The putative inactive selection method proposed here 
is similar to the diversity selection algorithms proposed 
by Hudson et al. [61] and Gobbi et al. [62] although the 
SE algorithm proposed here is employed as a method of 
repeatedly sampling from outside an exclusion sphere for 
a required number of times until a specified number of 
presumed inactive compounds are selected, rather than a 
method for selecting diverse compounds.

The procedure was applied to 480 target classes that 
consist of few or no inactive compounds which produce 
an active-inactive ratio smaller than 1:100. This process 
sampled approximately 11 million additional inactives for 
the required targets. For situations with targets with very 
high numbers of inactive compounds, undersampling was 
performed through the randomised removal of instances 
from the inactive class to accomplish the desired ratio. 
The complete data set of 206,559,765 ligand-target pairs 
from both the active and inactive classes is available for 
use as a benchmark data set (see Additional file 1).

Chemical descriptors
RDKit [52] was used to generate hashed ECFP_4 circu-
lar Morgan fingerprints [63] with a 2048 bit length. ECFP 
fingerprints were selected as they have previously been 
shown to be successful when attempting to capture rel-
evant molecular information for in silico bioactivity pre-
diction [39, 64].

Conclusions
We have implemented a method for the extraction of 
inactive compounds from the PubChem repository. The 

application of a sphere exclusion algorithm enabled the 
oversampling of additional inactive compounds for tar-
gets with insufficient number of inactive compounds.

The realised target prediction protocol has been pack-
aged and available for download at https://github.com/
lhm30/PIDGIN.

The results from the internal and external validation of 
the tool show differing performance between the breadth 
of models. Recall and precision performance is influ-
enced significantly on the underlying intraclass similarity 
and the number of compounds for a target. During inter-
nal validation, sphere exclusion models perform better 
in comparison to PubChem inactive classes, due to the 
dissimilarity requirement between the active compounds 
and SE inactive compounds.

The external performance of the models showed a con-
siderable drop in precision, which may be exaggerated 
due to the absence of inactivity information held within 
the WOMBAT data set. Applications of target-specific 
thresholds exhibited a trade-off between recall and pre-
cision and indicate that different metrics for thresholds 
should be used for different applications of the target pre-
diction tool. The precision threshold gleans the highest 
F-Score performance, producing a close balance between 
the precision and recall (0.5 and 0.48) for the classes. In 
comparison, the recall threshold can be applied to gener-
ate thresholds when predictions require high recall with-
out the concern for the cost of sacrificing precision.

A distance-based analysis of the applicability domain 
(AD) for WOMBAT compounds showed that the reliabil-
ity of the predictions from the models improved with the 
increasing similarity between the training and WOM-
BAT test set. The AD analysis indicated that an average 
Tc cut-off distance between test and train of 0.3 could 
be incorporated into the predictions of the classes in the 
future, to give insight into the degree of confidence for 
the probabilities generated by the model.

A comparison between the inactivity-inclusive models 
and the activity-only based approach showed the benefit 
in including negative bioactivity data when building the 
target prediction models with statistical significance. The 
ability to take into account the features that contribute 
and counteract bioactivity, combined with the ability to 
create individual target models, results in superior pre-
cision, recall, precision-recall AUC and BEDROC values 
when compared to models trained solely on activity data.

Methods
Model training using Bernoulli the Naïve Bayes classifier 
implemented in Scikit‑learn
The Naïve Bayes algorithm was selected due to its basic 
implementation and demonstrated ability to perform in 
a variety of target prediction settings [28, 39, 40]. The 

Fig. 11 Distribution of Tanimoto coefficient (Tc) values for nearest 
neighbours for specific targets. A Tc value of 0.595 encompasses 
90 % of the compound ligand pairs observed, while a value of 0.424 
encapsulates 95 % of the compound pairs. Hence, a Tc value of 0.424 
was employed as the exclusion radius to sample suitable ‘presumed 
inactive’ compounds

https://github.com/lhm30/PIDGIN
https://github.com/lhm30/PIDGIN
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specific classification algorithm of choice for this study 
is the Bernoulli Naïve Bayes algorithm, due to the ability 
of the algorithm to interpret the binary bit string features 
used to describe compound inputs. In comparison to 
other methods, this algorithm is also capable of maintain-
ing its predictive power for highly imbalanced datasets, 
which is particularly beneficial when attempting to utilise 
large numbers of negative instances in training data [65, 
66]. For example, it has been shown that enlarged nega-
tive training set sizes hinder the recall performance of the 
SMO, Random Forest, Ibk and J48 algorithms [67]. The 
preferable ratio of active to inactive compounds for these 
methods was found to be only around 1:9, a significant 
decrease from the 1:100 ratio envisaged for this study. 
Such algorithms would therefore require large scale 
undersampling of inactives data points to obtain accept-
able performance, thus sacrificing the coverage of inac-
tivity space.

In the target prediction context, an input molecule can 
be viewed as a vector of chemical features x  =  {F1,…, 
Fn}, described by the fingerprints used to define a com-
pound in relation to a target. Equation 1 shows the Bayes’ 
theorem, underpinning Bayesian models. This equation 
returns the ‘conditional probability’ or p(C|x), an evalu-
ation of the certainty about a compound belong to class 
C [68].

The likelihood function for Bernoulli Naïve Bayes is 
based on Eq. 2, which represents how likely a query com-
pound x = {F1

Test, …, Fn
Test} exhibits activity against a given 

target C. The BernoulliNB class from the Scikit-learn [69] 
library was employed to implement the Bernoulli Naïve 
Bayes algorithm.

