Skip to main content

Table 5 Comparison of selective prediction performance in terms of RMSE (%p)

From: Uncertainty-aware prediction of chemical reaction yields with graph neural networks

Dataset

Coverage

YieldBERT-DA

Proposed (\(\lambda =0.1\))

Aleatoric

Epistemic

Total Pred. Var.

Buchwald-Hartwig

100%

4.799 ± 0.261

\(\mathbf{4.433} \pm \mathbf{0.085}\)

\(\mathbf{4.433} \pm \mathbf{0.085}\)

\(\mathbf{4.433} \pm \mathbf{0.085}\)

90%

4.129 ± 0.205

4.036 ± 0.130

\(\mathbf{4.003} \pm \mathbf{0.160}\)

4.037 ± 0.161

80%

3.833 ± 0.206

3.796 ± 0.173

3.793 ± 0.182

\(\mathbf{3.765} \pm \mathbf{0.185}\)

70%

3.583 ± 0.249

3.482 ± 0.176

\(\mathbf{3.424} \pm \mathbf{0.196}\)

3.456 ± 0.166

60%

3.382 ± 0.282

3.050 ± 0.261

3.068 ± 0.211

\(\mathbf{3.001} \pm \mathbf{0.184}\)

50%

3.171 ± 0.317

2.653 ± 0.187

2.716 ± 0.168

\(\mathbf{2.605} \pm \mathbf{0.115}\)

40%

2.812 ± 0.218

2.338 ± 0.178

2.503 ± 0.197

\(\mathbf{2.300} \pm \mathbf{0.166}\)

30%

2.518 ± 0.229

2.059 ± 0.245

2.299 ± 0.270

\(\mathbf{2.044} \pm \mathbf{0.235}\)

Suzuki-Miyaura

100%

10.524 ± 0.482

\(\mathbf{9.467} \pm \mathbf{0.459}\)

\(\mathbf{9.467} \pm \mathbf{0.459}\)

\(\mathbf{9.467} \pm \mathbf{0.459}\)

90%

9.485 ± 0.395

8.632 ± 0.334

8.592 ± 0.338

\(\mathbf{8.540} \pm \mathbf{0.310}\)

80%

8.911 ± 0.373

8.254 ± 0.314

8.146 ± 0.403

\(\mathbf{8.098} \pm \mathbf{0.347}\)

70%

8.473 ± 0.323

7.848 ± 0.329

7.787 ± 0.305

\(\mathbf{7.702} \pm \mathbf{0.397}\)

60%

8.063 ± 0.353

7.260 ± 0.400

7.218 ± 0.343

\(\mathbf{7.160} \pm \mathbf{0.328}\)

50%

7.439 ± 0.470

6.357 ± 0.470

6.503 ± 0.456

\(\mathbf{6.293} \pm \mathbf{0.466}\)

40%

7.236 ± 0.521

5.126 ± 0.306

5.394 ± 0.306

\(\mathbf{4.980} \pm \mathbf{0.250}\)

30%

6.754 ± 0.398

3.968 ± 0.152

4.337 ± 0.257

3.959 ± 0.252