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Abstract 

Chemical reaction optimization (RO) is an iterative process that results in large, high-dimensional datasets. Cur-
rent tools allow for only limited analysis and understanding of parameter spaces, making it hard for scientists 
to review or follow changes throughout the process. With the recent emergence of using artificial intelligence (AI) 
models to aid RO, another level of complexity has been added. Helping to assess the quality of a model’s predic-
tion and understand its decision is critical to supporting human-AI collaboration and trust calibration. To address 
this, we propose CIME4R—an open-source interactive web application for analyzing RO data and AI predictions. 
CIME4R supports users in (i) comprehending a reaction parameter space, (ii) investigating how an RO process 
developed over iterations, (iii) identifying critical factors of a reaction, and (iv) understanding model predictions. 
This facilitates making informed decisions during the RO process and helps users to review a completed RO pro-
cess, especially in AI-guided RO. CIME4R aids decision-making through the interaction between humans and AI 
by combining the strengths of expert experience and high computational precision. We developed and tested 
CIME4R with domain experts and verified its usefulness in three case studies. Using CIME4R the experts were able 
to produce valuable insights from past RO campaigns and to make informed decisions on which experiments 
to perform next. We believe that CIME4R is the beginning of an open-source community project with the poten-
tial to improve the workflow of scientists working in the reaction optimization domain.

Scientific contribution 

To the best of our knowledge, CIME4R is the first open-source interactive web application tailored to the peculiar 
analysis requirements of reaction optimization (RO) campaigns. Due to the growing use of AI in RO, we developed 
CIME4R with a special focus on facilitating human-AI collaboration and understanding of AI models. We developed 
and evaluated CIME4R in collaboration with domain experts to verify its practical usefulness.
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Introduction
Chemical reaction optimization (RO) plays a crucial 
role in every research and development endeavor in the 
domain of synthetic organic chemistry. The overarching 
optimization goals for a single chemical reaction are to 
use resources more efficiently, to reduce waste, and to 
increase the yield of the desired reaction product.

The fundamental challenge of RO lies in its expansive 
search space, which consists of a multitude of categori-
cal (e.g., choice of reagent, base, catalyst, methods) and 
continuous (e.g., temperature, concentration, reagent 
equivalent) parameters. Some common approaches  [1] 
to solving such a task are high-throughput experimenta-
tion (HTE)  [2], one factor at a time (OFAT)  [3], design 
of experiment (DoE)  [4], and, more recently, AI-guided 
optimization  [5–7]. All approaches share the ultimate 
goal of identifying one or more optimal solutions within 
the high-dimensional parameter space.

The absence of suitable visualization tools makes com-
prehending the parameter space difficult, leaving ambi-
guities regarding explored domains, actual reaction 
performance, and anticipated outcomes. In the case of 
AI-guided RO, an additional level of complexity is added 
because the AI’s data (e.g., predicted values, uncertainty 
of predictions, or feature importance of a prediction) 
is often difficult for humans to grasp without any addi-
tional tools to explore it. This makes it hard for scientists 
to understand how a model arrived at a particular pre-
diction  [8], which is important to detect possible flaws 
and shortcomings of the AI model and to calibrate user 
trust [9]. Understanding an AI prediction could also help 
scientists to learn from a model if they deem the deci-
sion to be reasonable, thus enhancing their scientific 
understanding [10].

Static Explainable Artificial Intelligence (XAI) tech-
niques can support users in understanding AI mod-
els [11–13], but interactive tools are needed to aid users 
in exploring and understanding complex models  [14–
16]. Employing visualizations and visual analytics tools 
can aid humans in understanding complex datasets in 
a variety of domains  [15, 17–19]. Currently, many sci-
entists fall back on using spreadsheets as their main 
analysis tool. Although there is little overhead to learn-
ing how to use spreadsheet tools, they are suited mainly 
to simple analysis tasks, such as sorting or filtering by 
some value of interest. More elaborate general-purpose 
dashboard tools, such as Spotfire  [20], enable users to 
interactively explore their datasets  [21]. Off-the-shelf 
tools also exist that implement basic chemically-aware 
functionalities, like molecule structure rendering or 
substructure search [22], and commercial chemical ana-
lytics tools  [23]. However, these off-the-shelf tools lack 
the ability to accommodate the challenging aspects of RO 

datasets, such as large parameter spaces that contain a 
mix of static and temporal data and data uncertainty aris-
ing both from limited data availability for the model and 
uncertainty and error in the measured data points. (see 
Sect. 1.2 for more details). Similarities to prior work [24–
28] on visual analysis of parameter spaces in other 
domains exist, but these approaches are not directly 
applicable to RO data and its challenges.

RO data and workflow
A dataset from RO workflows can consist of the follow-
ing variables: parameters, lab measurements, metadata, 
AI predictions, and AI explanations. A typical RO work-
flow starts with a scientist deciding on the parameters 
(e.g., temperature, base, solvent) they use to optimize 
one or more target values (e.g., yield, selectivity, side 
components). The pool of all possible combinations of 
parameter values defines the parameter space and forms 
the basis of an RO dataset. Each combination of param-
eter values defines one specific experiment that can be 
performed to obtain lab measurements. Scientists can 
add additional metadata to this dataset, for example, 
molecular descriptors [29] of chemical components that 
can be used in the RO campaign. The RO workflow var-
ies depending on the method chosen for the optimiza-
tion campaign. Fig.  1 illustrates a typical workflow for 
iterative approaches. It usually starts with scientists 
(i) analyzing the RO data and (ii) choosing a batch of ini-
tial experiments, which are then (iii)  performed in the 
laboratory. After the experiments have been completed, 
(iv) the RO dataset is augmented with the measurement 
data, for example, the measured yield or number of the 
cycle in which the experiment was performed. Scientists 
then (i) analyze the updated dataset to (ii) decide on the 
next batch of experiments. The process is repeated until 
a satisfactory outcome is reached (e.g., the yield is suffi-
cient). To illustrate the AI-guided workflow in addition to 
the scientist-driven workflow, we consider an additional 
feedback loop where the RO dataset is given to an AI for 
processing  (see Fig.  1, bottom). For example, for EDBO 
(Experimental Design via Bayesian Optimization)  [5] 
the RO dataset can be augmented with the AI predic-
tions for each possible experiment and the correspond-
ing uncertainty with which the prediction was made (e.g., 
predicted yield and variance). These predicted values are 
fed into a so-called acquisition function to decide which 
batch of experiments to perform next. In addition to pre-
diction outcomes, XAI methods can be used to add any 
kind of AI explanations that might be helpful to under-
stand the optimization process (e.g., SHAP values tell us 
which parameters of an experiment were important for 
the prediction).



