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Abstract
Motivation
The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs plays a key role in determining which among the potential candidates are to be prioritized. In silico approaches based on machine learning methods are becoming increasing popular, but are nonetheless limited by the availability of data. With a view to making both data and models available to the scientific community, we have developed FPADMET which is a repository of molecular fingerprint-based predictive models for ADMET properties.

Summary
In this article, we have examined the efficacy of fingerprint-based machine learning models for a large number of ADMET-related properties. The predictive ability of a set of 20 different binary fingerprints (based on substructure keys, atom pairs, local path environments, as well as custom fingerprints such as all-shortest paths) for over 50 ADMET and ADMET-related endpoints have been evaluated as part of the study. We find that for a majority of the properties, fingerprint-based random forest models yield comparable or better performance compared with traditional 2D/3D molecular descriptors.

Availability
The models are made available as part of open access software that can be downloaded from https://​gitlab.​com/​vishsoft/​fpadmet.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13321-021-00557-5.
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Introduction
Properties such as absorption, distribution, metabolism, excretion and toxicity (ADMET), are an important component of pharmaceutical drug design. It is often reported that the failure to meet requisite ADMET criteria are a common cause for the high attrition rates of drug candidates [1]. Early ADMET profiling is indeed desirable so as to mitigate the risk of attrition. Various medium and high-throughput in vitro ADMET screens have therefore been developed, that have contributed to the available experimental data. These are nonetheless quite expensive especially when thousands of compounds are involved. Furthermore, reducing animal testing has now become a priority.
With the aim of facilitating rapid and inexpensive means of ADMET profiling, various in silico tools have been developed [2]. Using databases of experimentally measured ADMET properties [3], various quantitative structure-activity/property relationship (QSAR/QSPR) models have been generated that can predict a range of ADMET properties for novel chemical entities. Other efforts have made use of ADMET predictions to evaluate drug-likeness of a compound [4, 5]. While some of the models are available as part of commercial software packages based on proprietary datasets, there has been a significant push for open source software and web services [6–12].
Among the popular services, ADMETLab [12] offers 53 prediction models that are calculated using a multi-task graph attention network and operates on graph-structured data. The method is able to generate customized fingerprints from the general features for a specific task. Another web tool, SwissADME [9] evaluates pharmacokinetics, drug-likeness of small molecules. The predictions are based on a combination of fragmental methods (for solubility), as well as machine-learning based binary classification methods for other ADMET properties (cytochrome-P450 inhibitor, P-glycoprotein substrate). In ADMETSar [11], models for applications in both drug discovery and environmental risk assessment are built using MACCS and Morgan fingerprints. The toxicity models used in ProTox [13] are developed based on chemical similarities between compounds with known toxic effects and the presence of toxic fragments. Other models for hepatotoxicity, cytotoxicity, mutagenicity, and carcinogenicity rely on fingerprints (MACCS/Morgan). Extended connectivity fingerprints form the basis for the prediction of 15 ADMET properties in the vNN server [10] where models are trained using variable nearest neighbourhood method. pkCSM [6], on the other hand, uses graph-based signatures to develop predictive models of central ADMET properties. Other software such as MDCKPred [14], CarcinoPred-EL [15], CapsCarcino [16] focus on a single property such as the prediction of permeability coefficient and carcinogenic compounds. Overall, the molecular representations underlying these models include various molecular and physicochemical descriptors such as fingerprints, graph signatures, and other 2D/3D indices [17, 18]. Among these, fingerprint representations which are seen as an alternative to descriptors for QSPR studies, have been quite popular given their ease of computation and predictive value.
A number of fingerprints ranging from substructure/path to feature-class/circular have been proposed many of which are used in similarity searching [19, 20]. For ADMET studies however, the fingerprints studied so far have largely been restricted to a select few. In this study, we have evaluated the predictive efficacy of 20 different fingerprints ranging from substructure and extended/functional connectivity fingerprints to various path based encodings (depth-first search, shortest path, local path environments) [21]. The fingerprint-based regression/classification models were calculated for over 50 ADMET and ADMET-related endpoints (using data collated from various literature sources) and is to our knowledge one of the most comprehensive compilations analysed. For a majority of the endpoints, the prediction results were found to be comparable with more sophisticated descriptor formulations. Although the pharmacophore fingerprints yielded consistently poor results, others such as the PUBCHEM, MACCS and ECFP/FCFP encodings were found to yield the best results for most properties. The models and related software have been bundled into a downloadable package and is released under the GNU license.
Approach
Molecular representation
In this study, we have examined 20 different fingerprints (see Table 1) that are routinely used as similarity search tools in drug discovery. The ECFP- and FCFP-class fingerprints are circular topological fingerprints, where the former focuses on the atom properties (e.g. atomic number, charge, hydrogen count), whereas in the functional connectivity FPs, the emphasis is on properties that relate to ligand binding (e.g. hydrogen donor/acceptor, polarity, aromaticity). MACCS and PUBCHEM fingerprints are substructure fingerprints that cover a wide range of features such as element counts and ring systems, atom pairing, or atom environment etc. Other fingerprints include path based fingerprints such as the depth-first search fingerprints (DFS), all-shortest path encoding (ASP), radial fingerprints (Molprint2D), topological atom pairs (AP2D) and triplets (AT2D), pharmacophore pair and triplet encodings as well as local path environments [21]. Fingerprint calculations were performed using in-house code written in Java and makes use of the Chemistry Development Kit library [22]. The software merges existing fingerprints in the library with those calculated by the software jCompoundMapper [21].Table 1Fingerprints used in this study to model different ADMET related properties