This algorithm explicitly penalizes the non-occurrence 
of a feature i that is indicative of activity class C [68]. For 
bioactivity prediction, this is recognized as the differen-
tial ability for the treatment of negative evidence within 
the fingerprints, i.e. a 0-bit being interpreted as the 
absence of an atom environment feature in a molecule 
[70]. This allows the models to explicitly identify trends 
including the absence of features within molecules.

Internal model evaluation of the models
The StratifiedKFold function from Scikit-learn was used 
to split the data into train and test sets using fivefolds, 

(1)p(C|x) =
p(C)p(x|C)

p(x)

(2)

P

(

F
Test

1 , . . . , FTest
n |C

)

=
∑n

i=1
P(FTrain

i
|C)FTest

i

+ (1− P(FTrain

i
|C))(1− F

Test

i )

while preserving the percentage of samples for each 
active and inactive class. For each of the N folds, the per-
formance of the model can be measured in terms of pre-
cision and recall which can be presented as:

where TP denotes true-positives and FP denotes false-
positives. The precision and recall for each of the folds 
are averaged to give an overall metric for a particular 
class. This is repeated for all the classes in the data set.

Target‑specific activity threshold generation
Target-specific activity threshold values were calculated 
and employed to weight the learner algorithm to avoid 
the degenerate situation that can arise from class imbal-
ance. Such thresholds allow the models to more precisely 
generate binary predictions based on a calculated prob-
ability of activity, i.e. activity if Pa ≥ threshold.

The procedure used to generate thresholds is founded 
upon on the methodology employed by Drakakis et  al. 
[71] and requires three steps. First, the training data for 
each target is split into fivefolds. For each of the folds, 
probabilities are generated for the test compounds after 
training. Next, a range of threshold decision boundaries 
ganging between 0.1 and 1.0 (with increments of 0.001) 
are applied to the raw probability scores for the folds to 
generate binary predictions. The performances of each 
threshold are calculated independently using precision, 
recall, accuracy, and the F1-score as performance met-
rics. The Accuracy and F1 metrics are denoted as:

Finally, the overall performance of each threshold is 
averaged for each of the folds, and the threshold with 
the optimal performance over the five-fold yields the 
optimum decision threshold for that specific target. This 
process is conducted for each of the performance metrics 
to produce metric-specific thresholds which will be dis-
cussed in more detail in the results section.

External model evaluation
The WOMBAT [72] database contains compounds that 
are not annotated in the PubChem and ChEMBL data-
bases. A data set of annotated compounds was extracted 
from the WOMBAT database (version 2011.1) con-
sidering activities for Ki, IC50, Kd or EC50 with val-
ues of 10  μM or smaller. Bioactivites also contained 
in the ChEMBL or PubChem training sets (identified 

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Accuracy(y, ŷ) =
1

nsamples

nsamples−1
∑

i=0

1(ŷi = y
i
)

F1 = 2 ·
precision · recall

precision+ recall
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as Tanimoto values between structures of 1.0) were 
removed, resulting in the removal of 3624 WOMBAT 
compounds. In total 65,123 active compounds were 
retained for testing, comprising 418 protein target 
classes. Performance of the models was measured using 
precision and recall after application of the various class-
specific binary thresholds (previously calculated) for each 
target.

Evaluation of class‑specific thresholds
A practical way in which to systematically assess the 
value in applying the different decision thresholds has 
been devised. This system uses a ratio scoring system 
to demonstrate the performance enhancement when 
using the class-specific thresholds against cases when no 
threshold is used. The enrichment ratio function (RScore) 
is defined as:

Here, ScoreThreshold represents the F1 performance score 
obtained for a class when applying a decision threshold. 
This value is divided by ScoreNo Threshold, which is repre-
sented by the F1 performance score obtained without a 
threshold. The final step for completing the ratio R is to 
calculate the log base 2 of this value. A positive number 
from this function will denote a value in the application 
of a threshold (in terms of F1-Score), while a negative 
result will signify that there is value in the default selec-
tion of ‘activity if Pa > Pi’. Using this formula, enrichment 
ratios were calculated for the performances of the F1, 
mean Accuracy, Precision, and Recall decision bounda-
ries. These functions are defined as:

Applicability domain estimation
A major problem regarding the practical applications 
of target prediction models is the unassessed reliability 
of the predictions [73]. The function of the applicabil-
ity domain (AD) is to indicate when the assumptions 
made by a model are fulfilled and which input chemi-
cals are reliably appropriate for the models [8, 74, 75]. A 
distance-based AD approach was employed to analyse 
the distances between a query compound to the nearest 

RScore = log2

(

ScoreThreshold

ScoreNo Threshold

)

RF1 = log2

(

F1Threshold

F1NoThreshold

)

RAccuracy = log2

(

AccuracyThreshold
AccuracyNo Threshold

)

RPrecision = log2

(

PrecisionThreshold

PrecisionNo Threshold

)

RRecall = log2

(

RecallThreshold

RecallNo Threshold

)

neighbour in the training data [75]. The distance from 
the test and training set is then cross-referenced with the 
probability score for activity for active compounds from 
WOMBAT, giving a measurement for the active predic-
tion performance of the models.

Construction and performance evaluation of a model 
trained on activity only
A single model was trained based on activity data from 
ChEMBL exclusively. More specifically, a Bernoulli Naïve 
Bayes algorithm was trained on the fingerprints from 
the target-compound associations from the 1080 tar-
gets extracted from the ChEMBL dataset. Similarly to 
the previous models, 2048 bit Morgan fingerprints were 
imported into Scikit-learn class, giving a model contain-
ing almost 300 thousand active compounds. The proba-
bility scores generated by this model produce predictions 
that a compound is active for a given target when consid-
ering the probability that the molecule is also active for 
the other targets.
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