Page 3 of 19Humer et al. Journal of Cheminformatics           (2024) 16:51  

From looking at this workflow, it becomes clear that 
the RO dataset becomes increasingly complex with 
every optimization iteration. In this work, we propose 
CIME4R, a novel visual analytics tool that aids scientists 
in analyzing RO data. It helps scientists to make informed 
decisions during the RO campaign and to review RO 
campaigns in retrospect, especially in the realm of AI-
guided RO. CIME4R is open-source to allow the commu-
nity to enhance the tool and share their input.

User tasks and challenges
We identified two points in time at which scientists 
require analysis of RO optimization data: during and 
after the optimization process. During RO, scientists 
have to decide on the next batch of experiments based on 
all the data from the current and previous cycles. Scien-
tists must be able to balance exploration (i.e., collecting 
new information about unseen regions) and exploitation 
(i.e., optimizing within a known, high-performing region) 
of the parameter space, as otherwise the RO campaign 
is prone to stopping at a local maximum without having 
considered most of the reaction space. With AI-driven 
RO, exploration and exploitation are balanced implicitly 
with the use of acquisition functions. However, users of 
AI models have to understand the predictions of their 
models such that they can judge their actual perfor-
mance and shortcomings [9]. Only then can users decide 
whether it is better to follow an AI’s suggestion or to 
overrule it and rely on their own experience. In summary, 
scientists should be able to understand the RO campaign 
to make informed decisions. For AI-guided RO, scientists 
should be able to effectively combine their own chemi-
cal intuition with an AI model’s computations to make 

an informed decision on the next batch of experiments. 
After the RO campaign, scientists want to learn from the 
collected RO data to gain insights for future RO cam-
paigns. In scenarios where unsatisfactory results have 
been reached, scientists need to be able to identify the 
problem with their own or an AI’s decision. If the results 
are satisfactory, chemists can learn from their colleagues 
or the AI model’s decisions and improve their own 
understanding and intuition. Therefore, scientists should 
be able to effectively review the entire RO campaign to 
see whether the problem was approached in a useful way 
or whether bias in decision-making led to a suboptimal 
solution.

We identified four main analysis tasks  (T) and their 
associated challenges (C) that are critical for scientists to 
achieve these goals and that guided the development of 
CIME4R:

(T1) Comprehend a parameter space: Gain an over-
view of the extent of an RO parameter space. See which 
experiments have already been explored and which have 
not. Gain an overview of an AI model’s predictions of the 
parameter space. See whether a model focuses on explor-
ing unseen regions of a parameter space or whether it 
maximizes outcomes within known high-performing 
areas.

(C1) Exponentially growing parameter space: RO 
datasets grow exponentially with with the number of 
parameters that are optimized. For example, if we seek 
to optimize temperature, base, and solvent, and for 
each of these parameters we define five values for opti-
mization, the whole combinatorial parameter space is 
5 ∗ 5 ∗ 5 = 5

3
= 125 ; if we then choose to optimize for 

10 different reagents, the parameter space grows to 1250 

AI Model

Process data Add (X)AI data

RO data

LaboratoryScientist

(i) Analyze data (ii) Choose
experiments

(iii) Perform
experiments

(iv) Add
measured data

Workflow 

Data flow 

Fig. 1 Outline of an iterative RO workflow. Scientists analyze RO data (i) and choose a batch of experiments to be performed (ii). The experiments 
are carried out in the lab (iii), and RO data is updated with the measurements from the experiments (iv). In a follow-up step, scientists analyze 
the updated data (i), and a new batch of experiments is selected (ii). The RO dataset can be augmented with data from AI models (blue). CIME4R 
aids the analysis of RO data and facilitates informed decision-making
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different experiments. This exponential growth soon 
becomes a challenge from computational resource and 
human perception perspectives.

(T2) Investigate optimization progression: Under-
stand how data changes over the optimization cycles. 
Temporal variables are measurements—or calculations 
based on such measurements—that are accumulated 
throughout the optimization process. For example, after 
each cycle, we add new values for measured yield to the 
dataset. We can also add the model predictions that are 
based on measurement results and are therefore updated 
after every cycle.

(C2) Visualizing temporal data: The time series 
information introduced adds a new layer of complexity to 
the dataset. Visualizing a mix of static and temporal data 
is not straightforward and requires careful consideration 
in the design process.

(T3) Identify critical factors: Identify which (combi-
nations of ) parameter values are predictors for a high/
low target value (e.g., yield). Identify which parameters 
an AI model deems important for predicting a high/low 
target value.

(C3) Interaction of parameter values: Sometimes, 
particular parameter values have a positive or negative 
effect on an objective (e.g., for a particular reaction, high 
temperature may always give a better or low tempera-
ture may always give a lower yield). However, typically, 
parameters interact with each other and only particular 
combinations of parameter values give good results. For 
example, low temperature results in a high yield only 
when combined with a specific substrate, and in a lower 
yield with any other reagent. Determining these correla-
tions is an essential part of understanding the optimiza-
tion problem and the parameters used.

