Skip to main content
Scheme 2 | Journal of Cheminformatics

Scheme 2

From: Examining the predictive accuracy of the novel 3D N-linear algebraic molecular codifications on benchmark datasets

Scheme 2

General workflow for the calculation of a two-linear descriptor based on the linear algebraic form, Euclidean metric, non-stochastic matrix approach, atomic mass as property and Manhattan aggregation operator. (1) Computation of the non-stochastic matrix for k = 1 \(\left( {{\mathbb{G}}^{1} } \right)\) from the 3D coordinates matrix and using the Euclidean metric; (2) Computation of the molecular vector based on the atomic mass property, \(\bar{\varvec{X}}_{\varvec{m}}\); (3) Splitting of the \({\mathbb{G}}^{1}\) matrix into “n” (number of atoms) atom-level matrices, \({\mathbb{G}}^{{\varvec{a},1}}\), where “a” is an atom of the molecule; (4) Computation of the atom-level descriptors and saving them into vector L; and (5) Application of the Manhattan aggregation operator over the entries of the vector L, being this value the molecular descriptor

Back to article page