	Fingerprint
	Size

	MACCS
	166

	PUBCHEM
	881

	Klekota-Roth (KR)
	4860

	MOLPRINT (RAD2D)
	4096

	Atom pair (AP), atom triplet (AT)
	4096

	Local path environments (LSTAR)
	4096

	All-shortest path (ASP)
	4096

	Depth first search (DFS)
	4096

	Extended conectivity (ECFP: 0, 2, 4, 6)
	1024

	Functional class (FCFP: 0, 2, 4, 6)
	1024

	Pharmacophore: 2PPHAR/3PPHAR (2/3 point)
	4096

	ESTATE
	79


Descriptions and implementation details of the different fingerprints are provided in the article by Hinselmann et al [21] and the references therein



Data curation
Data for different endpoints were collected from previously published articles and databases with a primary source being the Online Chemical Database (OCHEM) [3]. The molecules were subsequently cleaned and duplicates (where present) were removed. Tables 2 and 3 lists the various endpoints and associated data sources considered in this study. Brief descriptions of the endpoints and the results from previous modelling efforts are provided in Additional file 1. Since, early identification of severe toxicity is a key requirement for the safety evaluation of drug candidates, we have evaluated a number of toxicity models covering a range of endpoints such as cardiac, hepatotoxicity, endocrine, urinary tract, carcinogenicity and cytotoxicity. While a majority of the models are binary classification models, for some endpoints such the metabolic intrinsic clearance, acute oral toxicity in rats, plasma protein binding and elimination half-life, multiclass models are proposed.Table 2Summary of the ADMET endpoints studied


	Endpoint
	Model
	#Compounds
	Group
	Data source

	Blood brain barrier
	BC
	7236
	Distribution
	[3, 31]

	Oral bioavailability
	BC
	1822
	Absorption
	[3, 32]

	Anticommensal effect
	BC
	1181
	Toxicity
	[33, 34]

	CYP450 (1A2) inhibition
	BC
	17119
	Metabolism
	[35]

	CYP450 (2C19) inhibition
	BC
	17119
	Metabolism
	[35]

	CYP450 (2C9) inhibition
	BC
	17119
	Metabolism
	[35]

	CYP450 (2D6) inhibition
	BC
	17119
	Metabolism
	[35]

	CYP450 (3A4) inhibition
	BC
	17119
	Metabolism
	[35]

	CYP450 (2C8) inhibition
	BC
	533
	Metabolism
	[36]

	HIA
	BC
	1516
	Absorption
	[3, 37]

	BCRP inhibition
	BC
	2799
	Metabolism
	[38]

	Metabolic intrinsic clearance
	MC
	5278
	Excretion
	[39]

	Human liver microsomal stability
	BC
	3654
	 	[40]