(T4) Understand model predictions: Understand 
which parameters were most important for an AI model’s 
prediction and whether this information overlaps with an 
expert’s judgment. Detect and overcome possible flaws 
and shortcomings of AI models to make informed deci-
sions on the next batch of experiments. Learn from AI 
reasoning and enhance expert knowledge about reaction 
parameters.

(C4) Data uncertainty: The RO campaign may start 
with no prior measurement data or direct knowledge of 
the reaction to be optimized. Only after the first cycle of 
experiments (randomly chosen or chosen by experts) do 
we have a small set of measurement data that is used to 
model the whole parameter space. Estimations of a new 
experiment that is close to those already performed can 
be made with higher confidence than experiments that 
fall within an unexplored area. The optimization process 
is usually a trade-off between exploring uncertain areas 
of the parameter space and exploiting slight variations 

in the parameter values of experiments that previously 
performed well. It is therefore important to illustrate the 
estimation of a value together with the (un)certainty of 
the estimation [30, 31].

Design
CIME4R extends CIME  [15], a system developed for 
exploring and comparing Explainable Artificial Intelli-
gence (XAI) outputs from chemical AI models. In con-
trast to CIME, CIME4R was developed for analyzing RO 
datasets, supporting scientists in their decision-making, 
and making AI-guided RO better understandable. It 
visualizes large and high-dimensional parameter spaces 
and is able to handle iterative and uncertain data, which 
is essential for analyzing RO data. CIME4R was devel-
oped by visualization experts in close collaboration with 
chemists. Throughout design and implementation, we 
continuously tested CIME4R in terms of its usability and 
usefulness for the intended tasks. For testing we chose 
a subset of the deoxyfluorination dataset with results 
from EDBO by Shields et  al.  [5]. Finally, we confirmed 
the usefulness of CIME4R using two different datasets, 
as described in Sect.  4. All datasets and their creation 
scripts are available online [32]. In the following subsec-
tions, we elaborate on the design choices we made to sup-
port users in executing their tasks (as defined in Sect. 1.2) 
to meet their RO goals.

Data filtering
To handle large datasets  (C1), we decided to imple-
ment filtering and aggregation strategies. We use filter-
ing to allow users to choose a meaningful subset of the 
parameter space that is relevant to their analysis. Most 
visualizations are based on the filtered data subset. How-
ever, to gain a better understanding of the entire dataset, 
CIME4R provides additional visualizations that show 
aggregations of the full data. Figure 2 gives an overview 
of which visualizations and computations operate on 
a filtered subset, an aggregation of the dataset, or the 
whole dataset.

In addition to the filtering functionality, we allow users 
to define exceptions to filters. In other words, although 
a set of experiments is not included within the specified 
filter, an exception can be made to include them. This was 
implemented to help users to analyze data in more detail, 
for example, when users want to explore a particular area 
of the parameter space in more detail without changing 
the remaining filtering.

Projection view
We utilize dimensionality reduction (DR) to gain an over-
view and be able to comprehend a parameter space (T1). 
This generates a two-dimensional space that is visualized 
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in the projection view [15]. In addition to choosing from 
UMAP1, t-SNE2, or PCA3 as DR techniques, users can 
specify which features are more or less important than 
others by applying weights to the variables. By exploring 
a variety of weightings, users can analyze the parameter 
space under various perspectives and pick the one that 
best facilitates the analysis (see Supplementary Material, 
Additional file 1 for details).

CIME4R includes two views that show this two-dimen-
sional projection of the parameter space (see Fig. 3A): (i) 
A scatter plot visualizing the filtered subset, where each 
experiment corresponds to one point; and (ii) an aggre-
gated view of the entire parameter space (i.e., all possi-
ble reaction combinations), which is shown as colored 
hexagonal bins in the background of the projection 
view. While experimenting with a range of techniques to 

analyze the aggregated two-dimensional space, we tried 
to visualize the data as a continuous heatmap and used 
interpolated values for areas without data points, simi-
lar to the landscapes shown in other work [5, 7, 35] (see 
Additional file  1 for details). However, such a visualiza-
tion suggests both the presence of data (i.e., we do not 
actually have values in some areas, but fill the space with 
calculated values) and continuity of data (i.e., assuming 
that there is a continuous change between experiments in 
a parameter space) where they do not exist, which might 
mislead users. After careful consideration, we chose dis-
crete bins to show the aggregated values. We decided to 
use hexagonal bins as a trade-off between squares, which 
are space-filling, and circles, which have borders with a 
uniform distance to the center [36, 37]. To give the aggre-
gated view more flexibility, we implemented the hex bins 
to dynamically adapt to the zoom level. This means that 
users gain an abstract overview at first, but when zoom-
ing in the hex bins become more fine-grained, making 
the view more detailed (see Additional file 1 for details). 
Overall, the projection view gives users an overview of 

Hex Bins Scatter Plot

Projection View

Dataset

Filtered Subset

Aggregated Dataset

Parallel Coordinates LineUp

Tabular View

Summary View

Dataset

Projection FilterAggregate

Selection

Fig. 2 Overview of CIME4R’s main components and the type of data that flows through each component. We differentiate between using 
the entire dataset (solid grey arrow), an aggregation of the dataset (green dashed arrow), and a filtered subset of the dataset (purple dashed arrow)

1 UMAP: Uniform Manifold Approximation and Projection [33]
2 t-SNE: t-Distributed Stochastic Neighbor Embedding [34]
3 PCA: Principal Component Analysis.
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the entire parameter space of the dataset in two dimen-
sions and a more detailed view of the filtered subset, 
helping them to comprehend a parameter space (T1).

The visual encoding of points in the scatter plot and 
hexagons in the aggregation can be changed to better 
comprehend a parameter space  (T1) in the two-dimen-
sional space and identify critical factors (T3). For exam-
ple, users can choose to encode the size of points in the 
scatter plot by temperature or choose a color encoding to 
distinguish between high and low yields. The aggregation 
hexagons can, for example, be colored by the value of 
the acquisition function to see which area in the param-
eter space the model deems best to be explored next. 
This functionality can also be used to understand model 
predictions (T4).

