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Atomization energies are an important measure of chemical stability. Machine learning is used to model atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only [1]. Our scheme maps the problem of solving the molecular time-independent Schrödinger equation onto a non-linear statistical regression problem. Kernel ridge regression [2] models are trained on and compared to reference atomization energies computed using density functional theory (PBE0 [3] approximation to Kohn-Sham level of theory [4, 5]). We use a diagonalized matrix representation of molecules based on the inter-nuclear Coulomb repulsion operator in conjunction with a Gaussian kernel. Validation on a set of over 7000 small organic molecules from the GDB database [6] yields mean absolute error of ~10 kcal/mol, while reducing computational effort by several orders of magnitude. Applicability is demonstrated for prediction of binding energy curves using augmentation samples based on physical limits.
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