	PGP inhibitor
	BC
	2930
	Distribution
	[3, 41]

	PGP substrate
	BC
	2198
	Distribution
	[3, 41]

	DMSO solubility
	BC
	59047
	 	[42]

	Phosphate buffer solubility
	BC
	57584
	 	[43]

	Skin sensitization (LLNA)
	BC
	1033
	Toxicity
	[44]

	Skin sensitization (KeratinSens)
	BC
	190
	Toxicity
	[44]

	Skin sensitization (HRIPT)
	BC
	138
	Toxicity
	[44]

	Skin sensitization (h-CLAT)
	BC
	160
	Toxicity
	[44]

	Skin sensitization (DPRA)
	BC
	194
	Toxicity
	[44]

	Rat acute oral toxicity ([image: $$\text {LD}_{{50}}$$])
	MC
	11363
	Toxicity
	[3, 45]

	AMES mutagenecity
	BC
	7950
	Toxicity
	[46]

	Cytotoxicity (HepG2)
	BC
	6081
	Toxicity
	[10]

	Cytotoxicity (CRL-7250 cell line)
	BC
	5241
	Toxicity
	[47]

	Cytotoxicity (HACAT cell line)
	BC
	5241
	Toxicity
	[47]

	Cytotoxicity (HEK cell line)
	BC
	5241
	Toxicity
	[47]

	Cytotoxicity (NIK cell line)
	BC
	5241
	Toxicity
	[47]

	DILI
	BC
	2478
	Toxicity
	[48]

	Hemolytic toxicity (saponins)
	BC
	452
	Toxicity
	[49]

	hERG cardiotoxicity
	BC
	7889
	Toxicity
	[50]

	hERG liability
	BC
	9204
	 	[51]

	Mitochondrial toxicity
	BC
	6467
	Toxicity
	[52]

	Urinary tract toxicity
	BC
	213
	Toxicity
	[53, 54]

	Phototoxicity
	BC
	516
	Toxicity
	[55]

	Phototoxicity
	BC
	1419
	Toxicity
	[55]

	Toxic myopathy
	BC
	232
	Toxicity
	[56]

	Myelotoxicity
	BC
	907
	Toxicity
	[57]

	Phospholipidosis
	BC
	1719
	Toxicity
	[58]

	Choleostasis
	BC
	1926
	Toxicity
	[59]

	Rhabdomyolysis
	BC
	1504
	Toxicity
	[60]

	Respiratory toxicity
	BC
	1241
	Toxicity
	[61]

	Ototoxicity
	BC
	2612
	Toxicity
	[62]

	MATE1 inhibition
	BC
	853
	Metabolism
	[63]

	Hepatic steatosis
	BC
	512
	Toxicity
	[64]

	Carcinogenecity
	BC
	1003
	Toxicity
	[15]

	OATP1B1 inhibition
	BC
	1339
	Metabolism
	[65]

	OATP2B1 inhibition
	BC
	230
	Metabolism
	[65]

	OATP1B3 inhibition
	BC
	1249
	Metabolism
	[65]

	BSEP inhibition
	BC
	1634
	Metabolism
	[66]

	OCT2 inhibition
	BC
	907
	Metabolism
	[67]

	PPB
	MC
	8103
	Distribution
	[3, 68]

	Elimination half-life Human
	MC
	2127
	Excretion
	[69]

	Elimination half-life Mouse
	MC
	808
	Excretion
	[69]

	Elimination half-life Rat
	MC
	1308
	Excretion
	[69]


Here BC and MC refer to binary and multiclass classification respectively
OATP organic anion transporting polypeptide, CYP-450 cytochrome-P450, BCRP breast cancer resistance protein, BSEP bile salt export pump, DILI drug-induced liver injury, OCT organic cation transporter 2, MATE1 multidrug toxin extrusion transporter, hERG human Ether-á-go-go-related gene, HIA human intestinal absorption, PPB plasma protein binding, PGP p-glycoprotein, LLNA local lymph node assay, DPRA direct peptide reactivity assay, h-CLAT human cell line activation, HRIPT human repeat insult patch test, HEK 293 human embryonic kidney 293 cell, MATE1 multidrug and toxin extrusion transporter 1


