Skip to main content

Table 2 Conditional molecular graph generation with proposed model

From: Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation

Dataset

Target condition

G-mean

Unique count

MolWt

LogP

QM9

Training set

–

100,000

122.97 ± 7.61

0.14 ± 1.16

Unconditional generation

0.639

3243

123.01 ± 8.04

− 0.06 ± 1.36

MolWt = 120

0.583

2316

121.85 ± 5.11

0.02 ± 1.36

MolWt = 125

0.543

1947

125.11 ± 4.56

− 0.27 ± 1.22

MolWt = 130

0.482

1475

128.98 ± 4.27

− 0.41 ± 1.33

LogP = − 0.4

0.576

2399

122.97 ± 8.26

− 0.40 ± 0.73

LogP = 0.2

0.543

2099

122.53 ± 8.17

0.19 ± 0.75

LogP = 0.8

0.537

1989

122.17 ± 8.09

0.83 ± 0.72

ZINC

Training set

–

100,000

357.94 ± 65.48

2.62 ± 1.36

Unconditional generation

0.888

7000

366.44 ± 51.63

2.49 ± 1.43

MolWt = 300

0.742

4090

313.12 ± 13.72

1.91 ± 1.50

MolWt = 350

0.796

5045

356.22 ± 12.66

2.24 ± 1.36

MolWt = 400

0.805

5212

400.95 ± 13.66

2.78 ± 1.30

LogP = 1.5

0.865

6470

352.33 ± 46.78

1.66 ± 0.94

LogP = 2.5

0.860

6356

366.64 ± 48.30

2.46 ± 0.92

LogP = 3.5

0.827

5658

381.96 ± 48.46

3.22 ± 0.85