To analyze temporal data  (C2) in the projection view, 
we integrated a slider that allows users to easily navi-
gate  step-wise through time and see how the values in 
the parameter space change with each cycle (see Fig. 3B). 
Animating over time steps or switching between time 
steps helps to gain an overview of the changes happen-
ing in the parameter space. However, showing changes 
consecutively may raise the problem of change blind-
ness, where small but possibly important changes escape 
users’ perception [38]. For a simultaneous view of one or 
several time steps, we developed the option of juxtapos-
ing multiple projection views (see Additional file  1 for 
details). This allows users to compare in more detail how 

values change with each cycle and to investigate iterative 
data (T2).

Finally, to show uncertain data  (C4) in the hexagonal 
bins, we make use of bi-variate color mapping and VSUP 
(value-suppressing uncertainty pallets  [30]). Bi-variate 
color mapping is a technique that combines two princi-
ples of color encoding to represent two variables simulta-
neously (i.e., one variable is mapped as a variation of hue 
and the second as varying saturation, which results in a 
2-d matrix of a mix of hues and saturation). As an alterna-
tive to the standard bi-variate color mapping, we chose to 
also implement VSUP, which is particularly useful if data 
contains uncertainty. A VSUP color map is represented 
in the form of a wedge, as shown in Fig. 3B. The layers of 
the wedge represent the uncertainty of the data (i.e., the 
further from the center, the lower the uncertainty). The 
rationale behind this design choice is that values that are 
uncertain do not have to be as distinguishable from each 
other as those with high certainty. For example, a model 
predicts the yield for every possible experiment; the vari-
ance/uncertainty depends on the data already available in 
a specific region of the parameter space. High variance 
of the model’s prediction indicates that this part of the 
parameter space has not yet been adequately explored 
and insufficient data points are available to model it well, 
which makes the actual predicted value less important. 
The advantage that comes with VSUP is that values with 
higher certainty are represented with a higher number of 
distinct hues, and values with lower certainty have fewer 

Fig. 3 The CIME4R’s user interface showing the (A) projection view, which gives an overview of the reaction-parameter space, (B) aggregation 
settings side panel, where users can adjust the visual encodings of the hexagonal bins in the projection view, (C) tabular view with LineUp, 
which gives details about each experiment, (D) temporal columns and (E) summaries in LineUp, and (F) summary view, which shows similarities 
and differences of sets of experiments. This example shows the results of Bayesian RO of a deoxyfluorination reaction examined by Shields et al. [5]
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bins. This helps users to utilize and understand model 
predictions (T4).

As an alternative to bi-variate color mapping and 
VSUP, uncertainties could also be explicitly encoded in 
a second visual channel  [30] (e.g., visualizing the value 
as face color and the uncertainty edge color of the hexa-
gons). However, separate encoding of value and uncer-
tainty increases the complexity of a visualization and 
users’ cognitive load. If users want to see the values and 
uncertainties anyway, parallel views can be used to show 
the data separately.

Tabular view
For a detailed view of the parameter space, we decided 
to include a LineUp table  [39]—an interactive visualiza-
tion for tabular data—and modified it to make it suitable 
for reaction optimization data (see Fig. 3C). The LineUp 
table allows users to view the parameters and values (col-
umns) for each experiment (rows) that is shown in the 
scatter plot, enabling users to see more detailed infor-
mation about each experiment. Its interactive features 
let users select, sort, filter, rank, or group by columns to 
explore the data.

To visualize temporal data (C2) in LineUp, we accumu-
late the temporal columns that belong together and show 
them in a single one-dimensional heatmap (see Fig. 3D). 
For example, all values of the acquisition function for 
each cycle are visualized in one heatmap that changes 

colors corresponding to the timesteps along the x-axis4. 
The progression over time is thus visualized in a compact 
way and users can investigate iterative data (T2).

Since LineUp does not support simultaneous repre-
sentation of temporal data (C2) and uncertain data (C4), 
we developed a custom LineUp column that shows the 
mean predicted value after each cycle as an interactive 
line chart and the uncertainty of the prediction as an area 
around the line (see Fig.  3D). This column helps users 
to understand how a model’s prediction developed over 
time and to understand model predictions (T4).

To identify critical factors (T3), users can use LineUp’s 
aggregation functionality to view summaries for groups 
of experiments (see Fig. 3E). For example, users can iden-
tify the top 10 experiments in terms of predicted yield. 
They can then compare the summaries and find which 
parameter values might result in a high predicted yield.

For analyzing the interaction of parameter values (C3), 
we implemented a parallel coordinates view. Users can 
interactively select parameter values of interest, and 
the parallel coordinates plot highlights the correlations 
between the parameter values, as shown in Fig. 4. Users 
can thus determine which parameters or combinations of 
parameters predict a higher/lower yield, which makes it 
easy to identify critical factors (T3).

Both tabular views are linked to the projection view via 
selection. This means that users can select experiments in 
one view, and the corresponding points are automatically 

Fig. 4 Users can open a parallel coordinates plot that replaces the LineUp table to explore the interactions between parameter values and identify 
critical factors in an optimization process. Each line represents the conditions of one reaction, lines highlighted in red represent reactions that have 
been manually selected due to having a high yield (purple selection)

4 For diverging data (i.e., data with a meaningful center), such as SHAP val-
ues, we use a diverging color scale (i.e., a blue-white-red gradient) as shown 
in Fig. 3D
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highlighted in the other view, which combines the 
strengths of both views in an interactive way.

Summary view
The summary visualization shows the distributions of 
feature values for selected experiments and compares 
them to the distributions of the remaining data (see 
Fig.  3F)  [18]. This can be done not only for the filtered 
subset, but also for the entire dataset to support handling 
of large datasets  (C1). By selecting the clusters formed 
during the projection, users can explore the projection 
space to comprehend a parameter space  (T1) and form 
an intuition. They can also inspect experiments to see 
which parameter values, or combinations thereof, predict 
a high yield and thus identify critical factors (T3).