Table 3Summary of the ADMET and other endpoints for which fingerprint-based regression models were evaluated


	Endpoint
	#Compounds
	Group
	Data source

	Aqueous solubility ([image: $$\log$$]S)
	9982
	 	[70]

	Intrinsic clearance ([image: $$CL_{int}$$])
	244
	Excretion
	[71]

	Skin penetration ([image: $$\log \ k_p$$])
	211
	Toxicity
	[72]

	Human serum albumin
	198
	 	[73, 74]

	Human placenta barrier (clearance index)
	88
	Distribution
	[75]

	Cancer potency in mouse ([image: $$\text {TD}_{{50}}$$])
	402
	Toxicity
	[76]

	Cancer potency in rat ([image: $$\text {TD}_{{50}}$$])
	511
	Toxicity
	[76]

	Steady state volume distribution ([image: $$\text {VD}_{{ss}}$$])
	1951
	Distribution
	[3, 77]

	Distribution coefficient ([image: $$\log$$] D)
	7321
	 	[3, 78]

	Fraction unbound in human plasma
	2319
	Distribution
	[79]

	Fraction unbound in the brain
	253
	Distribution
	[80]

	Human liver microsomal clearance
	5348
	Excretion
	[30]

	Rat liver microsomal clearance
	2166
	Excretion
	[30]

	Mouse liver microsomal clearance
	790
	Excretion
	[30]

	CACO-2 permeability
	2578
	Absorption
	[30]

	[image: $$\text {pK}_a$$]
	11041
	 	[81, 82]

	MDCK cell line permeability
	701
	Absorption
	[3]

	Human renal clearance ([image: $${CL}_r$$])
	636
	Excretion
	[83]

	Hemolytic toxicity ([image: $$\log HD_{50}$$])
	875
	Toxicity
	[84]


MDCK Madin-Darby canine kidney



For other endpoints, regression models have been evaluated (see Table 3). These include the CACO-2 permeability which is commonly used to predict the absorption of orally administered drugs and other xenobiotics, the fraction of unbound drug in plasma, the liver microsomal clearance (typically used to predict hepatic clearance in humans), in vitro human skin permeability and the cancer potency. Models for other ADMET-related properties have also been studied. For instance, properties such as the dissociation constant ([image: $$\text {pK}_a$$]) affect solubility ([image: $$\log$$] S), permeability, distribution coefficient ([image: $$\log$$] D) and oral absorption. These in turn along with other properties such as the human serum albumin (HSA) binding impact pharmacokinetic behaviour and drug bioavailability.
Modelling
In order to build the models, the Random Forest algorithm [23] was chosen which is an ensemble learning method for both classification and regression. The algorithm makes use of bagging and feature randomness to build multiple decision trees (each trained on a random subset of data) and merges them together. The models were trained using the ranger [24] library in the statistical computing environment R [25]. The number of trees used to compute the final average predicted value was set to 500. For each endpoint, the data was split randomly into separate training (80%) and test (20%) sets. A fivefold cross-validation was used to identify the best performing model. In order to rule out any selection bias, we repeated random splitting 3 times and the results were averaged to gain an understanding of the variability. Furthermore, y-randomization tests were conducted to assess the robustness of the final model. To address the problem with unequal distribution of samples between classes, data augmentation of the minority class was carried out using the synthetic minority oversampling technique (SMOTE) [26].
For regression models, the performance was assessed using the squared regression coefficient ([image: $$R^2$$]) for the correlation between experimental and predicted values. the root mean squared error (RMSE) and the mean absolute error (MAE). For classification models, metrics that are sensitive to the class imbalance have been used. These include the balanced accuracy (BACC) given by:[image: $$BACC = \frac{1}{m} \sum _i^m \frac{k_i}{n_i}$$]

