Journal of Cheminformatics© The Author(s) 2021
https://doi.org/10.1186/s13321-021-00529-9

Software

MAYGEN: an open-source chemical structure generator for constitutional isomers based on the orderly generation principle

Mehmet Aziz Yirik1 , Maria Sorokina1 and Christoph Steinbeck1
(1)Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany

Mehmet Aziz Yirik
Email: yirik.mehmetaziz@uni-jena.de

Maria Sorokina
Email: maria.sorokina@uni-jena.de

Christoph Steinbeck (Corresponding author)
Email: christoph.steinbeck@uni-jena.de

Received: 28 April 2021Accepted: 22 June 2021Published online: 3 July 2021
Abstract
The generation of constitutional isomer chemical spaces has been a subject of cheminformatics since the early 1960s, with applications in structure elucidation and elsewhere. In order to perform such a generation efficiently, exhaustively and isomorphism-free, the structure generator needs to ensure the building of canonical graphs already during the generation step and not by subsequent filtering. Here we present MAYGEN, an open-source, pure-Java development of a constitutional isomer molecular generator. The principles of MAYGEN’s architecture and algorithm are outlined and the software is benchmarked in single-threaded mode against the state-of-the-art, but closed-source solution MOLGEN, as well as against the best open-source solution PMG. Based on the benchmarking, MAYGEN is on average 47 times faster than PMG and on average three times slower than MOLGEN in performance.
Keywords
Constitutional isomer generationAlgorithmic group theoryAlgorithmic graph theoryChemical graph generationOpen-source softwareCDK
Introduction
Unconstrained isomer generation has received attention over the past decades as a means to assess the theoretically existing chemical space and as a hypothesis generator. Recently, the works of Jean-Louis Reymond and coworkers for the creation of the GDB-11 [1], GDB-13 [2] and GDB-17 [3] databases, enumerating all possible molecules with 11, 13, and 17 non-hydrogen atoms, respectively, in the molecular formula, have laid out the motivations for unconstrained isomer generation and the exploitation of its results in sufficient detail. Such molecular generation methods can be used as hypothesis generators in areas such as computer-assisted structure elucidation, but also to answer broader questions such as the exact size of a chemical space. Structure generators that produce constitutional isomers take a molecular formula as input, e.g., [image: $$\text {C}_{10}\text {H}_{16}\text {O}$$], and enumerate or output all possible chemical structures that can be built with the given set of atoms in the molecular formula. The history of chemical graph generators reaches back to the 1960s and started with the DENDRAL project [4]. Their structure generator, CONGEN [5], was based on the substructures building blocks and dealt well with the overlapping substructures. Another structure generator substructure building blocks based was Assemble [6]. Chemical graph generators are based on mathematical theorems, especially the application of algorithmic group theory [7] and combinatorial algorithms [8]. MASS was a tool for the mathematical analysis of molecular structures and constructes molecules by generating their adjacency matrices [9] and SMOG [10] was the successor of MASS. Adjacency matrices include the edge multiplicity information for each atom pair in molecules.
Despite the long history of research on the theoretical and practical generation of chemical graphs, the number of publicly available algorithms and software for this purpose is still limited. The available generators [11] are ASSEMBLE [6], COCON [12], DENDRAL [4], LSD [13], MOLGEN [14], OMG [15], PMG [16], SENECA [17] and SMOG [10]. These generators and more details are described in [11]. For several decades, the closed-source, commercial structure generator MOLGEN, developed in C at the University of Bayreuth, marked the state of the art in terms of speed and completeness. Recognising the need for an open-source structure generator, Peironcely and colleagues [15] developed the Open Molecule Generator (OMG). OMG, however, is orders of magnitude slower than MOLGEN. Following OMG, a parallelized structure generator, PMG, was developed based on the OMG algorithm. The 452,458 isomers of [image: $$\text {C}_{10}\text {H}_{16}\text {O}$$], for instance, are generated in only 3 s by MOLGEN 5.0, whereas MAYGEN 1.4 and PMG take 10 and 45 s, respectively. For more benchmarks, see “Results” section of the present manuscript.
In this work, we present the development of an open-source structure generator MAYGEN, a pure-Java constitutional isomer generator based on the principle of orderly generation described by Grund et al. [18]. We benchmark our method against the fastest available open-source solution PMG as well as against the closed-source, de facto gold standard MOLGEN. On average, MAYGEN is 47 times faster than PMG and three times slower than MOLGEN. In an old Arabic saying, “may” refers to a drop of water, and we hope that MAYGEN will be a good contribution to the field and trigger a surge in the development of improved and faster versions eventually rivalling the best closed-source solutions and thereby serving the scientific community. The complete MAYGEN code, as well as precompiled binaries, are available on GitHub.
Methods
MAYGEN 1.4 generates constitutional isomers of a given molecular formula with an orderly graph generation algorithm from the field of algorithmic group theory. The principles are described in detail in [18]. We summarize them as following. A graph with p nodes, [image: $${1,2,3, \ldots , p}$$] has its symmetry group [image: $$S_{p}$$]. This symmetry group includes all the permutations of these nodes. However, for the case of coloured graphs, the nodes need to be partitioned (Eq. 1), in other words, nodes are grouped based on their colours, degrees and edges.[image: $$\begin{aligned} \lambda := (\lambda _{1}, \lambda _{2}, \ldots) \; with \; \sum _{i}\lambda _{i} = n_{i} \end{aligned}$$]

 (1)

A molecule can be represented as a coloured graph. For 4 isomers of [image: $$\text {C}_{8}\text {O}_{2}\text {H}_{16}$$] (Fig. 1), all atoms are coloured by their element types.[image: ../images/13321_2021_529_Fig1_HTML.png]
Fig. 1Four isomers of [image: $$\text {C}_{8}\text {O}_{2}\text {H}_{16}$$]. Atoms are coloured by their type

The atoms of [image: $$\text {C}_{8}\text {O}_{2}\text {H}_{16}$$] can be partitioned in three groups as following: [image: $$\lambda ={2, 8, 16}$$]. For the case of this node partition, the symmetry group of 26 nodes, [image: $$S_{26}$$], cannot be used since the nodes are coloured. In this case, a special type of symmetry group is applied, consisting of Young subgroups, that are the symmetry groups built based on the initial node partition (Eqs. 2 and 3).[image: $$\begin{aligned} n= & {} \bigcup \limits _{i}n_{i}^{\lambda } \, where \, n_{i}^{\lambda } = \left\{ \sum _{j=1}^{i-1} \lambda _{j}+1, \ldots , \sum _{j=1}^{i}\lambda _{j} \right\} \end{aligned}$$]

 (2)

[image: $$\begin{aligned} S_{\lambda }:= & {} \left\{ \pi \in S_{n} | \forall i : \pi (n_{i}^{\lambda }) = n_{i}^{\lambda } \right\} \subseteq S_{n} \end{aligned}$$]

 (3)

In Eq. (2), these two summations give the minimum and maximum entries of the integer range. For the partition [image: $$\lambda ={2, 8, 16}$$], its integer sets are:
[image: $$\{1, 2\} \cup \{3, 4, 5, 6, 7, 8, 9, 10\} \cup \{11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26\}$$]
This symmetry group [image: $$S_{\lambda }$$] is the direct product of Young subgroups permuting each atom type within its partition. In the case of [image: $$\text {C}_{8}\text {O}_{2}\text {H}_{16}$$], the symmetry group of [image: $$S_{\lambda }$$] is [image: $$S_{\{1, 2\}}* S_{\{3, 4, 5, 6, 7, 8, 9, 10\}}*S_{\{11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26\}}$$]. The permutations of these symmetry groups only permute each element type within their groups, such as oxygens, carbons and hydrogens. The Young subgroups are then used for the construction of molecules’ automorphism groups (Eq. 4). These atom partitions and symmetry groups are the core part of the MAYGEN canonical test.[image: $$\begin{aligned} Aut(A) := \left\{ \pi \in S_{n} | A\pi = A \right\} \subseteq S_{p} \end{aligned}$$]

 (4)

MAYGEN’s construction of candidate structures consists of three distinct recursive tasks. First, the hydrogens are distributed to the heavy (i.e. non-hydrogen) atoms of the molecular formula. Then, the structures are generated in a block-wise manner, and finally, the canonical test avoids the generation of duplicate structures in an efficient and dynamic manner.
Molecular formula check and hydrogen distribution
Graph existence check
Before calling the generator functions, there is a preliminary test for input molecular formulae. From graph theory, a degree list d can represent a graph with p nodes if the sum of all node degrees is equal or greater than [image: $$2*(p-1)$$] and if the sum is an even number (Eq. 5) [18].[image: $$\begin{aligned} d = (d_{1},d_{2}, \ldots ,d{p}) \, \sum _{i=1}^{p} d_{i} \, is \, even \, and \, \sum _{i=1}^{p} d_{i} \ge 2*(p-1) \end{aligned}$$]

 (5)

