Skip to main content

Table 4 Performance comparison on PDBBind 2016

From: Force field-inspired molecular representation learning for property prediction

Method

PDBBind 2016

RMSE ↓

MAE ↓

SD ↓

R ↑

ML-based methods

RF

1.446 (0.008)

1.161 (0.007)

1.335 (0.010)

0.789 (0.003)

SVR

1.555 (0.000)

1.264 (0.000)

1.493 (0.000)

0.727 (0.000)

CNN-based methods

OnionNet

1.407 (0.034)

1.078 (0.028)

1.391 (0.038)

0.768 (0.014)

Pafnucy

1.585 (0.013)

1.284 (0.021)

1.563 (0.022)

0.695 (0.011)

GraphDTA methods

GCN

1.735 (0.034)

1.343 (0.037)

1.719 (0.027)

0.613 (0.016)

GAT

1.765 (0.026)

1.354 (0.033)

1.740 (0.027)

0.601 (0.016)

GIN

1.640 (0.044)

1.261 (0.044)

1.621 (0.036)

0.667 (0.018)

GAT-GCN

1.562 (0.022)

1.191 (0.016)

1.558 (0.018)

0.697 (0.008)

GNN-based methods

DMPNN

1.493 (0.016)

1.188 (0.009)

1.489 (0.014)

0.729 (0.006)

DimeNet

1.453 (0.027)

1.138 (0.026)

1.434 (0.023)

0.752 (0.010)

SIGN

1.316 (0.031)

1.027 (0.025)

1.312 (0.035)

0.797 (0.012)

Ours

FFiNet

1.310 (0.012)

1.056 (0.006)

1.304 (0.014)

0.801 (0.005)

  1. The SOTA results are shown in bold. Standard deviations are in brackets