 (1)


where [image: $$k_i$$] is the number of correct predictions in class i, m is the number of classes and [image: $$n_i$$] is the number of examples in class i. In addition, other metrics such as the overall accuracy, the sensitivity (the true positive rate—TPR) and specificity (the true negative rate—TNR) and the area under the curve (AUC) are also reported (see Additional file 1).
Every model has a finite applicability domain (AD) within which its predictions can be trusted. For regression models, we quantify the prediction intervals (95%) using the quantile regression forests approach [27]. Here, a shorter prediction interval indicates the higher stability of prediction. In the case of classification, two values: confidence and credibility are associated with the predicted label based on the conformal prediction framework [28, 29]. While the confidence provides a measure of how likely a prediction is compared to all other possible classifications, the credibility measure (equal to the highest p-value of any one of the possible classifications being the true label) provides an indication of how good the training set is for classifying the given example.
Results and discussion
For the various endpoints, the relevant performance metrics associated with the best fingerprint-based models are summarized in Tables 4 (for classification models) and 5 (for regression models). The complete performance summary for the training and validations sets is listed in Additional file 1: Tables S1 and S2. For all cases, permutation tests confirmed (p-values < 0.001) that the probability that the model was obtained by chance is quite low. Overall, high classification accuracies ([image: $$BACC &gt; 0.80$$]) are obtained for the blood brain barrier permeability, plasma protein binding, CYP450 inhibition (3A4/2C19/1A2/2C9/2C8 isoforms), human intestinal absorption, breast cancer resistance protein inhibition, p-glycoprotein inhibitor/substrate and hemolytic/respiratory toxicity. For some of the other endpoints such as the mitochondrial/urinary tract toxicity, human liver microsomal stability, metabolic intrinsic clearance, AMES mutagenecity, cytotoxicity (multiple cell lines), hERG cardiotoxicity/liability, drug induced liver injury, myelotoxicity, phospholipidosis, rhabdomyolysis, OATP1B1/OATP1B3 inhibition, BSEP and OCT2 inhibition, moderate ([image: $$BACC = 0.71 \;\text{to}\; -0.78$$]) performances were observed. Properties such as skin sensitization, acute oral toxicity, phototoxicity in humans, ototoxicity, choleostasis, hepatic steatosis, and carcinogenecity yielded somewhat average results. In the case of regression models, performances were largely on the poorer side with the exception of [image: $$\text {pK}_a$$], [image: $$\log$$] S, [image: $$\log$$] D, human serum albumin and skin penetration, [image: $$R^2_{cv} &gt; 0.70$$].Table 4Performance metrics for the best performing fingerprint-based classification models


	Endpoint
	FP
	Calibration
	Validation

	BACC
	AUC
	BACC
	AUC

	Blood brain barrier
	PUBCHEM
	0.82
	0.90
	0.81
	0.92

	Oral bioavailability
	PUBCHEM
	0.71
	0.77
	0.71
	0.78

	Anticommensal effect
	PUBCHEM
	0.76
	0.82
	0.74
	0.81

	CYP450 (1A2)
	PUBCHEM
	0.85
	0.93
	0.85
	0.93

	CYP450 (2C19)
	ECFP4
	0.81
	0.88
	0.81
	0.89

	CYP450 (2C9)
	PUBCHEM
	0.78
	0.88
	0.79
	0.89

	CYP450 (2D6)
	FCFP4
	0.73
	0.86
	0.73
	0.87

	CYP450 (3A4)
	FCFP6
	0.80
	0.89
	0.80
	0.90

	CYP450 (2C8)
	PUBCHEM
	0.79
	0.89
	0.77
	0.90

	HIA
	MACCS
	0.84
	0.89
	0.83
	0.89

	BCRP inhibition
	FCFP4
	0.89
	0.95
	0.90
	0.96

	Metabolic intrinsic clearance
	FCFP4
	0.74
	0.82
	0.74
	0.84

	Human liver microsomal stability
	AT2D
	0.77
	0.83
	0.77
	0.84

	PGP inhibitor
	PUBCHEM
	0.84
	0.91
	0.85
	0.92

	PGP substrate
	ASP
	0.80
	0.87
	0.80
	0.88

	DMSO solubility
	ECFP2
	0.72
	0.78
	0.73
	0.80

	Phosphate buffer solubility
	PUBCHEM
	0.79
	0.87
	0.79
	0.87

	Skin sensitization (LLNA)
	PUBCHEM
	0.69
	0.76
	0.67
	0.74

	Skin sensitization (KeratinSens)
	LSTAR
	0.64
	0.65
	0.57
	0.60

	Skin sensitization (HRIPT)
	ECFP0
	0.70
	0.74
	0.67
	0.72

	Skin sensitization (hCLAT)
	MACCS
	0.65
	0.70
	0.61
	0.68

	Skin sensitization (DPRA)
	FCFP4
	0.68
	0.72
	0.68
	0.72

	Rat acute oral toxicity ([image: $$\text {LD}_{{50}}$$])
	PUBCHEM
	0.69
	0.78
	0.68
	0.81