A graph with p nodes should consist of at least [image: $$(p-1)$$] edges. Since an edge is connected with two nodes in a graph, the sum of its node degrees should be equal to or greater than [image: $$2*(p-1)$$].
Hydrogen distribution
For a given molecular formula, MAYGEN processes the hydrogens first and distributes them to all the other atoms in all possible ways since a hydrogen atom has a valence of 1 and can always have only one neighbour. The hydrogen distribution function takes two inputs, the atom partition and the number of hydrogens. The hydrogens are distributed in ascending order within each partition in order to avoid duplicates.
After the hydrogen distribution, the initial degrees and the initial partition are updated for each hydrogen distribution. For example, the non-hydrogen atoms from the molecular formula [image: $$\text {C}_{6}\text {H}_{6}$$] have the initial respective degrees as [4, 4, 4, 4, 4, 4] and the initial partition {6}. There are 7 possible hydrogen distributions (Fig. 2) to these carbon atoms. After the hydrogen distribution step, the new lists of node degrees and partitions are used for the structure generation process. With the pre-hydrogen distribution, MAYGEN deals with a [image: $$6\times 6$$] matrix instead of a [image: $$12\times 12$$] matrix. The matrix size also has an impact on the canonical test since this test depends directly on the rows’ permutations. The hydrogen distribution code is available in the hydrogenDistributor Java class.
[image: ../images/13321_2021_529_Fig2_HTML.png]
Fig. 2Illustration of the hydrogen distribution of C6H6 (in yellow) and its effect on the assigned atom valency (in blue) and on the atom partition (in red)

Construction of candidate structures
Once the molecular formula satisfies the graph existence criteria, the hydrogen distribution is performed to build a list of degrees. MAYGEN then starts the actual construction of candidate structures for each degree. The structures are represented by adjacency matrices in which each entry represents the edge multiplicity between the atom pairs. These matrices are built in a block-wise manner. The algorithm is based on the node degrees that correspond to the atom valences. The initial partition of the atoms, based on their element symbols, defines the blocks of the matrix (Fig. 3).[image: ../images/13321_2021_529_Fig3_HTML.png]
Fig. 3Block-wise representation of a matrix. Here, the matrix is split into parts based on the initial node partition with p entries. Image adapted from Grund et al. [18]

With p being the number of atoms in the molecular formula without the hydrogens, an empty [image: $$p\times p$$] matrix A is built. This matrix is filled in descending order starting with the maximal capacities and this is performed for each atom. The maximal capacity of an atom is calculated by decrementing its valence. For example, the valence of carbon is 4 and its maximal capacity is 3. Due to the diagonal symmetry of such matrices, only the upper triangular part needs to be filled. A canonical test, as described below, is performed once a block is filled. In a matrix, a block is defined as a number of rows and their transposes (i.e. columns). For example, a block between two indices 1 and 4 means the first 4 rows and the first 4 columns of the matrix. It needs to be noted that the canonical tests are performed without waiting for the whole matrix to be filled, which increases MAYGEN’s efficiency. This is the early boundary condition of the block-wise generation and avoids the construction of duplicate molecular structures. When the whole matrix is filled, it is written into the output SDF file, if such an option is selected at the beginning of the process. The algorithm then modifies the same input matrix A until there are no more possible changes. This is called the “build-and-forget method” [18]. The overall algorithm structure is explained in Algorithm 1 [18] and illustrated in Fig. 4.[image: ../images/13321_2021_529_Fig4_HTML.png]
Fig. 4MAYGEN flowchart. The input formula includes p non-hydrogen atoms

Keeping the example of [image: $$\text {C}_{6}\text {O}_{2}\text {H}_{6}$$], the initial valence vector is [image: $$v = [4,4,4,4,4,4,2,2,1,1,1,1,1,1]$$], where the valences of each carbon atom are listed first, then the valences of each oxygen atom, and lastly the valences of all 6 hydrogen atoms. To optimize the process, the hydrogens are avoided in the further construction of the matrices by the hydrogen distribution step. Thus, the initial partition is [image: $$\lambda =\{6,2\}$$] and the corresponding matrix is a [image: $$8\times 8$$] matrix (built on 6 carbons and 2 oxygens).
[image: ../images/13321_2021_529_Figa_HTML.png]
Canonical test
The canonical test is the crucial part of the MAYGEN algorithm. In block-wise orderly structure generation, the early canonical testing avoids the construction of many duplicates. Overall, the purpose of the canonical test is the detection of the maximal matrix with respect to the given initial node partition.[image: $$\begin{aligned} A \ge A\pi \quad \forall \pi \in S_{\lambda } \end{aligned}$$]

 (6)

In the naive version of the canonical test, the matrix A is permuted for all the permutations of [image: $$S_{\pi }$$] and its maximality is checked (Eq. 6). In the permuted matrices, [image: $$A_{\pi }$$], their rows and entries are permuted. The original matrix A is compared with all the permuted matrices. Two matrices are compared row by row in a lexicographical order (Eq. 7).[image: $$\begin{aligned} \begin{aligned} A> A' : \Longleftrightarrow (a_{1,1},\ldots , a_{1,p},a_{2,1},\ldots , a_{2,p},a_{p,1},\ldots , a_{p,p})\\ > (a'_{1,1},\ldots , a'_{1,p},a'_{2,1},\ldots , a'_{2,p},a'_{p,1},\ldots , a'_{p,p}) \end{aligned} \end{aligned}$$]

 (7)

In the block-wise orderly generation, only the rows within the blocks are compared.
Cycle transpositions
In the canonical test, the size of the symmetry group affects the run time of the algorithm. The initial partition is updated for each row during the test. Starting with the initial partition, with each row, the partitions are refined. The refinement process (Eq. 8) is explained below:[image: $$\begin{aligned} \lambda ^{(i)}= {\left\{ \begin{array}{ll} \underbrace{(1, ..., 1,}_\text {i-1}1,\lambda _{i}^{(i-1)} -1, \lambda _{i+1}^{(i-1)} ,...) &{} \text {if} \quad \lambda _i^{i-1} > 1\\ \underbrace{(1,...,1,}_\text {i-1}1,\lambda _{i+1}^{(i-1)} &{} \text {if} \quad \lambda _i^{(i-1)} = 1 \end{array}\right. } \end{aligned}$$]

 (8)

For [image: $$\text {C}_{3}\text {O}_{2}\text {H}_{4}$$], the initial partition without hydrogens is {3,2}. Thus the partition list for all the rows are:[image: $$\begin{aligned} \begin{aligned} \lambda ^0&= \{3,2\}\\ \lambda ^1&= \{1,2,2\}\\ \lambda ^2&= \{1,1,1,2\}\\ \lambda ^3&= \{1,1,1,2\}\\ \lambda ^4&= \{1,1,1,1\} \end{aligned} \end{aligned}$$]

These partition lists are used for the construction of the symmetry groups. By comparing the indices of two consecutive partitions, the cycle transpositions of symmetry groups are calculated. For partitions [image: $$\lambda ^{(i-1)}$$] and [image: $$\lambda ^{(i)}$$], the number of cycles is the [image: $$i$$]th entry in the former partition [image: $$\lambda _{i}^{(i-1)}$$] (Eq. 9).[image: $$\begin{aligned} S_{\lambda ^{i-1}} = \cup _{j=i}^{\lambda _{i}^{i-1}}(i,j)S_{\lambda ^{i}},i=1,\ldots ,p-1 \end{aligned}$$]

 (9)

For example, the initial partition is {3, 2} and the refined partition for the first row is {1,2,2}. Here the number of cycle transpositions is 3 since the first entry of the former partition is 3. The cycle transpositions are (1,1), (1,2) and (1,3). These cycles are calculated row by row for all the partitions. The symmetry group of the molecule is calculated by the multiplication of all these cycles. The list of the partitions and their cycles are listed below:[image: $$\begin{aligned} \lambda ^0= & {} \{3,2\} \quad \lambda ^1 = \{1,2,2\} \quad Cycles: (1,1), (1,2), (1,3) \\ \lambda ^1= & {} \{1,2,2\} \quad \lambda ^2 = \{1,1,1,2\} \quad Cycles: (2,2), (2,3) \\ \lambda ^2= & {} \{1,1,1,2\} \quad \lambda ^3 = \{1,1,1,2\} \quad Cycles: (3,3) \\ \lambda ^3= & {} \{1,1,1,2\} \quad \lambda ^4 = \{1,1,1,1\} \quad Cycles: (4,4), (4,5) \end{aligned}$$]

Calculation of automorphisms
In the canonical test, for a candidate matrix the corresponding automorphisms are calculated row by row. For the [image: $$i$$]th row of a matrix, the cycle transpositions [image: $$\varsigma _{i,j}$$] are calculated based on the partitions [image: $$\lambda ^{(i-1)}$$] and [image: $$\lambda ^{(i)}$$]. These cycle transpositions are used in the automorphisms search. All these cycles are multiplied in DFS manner with all the former automorphisms [image: $$\tau$$] of the graph. This updated list of permutations are used in the canonical test of the matrix. For a graph with p nodes, its list of automorphisms until the [image: $$i$$]th row is:[image: $$\begin{aligned} F^{(i)} = \{\tau \in F^{(i-1)} | \tau * \varsigma _{(i,j)} \} \quad i<j<\lambda _{i}^{i-1} \end{aligned}$$]