To inspect the interaction of parameter values  (C3), 
users can see the differences between groups of experi-
ments (e.g., experiments with high yield vs. experiments 
with low yield) in the group comparison view. This view 
shows the summary visualization for each of the groups 
that are compared, and additionally a visualization that 
explicitly shows the difference between two groups. For 
example, in Fig. 3F, when comparing the group of high-
yielding experiments with the group of low-yielding 
experiments, the base and sulfonyl fluoride compounds 
and base equivalents differ most between the two groups. 
To keep the visualization simple, only the feature val-
ues that have large changes between the two sets are 
displayed (e.g., for the base, only the changes of BTMG 
and MTBD compounds are displayed). The group com-
parison helps users to see the feature values that differ 
most between two groups, making it easy to find well-
performing parameter combinations to identify critical 
factors (T3).

The group comparison view can also be used to inves-
tigate iterative data  (T2). More concretely, users can 
compare the experiments chosen for each cycle and see 
the differences between the cycles. This aids users in 
understanding how the decision-making evolved over the 
whole iterative process of RO.

Implementation
The front end of CIME4R is a React [40] app and uses the 
Projection Space Explorer [41] (PSE) library. This library 
provides a general layout for interactive web applica-
tions that utilize projections to explore a data space. The 
individual components of the app can be customized to 
specific use cases. In the course of developing CIME4R, 
we modified the PSE library to make it more flexible and 
accommodate further customization of its features and 
components.

The back  end server is a python application that uses 
Flask  [42] to serve the API. For molecule computations 

and rendering, we used the RDKit  [43] python library. 
We added a back  end component to allow handling of 
large datasets (C1), which come with RO tasks. To cope 
with these large datasets (C1) and avoid memory issues, 
the data has to be either (i)  processed in chunks of 
smaller pieces of data, (ii) filtered to a subset of the whole 
dataset, or (iii)  aggregated to reduce the overall size of 
the dataset. All of these optimizations are done in the 
back  end after the dataset has been uploaded. Figure  2 
gives an overview of which CIME4R components use the 
whole dataset, aggregations of it, or a filtered subset.

Data processing
Datasets must be provided in CSV format (comma-sep-
arated values), where each row corresponds to one par-
ticular combination of parameter values (i.e., one possible 
experiment). In addition to the parameter values, other 
relevant data can be included for each experiment: meas-
ured target values if available for this experiment (e.g., 
measured yield); the cycle in which the measurement was 
performed; the predicted target value for each cycle (e.g., 
predicted yield of an experiment); explanations for model 
predictions (e.g., SHAP  [13] values that indicate which 
parameter values were important for this prediction); and 
any other information that might be of interest to users.

Columns can be named arbitrarily; however, some spe-
cial column names and modifiers are recognized by the 
back  end and used during processing. This helps with 
customizing the treatment of some variables.5 Exam-
ples of dataset creation and a description of all modi-
fiers are linked directly in CIME4R and the official user 
documentation [44].

After uploading a dataset to the back end,6 the data is 
saved in chunks to a PostgreSQL  [45] database for eas-
ier and faster access in future requests. When the data-
set is saved, the front end can request a filtered subset or 
aggregations of the dataset from the back end to use for 
the visualizations.

Projecting data
While users can choose the type of dimensionality reduc-
tion (i.e., UMAP  [33], t-SNE  [34], and PCA) and adjust 
the projection parameters in the UI, the computations 
are done in the back  end. Performing the computations 
in the back end allows us to project the entire dataset and 
not just the subset displayed in the front end. For large 
datasets, it is computationally unfeasible to project the 

5 For example, columns that are part of time-series data should end with an 
underscore followed by a time step (e.g., acquisition_0, acquisition_1, and so 
on, containing the values of the acquisition function at cycle 0, 1, etc.).
6 The CSV file may be zipped before uploading to reduce the file size.
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entire data at once. In these cases, we first reduce the 
number of features with an incremental version of PCA 
that processes the data in chunks. The resulting lower-
dimensional features can then be used as input to UMAP 
or t-SNE. For a comparison of projections with and with-
out chunking, see Additional file  1. Users can choose 
between Euclidean (for numerical data), Jaccard (for 
categorical data), and Gower [46] (for mixed data types) 
as distance metrics for the projection. Since Gower’s dis-
tance is not included in the python libraries that we used 
for dimensionality reduction, we implemented it as a 
function that produces a pre-computed similarity matrix. 
Similarly, to enable the assignment of custom weights to 
features, the similarities must be pre-computed. Occa-
sionally, the projected space results in overlapping points. 
We added an overlap removal method to reduce overlaps 
in the scatter plot [47].

The two-dimensional space is visualized in the front 
end using a scatter plot for the filtered subset of the data 
and hexagonal bins for an aggregated view of the entire 
dataset.

Aggregating data
We modified the PSE library to accept additional custom 
layers in the projection view that are rendered above or 
below the scatter plot layer. Thus, we were able to imple-
ment a layer that shows an aggregation of the entire data-
set using hexagonal bins as the background of the scatter 
plot. To compute the aggregations, we implemented a 
function that determines whether the coordinates of a 
point are contained in the hexagon at a certain position. 
All values that are contained in a particular hexagon are 
then aggregated by a user-defined aggregation function 
(i.e., min, max, median, mean, or count). All computa-
tions are done in the back end, and only the aggregated 
values and the coordinates of the hexagon centers are 
served to the front end.

Results
In this section, we describe the results of three case stud-
ies. These were conducted by four collaborators (three of 
them authors), who are experts in the field of chemical 
RO. We prepared two datasets [32] to be analyzed by the 
experts, who then used CIME4R for (i)  understanding 
and learning from RO campaigns in retrospect (with and 
without AI-generated data), and (ii) human–AI collabo-
rative decision-making. All experts performed their anal-
yses independently of each other. The following sections 
summarize the most important insights and  show how 
CIME4R can be utilized.