	AMES mutagenecity
	PUBCHEM
	0.79
	0.86
	0.79
	0.87

	Cytotoxicity (HepG2)
	AT2D
	0.78
	0.85
	0.78
	0.85

	Cytotoxicity (CRL-7250 cell line)
	AT2D
	0.79
	0.87
	0.78
	0.86

	Cytotoxicity (HACAT cell line)
	AT2D
	0.77
	0.85
	0.77
	0.85

	Cytotoxicity (HEK cell line)
	PUBCHEM
	0.77
	0.87
	0.76
	0.86

	Cytotoxicity (NIK cell line)
	PUBCHEM
	0.78
	0.87
	0.78
	0.87

	DILI
	PUBCHEM
	0.78
	0.86
	0.79
	0.88

	Hemolytic toxicity (saponins)
	FCFP6
	0.84
	0.88
	0.85
	0.90

	hERG cardiotoxicity
	FCFP6
	0.79
	0.86
	0.80
	0.88

	hERG liability
	PUBCHEM
	0.76
	0.87
	0.76
	0.88

	Mitochondrial toxicity
	PUBCHEM
	0.79
	0.90
	0.77
	0.90

	Urinary tract toxicity
	FCFP4
	0.71
	0.77
	0.70
	0.73

	Phototoxicity in vitro
	KR
	0.70
	0.76
	0.69
	0.80

	Phototoxicity human
	PUBCHEM
	0.69
	0.75
	0.67
	0.75

	Toxic myopathy
	DFS
	0.68
	0.74
	0.63
	0.74

	Myelotoxicity
	FCFP4
	0.72
	0.79
	0.71
	0.80

	phospholipidosis
	FCFP2
	0.78
	0.86
	0.77
	0.88

	Cholestasis
	RAD2D
	0.67
	0.73
	0.67
	0.74

	Rhabdomyolysis
	MACCS
	0.71
	0.80
	0.70
	0.83

	Respiratory toxicity
	MACCS
	0.82
	0.88
	0.82
	0.89

	Ototoxicity
	PUBCHEM
	0.69
	0.74
	0.67
	0.72

	MATE1
	DFS
	0.64
	0.67
	0.65
	0.65

	Hepatic steatosis
	MACCS
	0.63
	0.67
	0.59
	0.68

	Carcinogenecity
	PUBCHEM
	0.67
	0.71
	0.68
	0.75

	OATP1B1 inhibition
	ECFP6
	0.72
	0.80
	0.73
	0.82

	OATP2B1 inhibition
	ECFP6
	0.67
	0.68
	0.65
	0.70

	OATP1B3 inhibition
	PUBCHEM
	0.74
	0.83
	0.77
	0.87

	BSEP inhibition
	ECFP4
	0.85
	0.93
	0.88
	0.95

	OCT2 inhibition
	PUBCHEM
	0.73
	0.81
	0.73
	0.79

	PPB
	PUBCHEM
	0.82
	0.92
	0.84
	0.92

	Elimination half-life Human
	ASP
	0.75
	0.86
	0.76
	0.88

	Elimination half-life Mouse
	ECFP2
	0.74
	0.86
	0.72
	0.84

	Elimination half-life Rat
	KR
	0.74
	0.86
	0.74
	0.83


The values reported are the balanced accuracies (BACC) and area under the ROC curve (AUC) (average of 3 independent runs) for the calibration/validation sets


Table 5Performance metrics for the best performing fingerprint-based regression models


	Endpoint
	FP
	Calibration
	Validation

	R2
	RMSE
	MAE
	R2
	RMSE
	MAE

	[image: $$\log \ S$$]
	PUBCHEM
	0.77
	1.15
	0.81
	0.78
	1.12
	0.78

	Intrinsic clearance ([image: $$CL_{int}$$])
	RAD2D
	0.48
	0.83
	0.65
	0.29
	1.02
	0.82