 (10)

After the multiplication with all its cycles (Eq. 10), this updated list of automorphisms is used in the maximality check. If an automorphism is detected, that permutation is added to the automorphisms list, [image: $$F^{i}$$]. Thus, the automorphisms list is updated for each row until the row is in maximal form with respect to its partitions.
Maximality check
For the maximality test of the [image: $$i$$]th row of a matrix, the row is compared with each permutation action in the automorphisms list. For each permutation, the original matrix A is permuted. Then, the [image: $$i$$]th rows of the original matrix and the permuted one are compared. These two rows are compared based on the [image: $$i$$]th atom partition. For an initial matrix A, as shown in Fig. 5a, with its partition [image: $$\lambda ^{(0)} = \{5\}$$] and the refined partition [image: $$\lambda ^{(0)'} = \{1,4\}$$], there are 5 cycle transpositions. One of these cycles is (1,2). To perform the maximality test, its first and second rows are compared (Fig. 5a).[image: ../images/13321_2021_529_Fig5_HTML.png]
Fig. 5Maximality check. a A matrix A is permuted with a cycle transposition. The first and the second rows are identical after the permutation action. b A matrix B is permuted with a cycle transposition. The first and the second rows are not identical. c The canonical permutation of matrix B is given

In this example, the permutation (1,2) is an automorphism of the first row since it maps the row to itself in the adjacency matrix. Then this permutation is added to the list of automorphisms. However, in the case where a mapping with a cycle does not map the row to itself, a canonical permutation is needed. For an initial matrix B (Fig. 5b) with its initial partition [image: $$\lambda ^{(0)} = \{5\}$$], its refined partition is [image: $$\lambda ^{(0)'} = \{1,4\}$$], and there are 5 cycle transpositions for these partition. One of them is (1,2). To perform the maximality test, its first and second rows are compared (Fig. 5b).
Different from example A, in matrix B the first and second row are not identical after the cycle transpositions, and a canonical permutation is therefore needed. The canonical permutations are searched within the Young subgroups built with respect to the refined partition. In this example, the refined partition is [image: $$\lambda ^{(0)'} = \{1,4\}$$]. Thus, the symmetry group is [image: $$S_{\{1\}}*S_{\{2,3,4,5\}}$$]. For the canonical permutation search, only the permutations of the sets {1} and {2,3,4,5} are required. For the rows of matrix B, the canonical permutation is then (3,5), as depicted in Fig. 5c. Thus, (1,2)(3,5) is the automorphism of the first row and added to the automorphisms list for further testings.
In general, there are three criteria for updating the automorphisms list and for the maximality check:
[image: ../images/13321_2021_529_Figb_HTML.png]
In the canonical test, if the row is canonical after testing all the permutations, the partition [image: $$\lambda ^{(i+1)}$$] is built based on the [image: $$i$$]th row’s entries. After filling the entries of the [image: $$i$$]th row, i.e., adding bonds to the [image: $$i$$]th atom, the atom neighbourhoods are changed. Therefore the partition [image: $$\lambda ^{(i+1)}$$] is defined based on the partition [image: $$\lambda ^{(i)}$$] and the [image: $$i$$]th row entries. For matrix A and its refined partition [image: $$\lambda ^{(0)'}=\{1,4\}$$], its partition first is updated with respect to the first row entries:[image: $$\begin{aligned}&\text {Refined partition }\lambda ^{(0)'}=\{1,4\} \rightarrow A[1]=[0 | {{2}} ,{{1, 1}}, {{0}}] \\&\quad \rightarrow \text {Updated partition }\lambda ^{(1)}=\{1,{{1}},{{2}},{{1}}\} \end{aligned}$$]

The canonical test continues until the rows are in maximal form in lexicographic order. The automorphisms and partition lists are updated row by row.
Learning from canonical test
In case a molecule cannot pass the canonical test, there is still something to learn from the test. In the row by row comparison of the canonical test, when a row does not pass the test, the entry making it non-canonical is detected. As explained in Algorithm 1, if a block is not canonical, MAYGEN updates the matrix starting with its last entry in the block. However, with the help of the non-canonical matrix, the algorithm starts modifying the matrix from the entry making the matrix non-canonical. For a matrix C with its partition [image: $$\lambda ^{(0)}=\{5\}$$] and the refined partition [image: $$\lambda ^{(0)'}=\{1,4\}$$], there are 5 cycle transpositions. One of these cycles is (1,3). To perform the maximality test, its first and third rows are compared as shown in Fig. 6.[image: ../images/13321_2021_529_Fig6_HTML.png]
Fig. 6For a non-canonical matrix, detecting the entry indices makes it non-canonical

The permutation [image: $$\pi =(2,4)(3,5) \in S_{\{1\}}*S_{\{2,3,4,5\}}$$] makes the third row bigger than the first row. Here the first entry making the row non-canonical is C[3, 4] in the matrix. Then the matrix construction continues with the indices [3, 4]. Using the learning from the canonical test, all the other non-canonical matrices are skipped.
Connectivity test
The connectivity test of a graph is performed based on the neighbourhoods of all its nodes. The connectivity test starts with enumerating the nodes and setting this as the initial graph enumeration. The enumeration list is updated while checking the neighbour lists node by node. After detecting neighbours of a node, the labelling of the tested node and its neighbours from the graph enumeration list are stored. The minimum value of this set is given as the smallest index of the neighbourhood. This smallest index value is used for updating the list of graph enumeration. The test is terminated once all the nodes have the same label or all the nodes are re-labelled. For example, the connectivity test is performed for an isomer of [image: $$\text {C}_{6}\text {H}_{6}$$] represented by the adjacency matrix A (Fig. 7a) with its initial node enumeration (labels) {1, 2, 3, 4, 5, 6} (Table 1).[image: ../images/13321_2021_529_Fig7_HTML.png]
Fig. 7a The adjacency matrix of an isomer of [image: $$\text {C}_{6}\text {H}_{6}$$]. b An isomer of [image: $$\text {C}_{6}\text {H}_{6}$$]

Table 1The connectivity test for an isomer of [image: $$\text {C}_{6}\text {H}_{6}$$] represented by matrix A (Fig. 7a)

	Node index
	Neighbors
	Former label
	Minimum label
	Enumeration

	1
	{1,2,3}
	{1,2,3}
	1
	{1,1,1,4,5,6}

	2
	{2,5}
	{1,5}
	1
	{1,1,1,4,1,6}

	3
	{3,4,6}
	{1,4,6}
	1
	{1,1,1,1,1,1}

The matrix A (Fig. 7a) is connected since the smallest node label for each tested node is 1 and its last node enumeration list includes only 1s. Thus there is only one component whose smallest index is 1 (Fig. 7b). For a disconnected chemical graph represented by the adjacency matrix B (Fig. 8a) with its initial node enumeration (labels) {1, 2, 3, 4, 5, 6}.[image: ../images/13321_2021_529_Fig8_HTML.png]
Fig. 8a The adjacency matrix of an isomer of [image: $$\text {C}_{6}\text {H}_{6}$$]. b A disconnected molecule with formula [image: $$\text {C}_{6}\text {H}_{6}$$]

The matrix B represents a disconnected isomer of [image: $$\text {C}_{6}\text {H}_{6}$$]. This molecule has two components (Fig. 8b) with the indices [image: $$\varsigma _1= \{1,2,5\}$$] and [image: $$\varsigma _2= \{3,4,6\}$$]. The first component [image: $$\varsigma _1$$] is the first component with respect to its atom labelling. Here, components are compared with respect to their maximum index.
Learning from connectivity test
Similar to “Learning from canonical test”, there is still something to learn from the connectivity test if a molecule is not connected. In MAYGEN, the connectivity test is performed when a canonical matrix is complete. If a molecule is not connected, it is not stored in the output file and its first component needs to be detected. For example, the matrix B with Table 2, its first component is [image: $$\varsigma _1= \{1,2,5\}$$]. The maximum index of the first component identifies where the graph gets disconnected.Table 2The connectivity test for an isomer of [image: $$\text {C}_{6}\text {H}_{6}$$] represented by matrix B (Fig. 8a)