Case study 1: Buchwald‑Hartwig reaction—learning 
from and understanding a fully measured RO space
In the first case study, we asked the chemists to use 
CIME4R to understand a reaction space that had been 
fully tested experimentally. We chose a subset of a Buch-
wald-Hartwig reaction dataset performed and reported 
by Ahneman et. al. [48]. As shown in Fig. 5, this reaction 
involves four categories of compounds (three aryl halide 
substrates, three bases, four ligands, and 22 additives), 
with a sample of 792 experiments performed. We visual-
ized the experiments in CIME4R by means of a weighted 
t-SNE projection using the experiment parameters and 
their associated descriptors (see Additional file  1 for 
details).

Using the selection and summary tools available in 
CIME4R, the chemists were able to quickly identify and 
understand the clusters of experiments in the projection 
view (T1), as shown in Fig. 6. Each of the nine main clus-
ters represents the combination of one aryl halide and 
one base. Within each cluster, four sub-clusters exist, 
each of which represents the use of one ligand, and the 
remaining points within each sub-cluster represent the 
various additives used.

Pd precatalyst (10 mol%)
Additive (1 equiv)

Base (1.5 equiv)
DMSO (0.1 M)

60 C, 16 h

X = Cl, Br, I

Parameter Space: Categorical Variables:

3  Aryl Halides
4  Pd pre-catalysts

3   Bases
22 Addi�ves

Fig. 5 Reaction scheme for the Buchwald-Hartwig reaction used as the dataset for case study 1 [48][5]
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By color-encoding each point in the scatter plot with 
the measured yield, the chemists were able to easily iden-
tify that lower yields were achieved with the aryl chloride 
substrate than with the aryl bromide and iodide sub-
strates. To identify the reactions with the best conditions, 
they used LineUp and ordered the experiments by the 
measured yield, as shown in Fig.  7. Here they observed 
that the aryl iodide substrate with MTBD as a base and 
Pd0-Ad-BrettPhos as the catalyst gave the best yield, 

with multiple options for the additives providing a high 
yield (T3).

Although the aryl chloride gave a lower yield on aver-
age, it may be interesting to determine what conditions 
are successful for this substrate; for example, the aryl 
chloride substrate may be more favorable for cost or 
availability reasons. Therefore, the chemists looked into 
which suitable reaction conditions are able to transform 
the aryl chloride substrate into the desired product. 
Using the parallel coordinate visualization (see Fig.  8), 

Fig. 6 Parallel projection views of the Buchwald-Hartwig reaction space. Each parallel view shows the same projection of the parameter space, 
but with a different color encoding. The left projection view encodes the three compounds of aryl halide. The view in the center visualizes 
the measured yield, and the right projection encodes the four ligand compounds. The chemists used the projection view in combination 
with the summary view—which shows summary statistics of currently selected experiments—to comprehend the parameter space 
and the clusters formed during the projection (T1) 

Fig. 7 LineUp visualization of the 10 best-performing reaction conditions, sorted from highest to lowest by measured yield. Users can determine 
which factors of a reaction contribute positively to the yield (T3) 
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the chemists observed that for a moderately high yield, 
Pd0-t-Bu-C-Phos was the best-performing ligand and 
performed well with all bases. This was in contrast to the 
aryl iodide substrate, which gave high yields with three 
possible ligands, but not with P 2 Et as the base.

Case study 2: direct arylation reaction—learning 
from and understanding an RO campaign in retrospect
In this case study, we asked the chemists to use CIME4R 
to explore and retrospectively understand a chemical 
RO campaign. We used the direct arylation optimiza-
tion that was performed by Shields et  al.  [5], as shown 
in Fig.  9 with their proposed EDBO model  [49]. This 
reaction involves three categories of compounds (12 
ligands, four bases, and four solvents) and two numeric 
variables (three temperatures and three concentrations) 
resulting in a pool of 1728 experiments. The reaction 
was optimized with EDBO over eight iterations with 
five experiments per iteration. To prepare the data for 
CIME4R, we created a dataset that contained all possi-
ble experiments and—where the experiments had been 

performed—measurements. We then added the means 
and standard deviations of the yield predictions by 
EDBO and the corresponding values from the acquisition 
function for each cycle. Finally, using the Kernel SHAP 
method [13], we also calculated the SHAP values of the 
EDBO input features for each cycle. The code for creating 
this dataset is publicly available  [32]. We visualized the 
experiments in CIME4R by means of a weighted t-SNE 
projection using the experiment parameters and SHAP 
values (see Additional file 1 for details). Figure 10 shows 
CIME4R’s projection view of the dataset  (T1) and its 
development throughout the RO campaign (T2).

While investigating this dataset in CIME4R, the chem-
ists made several discoveries that helped them to under-
stand the EDBO campaign  (T4). After performing five 
initial random experiments (cycle 0), the chemists dis-
covered that EDBO prioritized experiments with the 
best-performing ligand up to this point (tBPh-CPhos) for 
the next three cycles. This development can be seen in 
the LineUp overview (see Fig. 11 A) and in the projection 
and summary views of the corresponding cycles (Fig. 12). 

Fig. 8 Parallel coordinates visualization of the Buchwald-Hartwig reaction filtered to show the reaction conditions that give high yield when using 
the aryl chloride substrate (highlighted red lines) (T3) 

Parameter Space:

[PdCl(allyl)]2 (2.25 mol%)
Ligand (5 mol%)
Base (3 equiv.)