	Skin penetration ([image: $$\log \ k_p$$])
	PUBCHEM
	0.73
	0.60
	0.48
	0.75
	0.56
	0.43

	Human serum albumin
	AP2D
	0.71
	0.33
	0.23
	0.69
	0.39
	0.26

	Human placenta barrier
	KR
	0.41
	0.24
	0.20
	0.24
	0.32
	0.22

	Cancer potency in mouse ([image: $$TD_{50}$$])
	AT2D
	0.33
	0.98
	0.75
	0.27
	0.96
	0.72

	Cancer potency in rat ([image: $$TD_{50}$$])
	AT2D
	0.41
	1.08
	0.83
	0.35
	1.14
	0.87

	Steady state volume distribution ([image: $$VD_{ss}$$])
	ASP
	0.58
	0.44
	0.29
	0.45
	0.51
	0.32

	Distribution coefficient ([image: $$\log \ D$$])
	PUBCHEM
	0.76
	0.73
	0.53
	0.77
	0.71
	0.50

	Fraction unbound in human plasma
	PUBCHEM
	0.60
	0.46
	0.35
	0.63
	0.44
	0.34

	Fraction unbound in the brain
	PUBCHEM
	0.48
	0.58
	0.46
	0.56
	0.56
	0.45

	Human liver microsomal clearance
	KR
	0.51
	1.08
	0.80
	0.56
	1.05
	0.79

	Mouse liver microsomal clearance
	AT2D
	0.52
	1.21
	0.92
	0.53
	1.16
	0.88

	Rat liver microsomal clearance
	KR
	0.64
	1.08
	0.83
	0.67
	1.01
	0.76

	CACO-2 permeability
	FCFP4
	0.44
	0.68
	0.46
	0.42
	0.69
	0.46

	[image: $${pK}_a$$]
	ECFP2
	0.71
	1.85
	1.15
	0.74
	1.78
	1.11

	MDCK cell line permeability
	ECFP4
	0.62
	0.61
	0.44
	0.68
	0.56
	0.39

	Human renal clearance
	MACCS
	0.25
	0.54
	0.43
	0.27
	0.53
	0.42

	Hemolytic toxicity ([image: $$\log \ {HD}_{50}$$])
	ASP
	0.68
	0.47
	0.35
	0.68
	0.44
	0.34


The values reported are the squared correlation ([image: $$R^2$$]), RMSE and MAE (average of 3 independent runs) for the calibration/validation sets



To identify which of the fingerprints perform well on the different datasets, we plotted heatmaps (see Figs. 1 and 2) of the balanced accuracies (for classification models) and squared correlations (in the case of regression) obtained for the different endpoints. While the pharmacaphore fingerprints (2PPHAR/3PPHAR) perform poorly on all datasets, fingerprints based on substructure keys (PUBCHEM, MACCS, KR) show moderate to high accuracies for a majority of the modelled endpoints. Although the performances for regression models are somewhat less encouraging, here too the [image: $$R^2_{cv}$$] for PUBCHEM, ECFP4, and ASP fingerprints yield better models than the other fingerprints tested.[image: ../images/13321_2021_557_Fig1_HTML.png]
Fig. 1Heatmap showing the cross-validated balanced accuracies (average of 3 independent runs) achieved by different fingerprint-based models for the endpoints studied

[image: ../images/13321_2021_557_Fig2_HTML.png]
Fig. 2Heatmap showing the cross-validated correlation coefficients (average of 3 independent runs) achieved by different fingerprint-based models for the endpoints studied