	Node index
	Neighbors
	Former label
	Minimum label
	Enumeration

	1
	{1,2,5}
	{1,2,5}
	1
	{1,1,3,4,1,6}

	2
	{2,5}
	{1}
	1
	{1,1,3,4,1,6}

	3
	{3,4,6}
	{3,4,6}
	3
	{1,1,3,4,1,6}

	4
	{4,6}
	{3}
	3
	{1,1,3,3,1,3}

	5
	{5}
	{1}
	1
	{1,1,3,3,1,3}

	6
	{6}
	{3}
	3
	{1,1,3,3,1,3}

In Algorithm 1, when a matrix is complete and stored in the output file, the generation process continues with the backward function. Here, the last index of the matrix is used as the input. However, with the “learning from connectivity test”, the algorithm continues with the last entry of the first component. For example, in matrix B, the first component is [image: $$\varsigma _1= \{1,2,5\}$$] and the maximum index is 5. Thus, the graph gets disconnected after the last entry of the fifth row, B[5, 6] entry of the matrix B. All the other modifications on the matrix between its last entry [6, 6] and [5, 6] build only disconnected graphs. That is why the matrix modification process continues with the last entry of the first component. Learning from the connectivity test reduces the construction of disconnected graphs.
Results
MAYGEN is written purely in Java and hosted on GitHub (see section Availability). The full source code, as well as pre-compiled binaries, are available for download. The code can be executed as follows:
[image: ../images/13321_2021_529_Figc_HTML.png]
Generates molecular structures for a given molecular formula. The input is a molecular formula string, e.g. ‘C2OH4’. Besides this formula, the directory is needed to be specified for the output file.
[image: ../images/13321_2021_529_Figd_HTML.png]
In order to generate constitutional isomers, the user needs to pass a molecular formula with the -f option:
[image: ../images/13321_2021_529_Fige_HTML.png]
Alternatively, users who either want to contribute to the development or use the latest source code can clone the GitHub repository and build the MAYGEN binary using the Maven build environment.
For the purpose of this publication, MAYGEN was tested with randomly selected molecular formulae. The run times of MAYGEN, MOLGEN and PMG are compared in Table 4. The computational experiments were performed in single-threaded mode and without storing structures in an output file. PMG was tested against OMG and confirmed that even in single-threaded mode, PMG is faster. We used the latest version of Molgen, V 5, to be able to benchmark against larger numbers of molecular formulae. Molgen 3.5, which is faster than Molgen 5, is only available as a Windows GUI application and, to the best of our knowledge, cannot be run in batch mode. Furthermore, we do not own Windows license of Molgen 3.5. We did, however, manually run 10 formulae of the test version of Molgen 3.5 against the test version of Molgen 5 on the same Windows machine (Table 3).Table 3The number of structures and the run times are listed for MOLGEN 3.5 and MOLGEN 5.0 with a randomly selected 10 molecular formulae

	Formula
	# Structures
	MOLGEN 3.5 runtime (s)
	MOLGEN 5.0 runtime (s)
	Ratio of runtimes

	[image: $$\text {C}_{10}\text {H}_{15}\text {N}$$]
	2,569,697
	9
	32
	3.556

	[image: $$\text {C}_{5}\text {HFIN}_{3}\text {O}$$]
	2,737,786
	7
	38
	5.429

	[image: $$\text {C}_{7}\text {H}_{9}\text {NO}_{2}$$]
	3,237,132
	11
	29
	2.637

	[image: $$\text {C}_{9}\text {H}_{12}\text {O}_{2}$$]
	3,276,662
	11
	42
	3.819

	[image: $$\text {C}_{5}\text {H}_{6}\text {N}_{2}\text {O}_{3}$$]
	4,513,867
	11
	40
	3.637

	[image: $$\text {C}_{9}\text {H}_{7}\text {N}$$]
	2,521,767
	6
	42
	7

	[image: $$\text {C}_{5}\text {H}_{2}\text {BrClN}_{2}\text {O}_{2}$$]
	5,211,489
	9
	50
	5.556

	[image: $$\text {C}_{8}\text {H}_{10}\text {O}_{3}$$]
	3,869,189
	13
	44
	3.385

	[image: $$\text {C}_{7}\text {H}_{10}\text {O}_{4}$$]
	1,428,242
	5
	16
	3.2

	[image: $$\text {C}_{7}\text {H}_{8}\text {O}_{4}$$]
	2,709,647
	9
	31
	3.445

The benchmark is performed without the aromaticity check

The comparison showed that Molgen 3.5 is about four times faster than Molgen 5 on average for these 10 tests. Different from MOLGEN 5.0 [14], PMG generates structures for additional valences of sulfur (S), phosphorus (P) and nitrogen (N) and therefore more molecules than MOLGEN or MAYGEN [15]. MOLGEN 5.0 uses the default lowest valences for N(3), S(2), and P(3), unless a user defines the higher valences. For all the results given in Table 4, MAYGEN generated the same number of structures as Molgen 5.0. Molgen has an aromaticity filter that filters out resonance structures of substituted aromatic molecules. This filter was deactivated with the -noaromaticity flag to achieve comparability. Since halogens are not defined in PMG, it does not generate structures with molecular formulae including Cl, F, Br, I.Table 4The number of structures and the run times are listed for MOLGEN 5.0, MAYGEN and PMG with a diverse set of molecular formulae

	Formula
	Structures (by MOLGEN and MAYGEN)
	MOLGEN runtime (s)
	Per structure (ms)
	MAYGEN runtime (s)
	Per structure (ms)
	Structures (by PMG)
	PMG runtime (s)
	Per structure (ms)
	Ratio MAYGEN/MOLGEN
	Ratio PMG/MAYGEN

	[image: $$\text {C}_{10}\text {H}_{15}\text {N}$$]
	2,569,697
	10
	0.004
	37
	0.015
	4,166,699
	792
	0.191
	3.7
	21.406

	[image: $$\text {C}_{5}\text {HFIN}_{3}\text {O}$$]
	2,737,786
	10
	0.004
	21
	0.008
	N/A
	N/A
	N/A
	2.1
	0

	[image: $$\text {C}_{7}\text {H}_{9}\text {NO}_{2}$$]
	3,237,132
	10
	0.004
	28
	0.009
	5,451,213
	580
	0.107
	2.8
	20.715

	[image: $$\text {C}_{9}\text {H}_{12}\text {O}_{2}$$]
	3,276,662
	11
	0.004
	38
	0.012
	3,276,662
	232
	0.071
	3.455
	6.106

	[image: $$\text {C}_{5}\text {H}_{6}\text {N}_{2}\text {O}{3}$$]
	4,513,867
	12
	0.003
	43
	0.01
	14,679,025
	2643
	0.181
	3.584
	61.466

	[image: $$\text {C}_{9}\text {H}_{7}\text {N}$$]
	2,521,767
	13
	0.006
	22
	0.009
	5,076,949
	484
	0.096
	1.693
	22

	[image: $$\text {C}_{5}\text {H}_{6}\text {P}_{2}\text {S}_{3}$$]
	4,513,867
	15
	0.004
	40
	0.009
	N/A
	> 24 h
	N/A
	2.667
	0

	[image: $$\text {C}_{5}\text {H}_{2}\text {BrClN}_{2}\text {O}_{2}$$]
	5,211,489
	16
	0.004
	38
	0.008
	N/A
	N/A
	N/A
	2.375
	0

	[image: $$\text {C}_{9}\text {H}_{7}\text {P}$$]
	2,521,767
	16
	0.007
	21
	0.009
	3,885,840
	357
	0.092
	1.313
	17

	[image: $$\text {C}_{11}\text {H}_{10}$$]
	3,614,427
	20
	0.006
	39
	0.011
	3,614,427
	204
	0.057
	1.95
	5.231

	[image: $$\text {C}_{8}\text {H}_{7}\text {NO}$$]
	5,005,355
	20
	0.004
	38
	0.008
	9,641,272
	926
	0.097
	1.9
	24.369

	[image: $$\text {C}_{5}\text {H}_{2}\text {FIO}_{2}\text {P}_{2}$$]
	5,211,489
	20
	0.004
	37
	0.008
	N/A
	N/A
	N/A
	1.85
	0

	[image: $$\text {C}_{8}\text {H}_{5}\text {NO}$$]
	3,999,703
	21
	0.006
	30
	0.008
	8,492,691
	852
	0.101
	1.426
	28.4

	[image: $$\text {C}_{10}\text {H}_{16}\text {S}_{2}$$]
	4,676,149
	21
	0.005
	87
	0.019
	N/A
	> 24 h
	N/A
	4.143
	0

	[image: $$\text {C}_{9}\text {H}_{10}\text {O}_{2}$$]
	6,843,602
	24
	0.004
	68
	0.01
	6,843,602
	502
	0.074
	2.834
	7.383

	[image: $$\text {C}_{8}\text {H}_{7}\text {PS}$$]
	5,005,355
	24
	0.005
	38
	0.008
	51,262,825
	7177
	0.141
	1.584
	188.869

	[image: $$\text {C}_{8}\text {H}_{5}\text {PS}$$]
	3,999,703
	25
	0.007
	31
	0.008
	44,966,952
	6058
	0.135
	1.24
	195.42

	[image: $$\text {C}_{5}\text {H}_{5}\text {N}_{3}\text {O}_{2}$$]
	9,390,618
	26
	0.003
	71
	0.008
	70,007,293
	15,845
	0.227
	2.731
	223.17

	[image: $$\text {C}_{10}\text {H}_{13}\text {N}$$]
	7,122,614
	27
	0.004
	78
	0.011
	12,328,415
	1850
	0.151
	2.889
	23.718