Solvent
Temperature (°C)
Concentration (M)

Categorical Variables:
12 Ligands
4   Bases
4 Solvents

Con�nuous Variables:
3  Temperatures
3 Concentra�ons

Fig. 9 Reaction scheme for the direct arylation reaction used as the dataset for case studies 2 and 3 [5]
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Fig. 10 Projection of parameter space, aggregated by predicted yield, and standard deviation showing the progression of EDBO after each 
cycle (T2). The projection view gives users an overview and helps users to comprehend the parameter space (T1) 

Fig. 11 LineUp overview of the reactions performed, their measured yields, and calculated SHAP values, grouped by cycle (0–7) and ordered 
by measured yield. After a random initialization in cycle 0, EDBO prioritized experiments with the currently best ligand (A) for the next three 
cycles. In cycle 4, EDBO explored different ligands, but for fixed base and solvent (C). Finally, EDBO managed to find a yield of 100% by exploiting 
the best-performing yield found in cycle 4 (D). EDBO’s choice of parameters and the development of the SHAP values (B1–5, E) aid users 
in understanding the model’s decisions (T4) 
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The chemists found one cluster of potential experiments 
that contain the best conditions up to this cycle (i.e., the 
combination of a tBPh-CPhos ligand, DMAc solvent, and 
KOAc base), which resulted in experimental yields from 
67 to 89%. The importance of ligand, solvent, and base to 
the current EDBO prediction was also indicated by the 
positive (pink) SHAP values seen in the first four cycles 
of the reaction (see Fig. 11 B1–B3). In contrast, the SHAP 
values of temperature and concentration indicated mini-
mal contribution to the prediction (Fig. 11 B4–B5).

From cycle 4 onwards, the algorithm selected only one 
more experiment that used the best ligand up to this 
point (tBPh-CPhos). Evaluation of this experiment found 
a measured yield close to the predicted yield (cycle 3 pre-
diction: 67%; actual yield in cycle 4: 77%). This improved 
prediction accuracy—as well as a general reduction in the 
uncertainty of the model (see Fig. 10 Cycle 4)—suggests 

that this area had been exploited sufficiently for EDBO to 
move on to explore other parts of the parameter space. 
The remaining experiments in cycle 4 explored new 
ligands whilst keeping the choice of base (KOAc) and sol-
vent (DMAc) consistent with the base and solvent com-
bination that had performed best up to that point (see 
Fig. 11 C).

Cycles 5 to 7 focused on exploiting the best ligand 
found in cycle 4 (CgMe-PPh) (see Fig. 11 D). The change 
in feature importance and strategy of EDBO was also 
observed to contrast sharply with the ligand SHAP val-
ues, which changed after cycle 4, as shown in Fig. 11 E. 
In particular, the ligand from cycles 1 to 3 seemed then 
to have a negative (blue) impact on the predicted yield, 
while the new ligand changed from little (white) to high 
(pink) impact.

Fig. 12 Projection and summary views of cycles 1–3 in case study 2, giving an overview of how EDBO progressed over these cycles (T1) (T4). The 
diamonds are the centroids of the experiments for the corresponding cycles. For cycles 1–3, the centroids fall within a small region, which means 
that the model exploited the currently best solution to find the optimal solution. The summary visualizations give an overview of which parameter 
values the model explored during this cycle, while the difference visualizations show how the cycles differed from each other
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The optimization campaign was stopped after cycle 7 
once an experiment had been found that achieved 100% 
yield. The chemists were not only interested in the best-
performing experiment, but also in exploring all reac-
tions predicted to give a high yield (T3). To this end, the 
parallel coordinate feature of CIME4R and the PSE dis-
playing the predicted yield after cycle 7 were utilized, as 
shown in Fig.  13 and Fig.  14. In this case, it was found 
that yields greater than 90% were predicted only for reac-
tions using CgMe-PPh as the ligand with either DMAc or 

BuCN 7  as the solvent, with the base depending on the 
solvent selected. The numeric components were found to 
be less influential, and over 90% yield could be achieved 
with any of the given concentrations greater than 0.1 M 
and temperatures of 105◦C or higher, which suggests a 
robust range of operating conditions. In addition to the 
global optimum, local maxima in the parameter space, as 

Fig. 13 In the parallel coordinate plot, users can highlight the experimental conditions which, after the 7th cycle, the model predicts will achieve 
highest yield (’pred_yield_mean_7’)—in this case over 90%. This enables users to identify critical factors of RO (T3) 

Fig. 14 Projection view with all possible experimental points colored by their: (a) yield prediction and (b) prediction uncertainties after cycle 7. 
Potential local maxima are indicated by green circles

7 In accordance with Ahneman et  al. [5], we use the potentially incorrect 
abbreviation BuCN, which we assume to refer tobutyronitrile.
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shown in Fig. 14, might also be of interest. Visualizing the 
predicted yield for all possible experiments highlighted 
three maxima in the parameter space. This can be useful 
to know if the global maximum defines conditions that 
are operationally undesirable, for instance, if workup or 
isolation of the desired product becomes problematic.

Case study 3: direct arylation reaction—human‑AI 
collaboration to select the next experiments
In the final case study, we tested to what extent CIME4R 
can facilitate the collaboration between humans and 
AI. For the same dataset as in case study 2, optimiza-
tion was stopped after cycle 4, and we asked the chem-
ists to decide on the next batch of five experiments using 
insights gained through CIME4R from EDBO and their 
own professional knowledge and intuition.

First, the chemists used the projection view to deter-
mine which areas of the parameter space had previ-
ously been explored, and the yield predictions (mean 
and standard deviation) from the latest model were dis-
played using the hex bins (T1), as shown in Fig. 15. Three 
ligands were identified that had a high uncertainty in 
yield prediction, as no experiments had been performed 
in these areas; therefore, the chemists all selected to run 
at least one experiment using one of these unexplored 
ligands; for example, in one case JackiePhos was selected.