	[image: $$\text {C}_{12}\text {H}_{20}\text {O}$$]
	6,100,808
	28
	0.005
	185
	0.031
	6,100,808
	1160
	0.191
	6.608
	6.271

	[image: $$\text {C}_{9}\text {H}_{10}\text {S}_{2}$$]
	6,843,602
	29
	0.005
	68
	0.01
	347,718,450
	79,415
	0.229
	2.345
	1167.868

	[image: $$\text {C}_{11}\text {H}_{8}$$]
	4,442,438
	30
	0.007
	46
	0.011
	4,442,438
	296
	0.067
	1.534
	6.435

	[image: $$\text {C}_{10}\text {H}_{10}\text {O}$$]
	7,288,733
	30
	0.005
	71
	0.01
	7,288,733
	502
	0.069
	2.367
	7.071

	[image: $$\text {C}_{5}\text {H}_{5}\text {P}_{3}\text {S}_{2}$$]
	9,390,618
	32
	0.004
	69
	0.008
	N/A
	> 24 h
	N/A
	2.157
	0

	[image: $$\text {C}_{7}\text {H}_{6}\text {N}_{2}\text {O}$$]
	10,504,307
	37
	0.004
	77
	0.008
	41,261,882
	5440
	0.132
	2.082
	70.65

	[image: $$\text {C}_{10}\text {H}_{8}\text {O}$$]
	9,693,195
	47
	0.005
	88
	0.01
	9,693,195
	748
	0.078
	1.873
	8.5

	[image: $$\text {C}_{12}\text {H}_{14}$$]
	11,451,841
	52
	0.005
	158
	0.014
	11,451,841
	864
	0.076
	3.039
	5.469

	[image: $$\text {C}_{10}\text {H}_{11}\text {N}$$]
	14,778,466
	57
	0.004
	140
	0.01
	27,530,678
	3411
	0.124
	2.457
	24.365

	[image: $$\text {C}_{10}\text {H}_{14}\text {O}_{2}$$]
	16,422,284
	57
	0.004
	217
	0.014
	16,422,284
	1645
	0.101
	3.808
	7.581

	[image: $$\text {C}_{5}\text {H}_{6}\text {BrClFIN}_{2}\text {O}$$]
	23,955,660
	57
	0.003
	248
	0.011
	N/A
	N/A
	N/A
	4.351
	0

	[image: $$\text {C}_{11}\text {H}_{14}\text {O}$$]
	20,354,040
	76
	0.004
	250
	0.013
	20,354,040
	1714
	0.085
	3.29
	6.856

	[image: $$\text {C}_{9}\text {H}_{11}\text {NO}$$]
	25,895,621
	86
	0.004
	239
	0.01
	46,139,031
	6088
	0.132
	2.78
	25.473

	[image: $$\text {C}_{5}\text {HFIP}_{3}\text {S}_{2}$$]
	22,825,473
	97
	0.005
	178
	0.008
	N/A
	N/A
	N/A
	1.836
	0

	[image: $$\text {C}_{7}\text {H}_{9}\text {Br}_{2}\text {Cl}_{2}\text {PS}$$]
	26,610,607
	109
	0.005
	452
	0.017
	N/A
	N/A
	N/A
	4.147
	0

	[image: $$\text {C}_{12}\text {H}_{18}\text {O}$$]
	28,140,012
	114
	0.005
	551
	0.02
	28,140,012
	3656
	0.13
	4.834
	6.636

	[image: $$\text {C}_{9}\text {H}_{12}\text {F}_{2}\text {I}_{2}\text {S}$$]
	25,427,769
	126
	0.005
	558
	0.022
	N/A
	N/A
	N/A
	4.429
	0

	[image: $$\text {C}_{10}\text {H}_{12}\text {O}_{2}$$]
	42,261,751
	146
	0.004
	474
	0.012
	42,261,751
	3692
	0.088
	3.247
	7.79

	[image: $$\text {C}_{9}\text {H}_{9}\text {NO}$$]
	43,311,373
	156
	0.004
	365
	0.009
	83,676,810
	10,116
	0.121
	2.34
	27.716

	[image: $$\text {C}_{11}\text {H}_{12}\text {O}$$]
	46,647,199
	181
	0.004
	498
	0.011
	46,647,199
	3818
	0.082
	2.752
	7.667

	[image: $$\text {C}_{12}\text {H}_{10}$$]
	37,720,012
	210
	0.006
	405
	0.011
	37,720,012
	3107
	0.083
	1.929
	7.672

	[image: $$\text {C}_{9}\text {H}_{5}\text {NO}$$]
	36,456,956
	214
	0.006
	275
	0.008
	84,685,537
	11,133
	0.132
	1.286
	40.484

	[image: $$\text {C}_{12}\text {H}_{4}$$]
	16,079,924
	215
	0.014
	366
	0.023
	16,079,924
	3675
	0.229
	1.703
	10.041

	[image: $$\text {C}_{9}\text {H}_{7}\text {NO}$$]
	49,865,161
	218
	0.005
	407
	0.009
	105,236,547
	11,983
	0.114
	1.867
	29.443

	[image: $$\text {C}_{12}\text {H}_{8}$$]
	43,435,791
	307
	0.008
	449
	0.011
	43,435,791
	4147
	0.096
	1.463
	9.237

	[image: $$\text {C}_{12}\text {H}_{6}$$]
	34,030,905
	325
	0.01
	508
	0.015
	34,030,905
	4169
	0.123
	1.564
	8.207

	[image: $$\text {C}_{11}\text {H}_{10}\text {O}$$]
	79,818,477
	348
	0.005
	765
	0.01
	79,818,477
	6856
	0.086
	2.199
	8.963

	[image: $$\text {C}_{10}\text {H}_{4}\text {S}_{2}$$]
	495,428,30
	413
	0.009
	472
	0.01
	N/A
	> 24 h
	N/A
	1.143
	0

	[image: $$\text {C}_{11}\text {H}_{10}\text {S}$$]
	79,818,477
	429
	0.006
	751
	0.01
	N/A
	> 24 h
	N/A
	1.751
	0

	[image: $$\text {C}_{10}\text {H}_{8}\text {S}_{2}$$]
	105,772,510
	466
	0.005
	963
	0.01
	N/A
	> 24 h
	N/A
	2.067
	0

	[image: $$\text {C}_{10}\text {H}_{6}\text {S}_{2}$$]
	93,964,875
	552
	0.006
	850
	0.01
	N/A
	> 24 h
	N/A
	1.54
	0

MAYGEN always generates the same number of structures as MOLGEN. Times for Molgen were determined with the -noaromaticity flag to achieve comparability. PMG generates more structures in some cases due to different valences of S, P and N, which is why the per molecule run time is also given in milliseconds (ms)

For most structures containing all allowed elements, MOLGEN was slightly faster than MAYGEN and much faster than PMG (Figs. 9, 10); for carbohydrates and those containing additional oxygen, MAYGEN’s execution speed was comparable to that of MOLGEN. Since PMG does not generate structures for formulae with halogens, “N/A” is added to the result table. “> 24 h” is added to the result for the formulae for which PMG took longer than a day. These results are visualized with spaces in the plots (Figs. 9, 10).[image: ../images/13321_2021_529_Fig9_HTML.png]
Fig. 9Times for structure generation runs with MOLGEN 5.0, MAYGEN and PMG for molecular formulae containing all allowed elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur and halogens. The total run times (s) are plotted. For a fairer comparison, Fig. 10 shows the per-molecule run times

[image: ../images/13321_2021_529_Fig10_HTML.png]
Fig. 10Times for structure generation runs with MOLGEN 5.0, MAYGEN and PMG for molecular formulae containing all allowed elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur and halogens. Since PMG generates additional structures with higher oxidation states for N, S and P the run times (ms) for the construction of per molecule are plotted

Limitations
MAYGEN is currently restricted to generate molecules with the lowest valence states of nitrogen, phosphorus and sulfur, and all testing and benchmarking was done under this boundary condition. This is no principle restriction—the algorithm will work with any given valence state—but the workflow logic of MAYGEN needs to be adapted to compute structures for higher valences of these elements.
Future work
Being implemented in pure Java and with its code completely open, MAYGEN can be easily extended with additional functionalities and algorithmic improvements. The code availability through GitHub invites the scientific community to contribute to the further developments of MAYGEN. Obvious future work includes performance enhancements and the parallelization of the algorithm. Future implementations of MAYGEN will be parallelised. The lowest hanging fruit will be exploiting the built-in parallelism in the Java VM using multiple available cores. Here, trivial parallelism can be used by computing the isomers of different hydrogen distributions simultaneously. With 8 cores in the CPU of the senior author’s laptop and 18 cores in individual CPUs on our local compute cluster, significant speed gains can be achieved through this simple measure. The examples in our results Table 4 have between 2 and 74 hydrogen partitions, which yields plenty of space for further speed gains. Trivial parallelism can be pushed further by recent cloud orchestration schemes where containers can be seamlessly launched in large clouds, for example using the Google Container Engine. Here, the number of parallel computations X can be matched to fit the number of partitions precisely, leading to an approximate speed gain of X, ignoring the container provisioning and result collection. More elaborate non-trivial parallelisation schemes will be needed to push the boundary of computing with more heavy atoms in each molecular formula beyond the current 15–20 atom limit. The exponential explosion of the number of isomers in this region, will only allow for very moderate advances though. We also aim to integrate MAYGEN into the Chemistry Development Kit (CDK) [19] in the near future which will enable an easy integration of the molecular structure generator in other software programmatically. Furthermore, it is desirable that MAYGEN can use substructures in its input as building blocks, in order to include them as badlists or goodlists into the generation and therefore reduce the number of candidate structures to generate. This will enable its use in systems for computer-assisted structure elucidation (CASE) whose aim is to elucidate chemical structures from NMR and mass spectral data.
Conclusion
In this manuscript we presented MAYGEN, an open-source constitutional isomer generator completely written in Java. MAYGEN generates constitutional isomer spaces exhaustively and avoids isomorphic structures during the generation using the principles of orderly canonical graph generation. We presented extensive testing of MAYGEN against two alternative solutions: MAYGEN outperforms the current best open source structure generator PMG by orders of magnitude, on average 47 times faster, and is only marginally slower, on average three times, than the fastest current state-of-the-art software MOLGEN. We expect MAYGEN to be a starting point for further developments in the area of chemical structure generation by the open source, open science community.
Acknowledgements
We wish to acknowledge the helpful discussion with Dr. Roland Grund about the principles of orderly generation and the help from Valentyn Kolesnikov for the performance tuning. We also would like to thank Gulnihal Gul Mamat for designing the logo. The computational experiments were performed in single-threaded mode and on resources of Friedrich Schiller University Jena supported in part by DFG grants INST 275/334-1 FUGG and INST 275/363-1 FUGG.

Authors’ contributions
MAY developed MAYGEN, performed the evaluation and testing and made the figures. MS contributed with advice, code-review and made the figures. CS conceived the project and guided the development. All authors wrote the manuscript. All authors read and approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. MAY and CS acknowledge funding by the Carl-Zeiss-Foundation. MS was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 239748522, SFB 1127 ChemBioSys.

Data availability
Project name: MAYGEN, Project home page: https://​github.​com/​MehmetAzizYirik/​MAYGEN, Operating system(s): Platform independent, Programming language: Java, License: MIT.

Declarations
Competing interests
The authors declare that they have no competing interests.

References
	1.
Fink T, Reymond J-L (2007) Virtual exploration of the chemical universe up to 11 atoms of c, n, o, f: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47(2):342–353Crossref

	2.
Blum LC, Reymond J-L (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GSB-13. J Am Chem Soc 131(25):8732–8733Crossref

	3.
Ruddigkeit L, Van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875Crossref

	4.
Sutherland G (1967) Dendral—a computer program for generating and filtering chemical structures. Technical report, Stanford Univ Calif Dept of Computer Science

	5.
Bruccoleri RE, Karplus M (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolym Original Res Biomol 26(1):137–168

	6.
Badertscher M, Korytko A, Schulz K-P, Madison M, Munk ME, Portmann P, Junghans M, Fontana P, Pretsch E (2000) Assemble 2.0: a structure generator. Chemom Intell Lab Syst 51(1):73–79Crossref

	7.
Holt DF, Eick B, O’Brien EA (2005) Handbook of computational group theory. CRC Press, Boca RatonCrossref

	8.
Kreher DL, Stinson DR (2020) Combinatorial algorithms: generation, enumeration, and search. CRC Press, Boca RatonCrossref

	9.
Serov V, Elyashberg ME, Gribov L (1976) Mathematical synthesis and analysis of molecular structures. J Mol Struct 31(2):381–397Crossref

	10.
Molchanova MS, Shcherbukhin VV, Zefirov NS (1996) Computer generation of molecular structures by the SMOG program. J Chem Inf Comput Sci 36(4):888–899Crossref

	11.
Yirik MA, Steinbeck C (2021) Chemical graph generators. PLoS Comput Biol 17(1):1008504Crossref

	12.
Junker J (2011) Theoretical NMR correlations based structure discussion. J Cheminform 3(1):1–4Crossref

	13.
Nuzillard J-M, Georges M (1991) Logic for structure determination. Tetrahedron 47(22):3655–3664Crossref

	14.
Gugisch R, Kerber A, Kohnert A, Laue R, Meringer M, Rücker C, Wassermann A (2015) Chapter 6—molgen 5.0, a molecular structure generator. In: Basak SC, Restrepo G, Villaveces JL (eds) Advances in mathematical chemistry and applications, Chap. 6, vol 1. Bentham Science Publishers, Charjah, pp 113–138

	15.
Peironcely JE, Rojas-Chertó M, Fichera D, Reijmers T, Coulier L, Faulon J-L, Hankemeier T (2012) OMG: open molecule generator. J Cheminform 4(1):1–13Crossref

	16.
Jaghoori MM, Jongmans S-ST, De Boer F, Peironcely J, Faulon J-L, Reijmers T, Hankemeier T (2013) PMG: multi-core metabolite identification. Electron Notes Theor Comput Sci 299:53–60Crossref

	17.
Steinbeck C (2001) Seneca: a platform-independent, distributed, and parallel system for computer-assisted structure elucidation in organic chemistry. J Chem Inf Comput Sci 41(6):1500–1507Crossref

	18.
Grund R, Müller R (1995) Konstruktion Molekularer Graphen Mit Gegebenen Hybridisierungen und Überlappungsfreien Fragmenten. Lehrstuhl II für Mathematik, Bayreuth

	19.
Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, Kuhn S, Pluskal T, Rojas-Chertó M, Spjuth O et al (2017) The chemistry development kit (CDK) v2. 0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform 9(1):1–19Crossref

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

OEBPS/images/13321_2021_529_Article_TeX_IEq4.png

OEBPS/images/13321_2021_529_Article_TeX_IEq39.png

OEBPS/images/13321_2021_529_Article_TeX_IEq5.png
CsO,H6

OEBPS/images/13321_2021_529_Article_TeX_IEq6.png
CsO,H6

OEBPS/images/13321_2021_529_Article_TeX_IEq37.png
pLo

OEBPS/images/13321_2021_529_Article_TeX_IEq7.png
CsO,H6

OEBPS/images/13321_2021_529_Article_TeX_IEq38.png

OEBPS/images/13321_2021_529_Article_TeX_IEq8.png
1=2,8,16

OEBPS/images/13321_2021_529_Article_TeX_IEq9.png

OEBPS/images/13321_2021_529_Article_TeX_IEq31.png
pLo

OEBPS/images/13321_2021_529_Article_TeX_IEq138.png
C7H9BI'2C12PS

OEBPS/images/13321_2021_529_Article_TeX_IEq32.png

OEBPS/images/13321_2021_529_Article_TeX_IEq30.png
PGy

OEBPS/images/13321_2021_529_Article_TeX_IEq35.png
Si,j

OEBPS/images/13321_2021_529_Article_TeX_IEq36.png
PGy

OEBPS/images/13321_2021_529_Article_TeX_IEq33.png
A

OEBPS/images/13321_2021_529_Article_TeX_IEq34.png

OEBPS/images/13321_2021_529_Article_TeX_IEq134.png
CsHFIP;S,

OEBPS/images/13321_2021_529_Article_TeX_IEq132.png
C1Hi4O

OEBPS/images/13321_2021_529_Article_TeX_IEq133.png
CoH 1 NO

OEBPS/images/13321_2021_529_Article_TeX_IEq1.png
CioH;60

OEBPS/css/sidebar.gif

OEBPS/images/13321_2021_529_Article_TeX_IEq2.png
CioH;60

OEBPS/images/13321_2021_529_Article_TeX_IEq3.png
1,2,3,..

5P

OEBPS/images/13321_2021_529_Fig9_HTML.png
Benchmarking

= MAYGEN = PMG

== MOLGEN

WA/

1000 . \/\ \/ .