Then the chemists visualized the value of the acquisi-
tion function to see which experiment had the highest 
priority according to the EDBO algorithm and should 
thus be performed next to  identify critical factors  (T3), 
as shown in Fig. 16. The highest values for the acquisition 
function were obtained for the most recent discovered 
optimal ligand (CgMe-PPh) and the previously best sol-
vent/base combination: DMAc/KOAc. Since these exper-
iments required only temperature and concentration to 
be varied, the chemists decided to take a sample of exper-
iments from this area using temperature and concentra-
tion combinations that had not yet been studied under 
these conditions (e.g., a low temperature and high con-
centration). For the remaining experiments, the chemists 
stated they would decide between exploring other ligands 
that had not yet been explored or changing the base and 
solvent with the best ligand up to this point.

All chemists felt that they would have decided differ-
ently if they hadn’t used CIME4R. Without CIME4R, 
they would either have chosen all experiments based 
on their chemical intuition or run the experiments sug-
gested by the EDBO algorithm. Comparison of the next 
batch of experiments chosen by the chemists to those 
selected by EDBO revealed some differences in terms of 
approach. While both the chemists and EDBO focused 
on exploiting the currently best ligand (CgMe-PPh), only 

Fig. 15 Projection of parameter space, aggregated by predicted yield and standard deviation after cycle 4 of the optimization process
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the chemists explored alternative ligands that had not yet 
been used in the optimization campaign.

Limitations and future work
As CIME4R is the first step towards better visualiza-
tion and exploration of chemical reaction optimization 
campaigns, we envision an open-source community 
project that will improve and extend the functional-
ity of CIME4R in the future. A major—and probably 
the greatest—limitation is the complexity of CIME4R. 
The learning curve is steep, and even after having been 
shown examples of all the tool’s features, users some-
times struggle to utilize CIME4R to its full potential. 
Currently, user guidance is implemented as compre-
hensive descriptions and hints for all functionalities 
directly in the tool. As part of future work, we will seek 
to reduce the steepness of the learning curve by apply-
ing best practices for how to onboard users (e.g., guided 
tours) and refining the visualizations such that they are 
unambiguous to the users (e.g., the difference visuali-
zations seemed to have caused confusion about what it 
shows). We also plan to investigate how scientists use 
the tool in order to determine, which parts of the tool 
cause particular difficulties and which workflows could 

be automated to reduce users’ overhead. For example, 
in the case studies, we found that scientists frequently 
explored the iterations of the RO campaign. Consid-
erable overhead is involved in adjusting all views to 
show one particular cycle of experiments. This could be 
optimized with a global time slider that automatically 
adapts all views to show the selected cycle.

Another limitation is the integration of CIME4R into 
existing infrastructure and workflows (i.e., how to feed 
the data into the tool). The data must be processed in a 
specific way to allow CIME4R to handle it properly. We 
plan to automate this process. Ideally, we would like to 
have an automated workflow that takes the data created 
in the experiments—optionally including additional data 
by an AI model—transforms it into the right format, and 
visualizes everything with CIME4R.

CIME4R has been tested on single-objective data-
sets only. The analysis of datasets with multiple objec-
tives (e.g., optimizing for yield and temperature) is not 
yet properly supported. Although limited integration of 
multiple objectives in CIME4R would be feasible, more 
sophisticated approaches are necessary for their proper 
analysis [28].

Fig. 16 Parameter space encoded by the acquisition function after cycle 4 of the optimization process with a summary view of the four 
experiments with the highest acquisition function at this time
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To reduce memory usage, which is essential when 
dealing with large datasets, we had to implement strat-
egies that come with the drawback of longer process-
ing times. In the future, we will optimize the runtime of 
these processes wherever possible to reduce latency and 
make CIME4R more responsive when working with large 
datasets.

Recognizing the importance of analyzing dynamically 
generated data (i.e., iteratively adding new information), 
we plan to develop a function that allows this kind of data 
to be added to a dataset previously uploaded to CIME4R. 
For example, a dynamic change could be the addition 
of measurement data after a cycle has been finished. 
Another dynamic change could occur in the parameter 
space itself, for example, by adding parameters or chang-
ing parameter values.

In addition to potential improvements to CIME4R 
itself, there is also unexplored potential in the datasets 
generated for analysis in CIME4R. For example, one area 
of interest may include time-series data that arise from 
sampling a reaction at multiple time points. Further, 
aspects of a reaction’s work-up, isolation, and crystal-
lization have not yet been explored in CIME4R. In rela-
tion to users understanding the optimization algorithms 
employed, other XAI features, such as SHAP interac-
tion values, could be calculated for the dataset, and any 
parameters used for the optimization—for example, if 
the alpha parameter is varied in Bayesian optimization—
could also be exported.

Finally, we evaluated CIME4R with three case stud-
ies. We decided on this approach because a quantitative 
study was not feasible at this point. Recruiting experts to 
participate in a study is often not easy and observational 
studies require a smaller number of participants [50] (in 
our case four experts). However, as we develop CIME4R 
further to better accustom user needs, we should also 
employ larger experimental studies where we evaluate 
CIME4R with qualitative and quantitative data.

Conclusion
We have introduced CIME4R, an open-source, interac-
tive tool that allows scientists to explore and understand 
chemical reaction optimization data. Users can navigate 
and analyze large, high-dimensional reaction parameter 
spaces to find high-performing experiments, understand 
the influence of various parameters on the objective, 
and make informed proposals for the next set of experi-
ments. In the case of AI-guided reaction optimization, 
users can explore and thus better understand predic-
tions made by an AI model. Scientists can combine this 
information with their own experience to make better 
decisions on the next experiments to be performed and 
thus gain from human-AI collaboration. We designed 

the tool to accommodate the tasks and challenges that 
reaction optimization data bring. In three case studies, 
we tested CIME4R’s usefulness in aiding domain experts 
with (i) understanding and learning from RO campaigns 
in retrospect, and (ii)  human-AI collaborative decision-
making. We found that domain experts successfully used 
CIME4R to complete the case studies and produced valu-
able insights from the datasets. Despite the steep learn-
ing curve involved, we are confident that scientists will 
benefit from using CIME4R to analyze their chemical RO 
data and that use of CIME4R will allow better integration 
of AI-guided RO.
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