10000

aleas snuypiehol

100

10

IS8HOLD
ISYHOLD
9HZ LD
ONZHBD
ONSHBD
OTIHILD
OTIHOLD
O8LHZ1LO
ISEdHSO
O¥LIHILOD
O¥LHOLD
¥IHZLO
OTNOHLD
O0LHOLD
TSO0LHED
NELHOLD
SdSH8D
C00HED
ONSH8D
ON.H8D
dLHED
STd9HSO
OTNOHSO
TONBHLD
NSLHOLO

Molecular Formulae

OEBPS/navigation.xhtml

 Contents

 		MAYGEN: an open-source chemical structure generator for constitutional isomers based on the orderly generation principle

 Landmarks

 		Body Matter

OEBPS/images/13321_2021_529_Article_TeX_IEq48.png
A0 = (1,4

OEBPS/images/13321_2021_529_Article_TeX_IEq49.png
Sy *S 345

OEBPS/images/13321_2021_529_Article_TeX_IEq42.png

OEBPS/images/13321_2021_529_Article_TeX_IEq127.png
Ci0H140,

OEBPS/images/13321_2021_529_Article_TeX_IEq43.png

OEBPS/images/13321_2021_529_Article_TeX_IEq128.png
C5H6BI'C1FINQO

OEBPS/images/13321_2021_529_Article_TeX_IEq40.png
Fi

OEBPS/images/13321_2021_529_Article_TeX_IEq125.png
CioHia

OEBPS/images/13321_2021_529_Article_TeX_IEq41.png

OEBPS/images/13321_2021_529_Article_TeX_IEq126.png
CioHi N

OEBPS/images/13321_2021_529_Article_TeX_IEq46.png
210 — {5}

OEBPS/images/13321_2021_529_Article_TeX_IEq47.png
A0 = (1,4

OEBPS/images/13321_2021_529_Article_TeX_IEq44.png
210 — {5}

OEBPS/images/13321_2021_529_Article_TeX_IEq45.png
A0 = (1,4

OEBPS/images/13321_2021_529_Article_TeX_Equ7.png
’ .
A>A ‘= (ain,...,q1p,021,...,A2p,Ap1,.->0pp)
14 14

4 ’ ’ ’
> (al,la e o oy al,pa az,la e ooy az,p, ap,l, e ooy ap,p

OEBPS/images/13321_2021_529_Article_TeX_Equ6.png
A>An Vme S,

OEBPS/images/13321_2021_529_Article_TeX_IEq120.png
C5H5P3SQ

OEBPS/images/13321_2021_529_Article_TeX_Equ5.png
p p
d=(d,d,...,dp) Zdiisevenand Zdi >2x(p—1)

i=1 i=1

OEBPS/images/13321_2021_529_Article_TeX_Equ4.png
Aut(A) ={ne S, JAn =A}CS,

OEBPS/images/13321_2021_529_Article_TeX_Equ3.png
Sy={reS,Mi:an})=nl}cs,

OEBPS/images/13321_2021_529_Article_TeX_IEq123.png
C;HgN,O

OEBPS/images/13321_2021_529_Article_TeX_Equ2.png
i-1
_ pl A _
n —Uni whereni = Z/lj+ 1
i =1

.....

OEBPS/images/13321_2021_529_Article_TeX_IEq50.png
/l(i+1)

OEBPS/images/13321_2021_529_Article_TeX_IEq124.png
CioHsO

OEBPS/images/13321_2021_529_Article_TeX_Equ1.png
A= (A1, Ao, . ..) with Z/li —

OEBPS/images/13321_2021_529_Article_TeX_IEq17.png
(p—1)

OEBPS/images/13321_2021_529_Fig10_HTML.png
Benchmarking

== Per Structure (ms)

== Per Structure (ms)

== Per Structure (ms)

IS8HOLD
ISYHOLD
9HZID
ONZHED
ONSHBD
OTIHLLD
OTIHOLD
08LHZ1LO
TSEdHSO
OFIHLLD
O¥IHOLD
YIHZLO
OTNOHLD
00LHOLD
TSO0LHED
NELHOLD
SdSH8D
CO0LHBED
ONSH8D
ONZH8D
d./HED
STJ9HSO
OTNIHSO
CTONBHLD
NSLHOLD

01
0.05

=]
=1

0.005

3leas anuypeho) ul (sw) awig uny

Molecular Formulae

OEBPS/images/13321_2021_529_Article_TeX_IEq18.png
2x(p—1)

OEBPS/images/13321_2021_529_Article_TeX_IEq15.png
S{1,2} * S{3,4,5,6,7,8,9,10} * S{11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}

OEBPS/images/13321_2021_529_Article_TeX_IEq16.png
2x(p—1)

OEBPS/images/13321_2021_529_Article_TeX_IEq19.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq116.png
Ci2HO

OEBPS/images/13321_2021_529_Article_TeX_IEq10.png
1=2,8,16

OEBPS/images/13321_2021_529_Article_TeX_IEq117.png
CoH oS,

OEBPS/images/13321_2021_529_Article_TeX_IEq114.png
C5H5N302

OEBPS/images/13321_2021_529_Article_TeX_IEq96.png
C5H2BI'C1N202

OEBPS/images/13321_2021_529_Article_TeX_IEq115.png
CioHi3N

OEBPS/images/13321_2021_529_Article_TeX_IEq13.png
CsO,H6

OEBPS/images/13321_2021_529_Article_TeX_IEq14.png

OEBPS/images/13321_2021_529_Article_TeX_IEq11.png
{1,2} U {3,4,5,6,7,8,9,10} U {11,12,13,14,15,16,17,18,19,20,21,22,23,24, 25,26}

OEBPS/images/13321_2021_529_Article_TeX_IEq118.png
Ci1Hg

OEBPS/images/13321_2021_529_Article_TeX_IEq12.png

OEBPS/images/13321_2021_529_Article_TeX_IEq119.png
CioH;0O

OEBPS/images/13321_2021_529_Article_TeX_IEq112.png
CgH,PS

OEBPS/images/13321_2021_529_Article_TeX_IEq113.png
CgHsPS

OEBPS/images/13321_2021_529_Article_TeX_IEq111.png
CoH;pO,

OEBPS/images/13321_2021_529_Article_TeX_IEq28.png

OEBPS/images/13321_2021_529_Fige_HTML.png
> java —jar MAYGEN. jar —f C10H16

MAYGEN is generating isomers of CI10H16...
The number of structures is: 24938

Time: 1.590 seconds

OEBPS/images/13321_2021_529_Article_TeX_IEq29.png
C;0,H,4

OEBPS/images/13321_2021_529_Article_TeX_IEq26.png
8 x8

OEBPS/images/13321_2021_529_Article_TeX_IEq27.png

OEBPS/images/13321_2021_529_Figb_HTML.png
1 Procedure: Updating the automorphism list and maximality check

1

2

If the row i is maximal and equal to the permuted row, the permutation is added to the
automorphism list;
If the row i is maximal but not equal to the permuted row, an automorphism is searched in its
Young subgroup
(a) If there is such an automorphism, the permutation is added to the automorphisms list;
(b) Else, the automorphism is ignored and not added to the list.
If the original row i is smaller than the permuted matrix, the tested candidate molecule is not
canonical. The canonical test is then terminated.

OEBPS/images/13321_2021_529_Article_TeX_IEq20.png
6X%X6

OEBPS/images/13321_2021_529_Article_TeX_IEq21.png
12x 12

OEBPS/images/13321_2021_529_Article_TeX_IEq103.png
CsH,FIO,P,

OEBPS/images/13321_2021_529_Article_TeX_IEq24.png
v=1[4,4,44,4,42211111L1]

OEBPS/images/13321_2021_529_Article_TeX_IEq25.png
A =16,2}

OEBPS/images/13321_2021_529_Article_TeX_IEq22.png
pXp

OEBPS/images/13321_2021_529_Article_TeX_IEq107.png
CsHsNO

OEBPS/images/13321_2021_529_Article_TeX_IEq23.png
CsO,Hg

OEBPS/images/13321_2021_529_Article_TeX_IEq108.png
CioHi6S2

OEBPS/images/13321_2021_529_Fig1_HTML.png
(o]

Hac/\/\on\/\CH

Butyl butyrate

3

[o]

Hac/\/\/\)j\m_|

Octanoic acid

HO.

OH

1,4-Cyclohexanedimethanol

HyC

/Q.J\‘:.L\

Valproic acid

CH,

OEBPS/images/13321_2021_529_Fig4_HTML.png
Molecular formula

Hydrogen Distributor

v

Set block index
i=1

Maximum Filling

> Smaller Filling

> Filling

——yes—>

i=0

no

Termination
check

Canonical Test

Is Canonical?

no

‘yes&i#p

yes&i=p

Store in SDFile

OEBPS/images/13321_2021_529_Article_TeX_Equ10.png
F(l) = {T € F(i_l)lT * g(l,])} 1 <] < /liz_l

OEBPS/images/13321_2021_529_Article_TeX_IEq101.png
Ci1Hio

OEBPS/images/13321_2021_529_Article_TeX_IEq102.png
CsH;NO

OEBPS/images/13321_2021_529_Article_TeX_IEq100.png
CyH,P

OEBPS/images/13321_2021_529_Article_TeX_Equ12.png
A°=(3,2) A'={1,2,2} Cycles: (1,1),(1,2),(1,3)

AV =(1,2,2) A*={1,1,1,2} Cycles: (2,2),(2,3)
A2 =(1,1,1,2) A*={1,1,1,2} Cycles: (3,3)
A ={1,1,1,2) 2*={1,1,1,1} Cycles: (4,4),(4,5)

OEBPS/images/13321_2021_529_Article_TeX_Equ11.png
AV =1{3,2}

A =1{1,2,2}
22 ={1,1,1,2)
2 ={1,1,1,2
A ={1,1,1,1}

OEBPS/images/13321_2021_529_Fig7_HTML.png
(b)

(a)

031000

300010

100101

001011

010100
001100

OEBPS/images/13321_2021_529_Article_TeX_Equ13.png
Refined partition A% = {1,4} - A[1] = [0]2, 1,1,0]
— Updated partition AV = {1, 1,2, 1}

OEBPS/images/13321_2021_529_Article_TeX_IEq75.png
CsHFIN;O

OEBPS/images/13321_2021_529_Article_TeX_IEq76.png
C;H9NO,

OEBPS/images/13321_2021_529_Article_TeX_IEq73.png
1 =11,2,5}

OEBPS/images/13321_2021_529_Article_TeX_IEq74.png
CioHsN

OEBPS/images/13321_2021_529_Article_TeX_IEq79.png
CoH7N

OEBPS/images/13321_2021_529_Article_TeX_IEq77.png
CoH 20,

OEBPS/images/13321_2021_529_Article_TeX_IEq78.png
C5H6N203

OEBPS/images/13321_2021_529_Figc_HTML.png
> java —jar MAYGEN. jar

usage: java —jar MAYGEN. jar —f <arg> [—v] [—d <arg>]

OEBPS/images/13321_2021_529_Article_TeX_IEq82.png
C7H;004

OEBPS/images/13321_2021_529_Article_TeX_IEq83.png
C;HgOq4

OEBPS/images/13321_2021_529_Article_TeX_IEq80.png
C5H2BI'C1N202

OEBPS/images/13321_2021_529_Article_TeX_IEq81.png
CsH;0O3

OEBPS/images/13321_2021_529_Fig5_HTML.png
@)

OO0 ™ = O
- O
O
AN AN - O
_00110
G
S
[=
S =
s =
o
8 —
o =
W.A
S
—
OO0 ™ ™ O
e - O
O —
N O - - O
_02110
s\
2
@
Q
£
<)
O

Updated matrix

Initial matix

Ol - O
- O
— OO
AN AN O ™~
.00110
=«

s <

c %

° =

s 8

T Tk

c =

o =

2

[$]

& 7
_01110
- O
— OO
NO O ™™ ™
O N - - O

(b)

ComparisonJ

()

02110
02110
10011
11101
01110

*(1,2)(3,5)

B[

Permutation

02110
02011
1 00 1 1(,m
11101
01110

Cycle action

0 011
0011

Comparsﬁo 2110

11101
01110

2
1

OEBPS/images/13321_2021_529_Article_TeX_IEq84.png
CioHsN

OEBPS/images/13321_2021_529_Article_TeX_IEq85.png
CsHFIN;O

OEBPS/images/13321_2021_529_Fig3_HTML.png
A

OEBPS/images/13321_2021_529_Fig6_HTML.png
l

O OlH - O
— O
D M M
AN O M-~ O
O N O - O
| e —
gls
S|
HES
=zluw
s|&
= K2
o<
Qe
I
&
s n——

Q
J

(=)
— |
— -
N o
(e=iia)}

11301
00310

0113

Cycle action
= C[1] #C[1]*(1,3)

20110
11301
00310

?

Comparison 02110

OEBPS/images/13321_2021_529_Article_TeX_IEq89.png
C;H9NO,

OEBPS/images/13321_2021_529_Article_TeX_IEq163.png
CioHsgS»

OEBPS/images/13321_2021_529_Article_TeX_IEq90.png
CoH 20,

OEBPS/images/13321_2021_529_Article_TeX_IEq93.png
C5H6P233

OEBPS/css/envelope.png

OEBPS/images/13321_2021_529_Article_TeX_IEq91.png
CsHgN,O3

OEBPS/images/13321_2021_529_Article_TeX_IEq92.png
CoH7N

OEBPS/images/13321_2021_529_Article_TeX_IEq166.png
CioHeS2

OEBPS/images/13321_2021_529_Figa_HTML.png
Algorithm 1: MAYGEN algorithm

Input: Molecular formula with p non-hydrogen atoms
Output: SDF file with molecular structures

Step 1: Perform hydrogen distribution
Step 2: First the block index i is set, 2 = 1; go to step 4.
Step 3: if ¢ = 0 then the procedure stops else go to step 5
Step 4: Maximum filling
Fill the strip A(z) in lexicographic order depending on the valences.
if no more fillings exist then
1 seti=(1—1)
2 go to step 3
else go to step 6
Step 5: Smaller filling
Fill the strip A(z) in a reverse lexicographic order depending on the valences.
if no more fillings exist then
1 seti=(1—1)
2 go to step 3
else go to step 6
Step 6: Canonical Test
if A7) > A(i)w for all ©m € Aut(A) then A(7) is canonical
if ¢+ = p then
(a) canonical matrix is complete
(b) store in output SDF file
(c) gotostep 5
else
(a) update Aut(A)
(b) seti=(:+1)
(c) go to step 4
else go to step 5

OEBPS/images/13321_2021_529_Article_TeX_IEq160.png
Ci1HjpS

OEBPS/images/13321_2021_529_Figd_HTML.png
—f,——formula <arg> formula (required)

—v,——verbose print message

—t,——tsvoutput output formula, number of structures
and execution time in CSV format

—d,——filedir <arg> store output in given file

OEBPS/images/13321_2021_529_Article_TeX_IEq59.png
A0 = (1,4

OEBPS/images/13321_2021_529_Article_TeX_IEq53.png

OEBPS/images/13321_2021_529_Article_TeX_IEq54.png
/l(i+1)

OEBPS/images/13321_2021_529_Fig8_HTML.png
()

|

030010
300010
000201
002001
110000
001100

|

OEBPS/images/13321_2021_529_Article_TeX_IEq51.png

OEBPS/images/13321_2021_529_Article_TeX_IEq52.png

OEBPS/images/13321_2021_529_Article_TeX_IEq57.png
A0 = (1,4

OEBPS/images/13321_2021_529_Article_TeX_IEq58.png
210 — {5}

OEBPS/images/13321_2021_529_Article_TeX_Equ9.png
i—1

AT .. .
S/li—l :Ujl:i(l,])S/li,l: 1,,p—1

OEBPS/images/13321_2021_529_Article_TeX_IEq55.png
pLo

OEBPS/images/13321_2021_529_Article_TeX_Equ8.png
A0 =

(1., 1,1, A~ 1,2

i-1

(i=1)
a,..,1,1,2%

i-1

(1)

i+1 >

) if A > 1

if A7V =1

OEBPS/images/13321_2021_529_Article_TeX_IEq56.png

OEBPS/images/13321_2021_529_Article_TeX_IEq152.png
CioHy

OEBPS/images/13321_2021_529_Article_TeX_IEq153.png
CoH;NO

OEBPS/images/13321_2021_529_Article_TeX_IEq150.png
Ci2Hio

OEBPS/images/13321_2021_529_Article_TeX_IEq151.png
CoHsNO

OEBPS/images/13321_2021_529_Article_TeX_IEq60.png
n=(2,4)3,5) €Su *Spns34s)

OEBPS/images/13321_2021_529_Article_TeX_IEq156.png
Ci1H0O

OEBPS/images/13321_2021_529_Article_TeX_IEq61.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq157.png
CioHsS,

OEBPS/images/13321_2021_529_Article_TeX_IEq154.png
CioHg

OEBPS/images/13321_2021_529_Article_TeX_IEq155.png
Ci2He

OEBPS/images/13321_2021_529_Fig2_HTML.png
Initial degrees and initial [4,4,4,4,4,4]|| {6}
partition C J

Hydrogen distribution ‘ [0,0,0,0,3,3] ‘ ‘ [0,0,0,2,2,2] ‘ | [0,0,0,1,2,3] | ‘ [ORONIIS252] ‘ ‘ [0,0,1,1,1,3] ‘ ‘ [OOSR RN2] ‘ ‘ (11l s, 1l s Ty 5] ‘

Nowdogroesandnow [B444 11| [waa222 [wess2n [wess22] wasss [wesssa [3335a)]

partition @2 6.3 6,1,1, 1} 2,2,2) {2,3,1} 1,4, 1}

OEBPS/images/13321_2021_529_Article_TeX_IEq64.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq149.png
C1Hx,O

OEBPS/images/13321_2021_529_Article_TeX_IEq65.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq62.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq147.png
CioH120;

OEBPS/images/13321_2021_529_Article_TeX_IEq63.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq148.png
CoHyNO

OEBPS/images/13321_2021_529_Article_TeX_IEq68.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq69.png
1 =11,2,5}

OEBPS/images/13321_2021_529_Article_TeX_IEq66.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq67.png
CeHg

OEBPS/images/13321_2021_529_Article_TeX_IEq142.png
CoH ;30

OEBPS/images/13321_2021_529_Article_TeX_IEq71.png

OEBPS/images/13321_2021_529_Article_TeX_IEq72.png
1 =11,2,5}

OEBPS/images/13321_2021_529_Article_TeX_IEq143.png
C9H12F2128

OEBPS/images/13321_2021_529_Article_TeX_IEq70.png
$2 =1{3,4,6}