We further compared the performances achieved by the fingerprint models with those obtained for the 2D/3D descriptor based approaches. The barplots in Fig. 3 compare the accuracies achieved by the fingerprint models with values reported by the models published earlier. While results for most properties are comparable, for some endpoints such as myelotoxicity, ototoxicity, myopathy accuracies obtained using 2D/3D descriptors are only marginally better. Indeed better results are obtained for rhabdomyolysis, phospholipidosis, phototoxicity with other descriptor based models. For phototoxicity in particular, quantum chemistry-based 3D descriptors are used which can add to the time taken. It must however be pointed out that some of the better performing models take advantage of deep learning. Attempts to improve results for selected properties were carried out using support vector machines. However, the models were not always found to improve on the random forest approach.[image: ../images/13321_2021_557_Fig3_HTML.png]
Fig. 3Comparison of the accuracies achieved by the fingerprint based models in this study (“Current”) with those created using standard molecular graph based descriptors (“Original”) published in the literature. For OATP inhibtion, descriptors consist of constitutional, geometrical, electrostatic, and physicochemical indices. For phototoxicity, descriptors contain HOMO-LUMO gaps, spectral integrals, ionization potential, electron affinity and CATS descriptors. For properties such as toxic myopathy and MATE1 inhibition, the values compared are the accuracies and AUCs respectively


For the regression models calculated for selected properties: [image: $$\text {pK}_a$$], [image: $$\log$$]S, [image: $$\log$$]D, skin penetration, human serum albumin, MDCK permeability [image: $$\text {HD}_{{50}}$$], we assessed the prediction reliability based on the prediction intervals. Plots of the prediction intervals with respect to the observed response values for the test sets (see Additional file 1: Figure S1) showed that most of the samples lie within the 95% prediction interval which indicates that the constructed prediction intervals are reliable. For classification models, we focused on excluding compounds whose labels are predicted with low confidence and credibility. Thus, different thresholds for p-values (0.5, 0.6, 0.7, 0.8, 0.9) were applied and the corresponding fraction of molecules that would be withheld from further testing was recorded. A plot of the overall error rates and the percentage reduction in compounds excluded from further processing (see Additional file 1: Figure S2) shows that for many of the endpoints modelled, the predictive performance is not significantly impacted even at cutoffs of 0.50. Such a strategy that allows for compound selection based on static thresholds for the confidence/credibility offer a way to reduce the number of compounds that typically undergo experimental testing.
Software usage
FP-ADMET is available as open access software (GNU GPL v3.0) and can be downloaded from https://​gitlab.​com/​vishsoft/​fpadmet. Use of FP-ADMET proceeds in two steps (i) fingerprint calculation followed by (ii) predicting the ADMET endpoint of interest. The software is command line driven and is governed by a shell script (runadmet.sh) that can be run as:
bash runadmet.sh -f molecule.smi -p ## -a 
The input to the script is a file (molecule.smi) containing SMILES strings. The ## is a number between 1 (predict Anticommensal Effect) and 56 (predict skin penetration) and corresponds to the prediction task. The results are written to a text file where each line contains molecule name and the predicted response. The “-a” option allows for the calculation of prediction intervals (in the case of regression) and confidence (for classification). For classification, conformal prediction is used to calculate a confidence (how certain the model is that the prediction is a singleton) and a credibility. For example, predicting AMES mutagenecity (task number 4) for a series of molecules produces the following results (see Table 6). The label “inactive” for compound G00001 suggests that the compound is predicted to be non-mutagenic. A confidence value of 0.95 suggests that the classifier is quite certain that the prediction is likely to be a single label. A relatively low value of credibility (0.57) suggests that the compounds like G00001 are not sufficiently represented in the training set and that the user needs to treat the prediction with caution. In the case of regression, a 95% prediction interval (predictions at the 0.025 and 97.5 percentiles for [image: $$pK_a$$]) is calculated and provides a range for the predictions on an individual observation. Narrow prediction intervals indicate a lower uncertainty associated with the prediction.
Table 6Example showing the property ([image: $$pK_a$$] and anticommensal effect) predictions and associated uncertainties for 3 molecules


	Name
	Anticommensal effect
	Confidence
	Credibility
	[image: $$\hat{pK_a}$$]
	Q = 0.025
	Q = 0.975

	G00001
	Inactive
	0.95
	0.57
	9.62
	4.89
	11.49

	G00002
	Active
	0.95
	0.51
	4.41
	− 1.60
	13.06

	G00003
	Inactive
	0.95
	0.57
	3.37
	1.66
	6.10


[image: $$Q=0.025$$] and [image: $$Q=0.975$$] are the predictions calculated at percentiles 0.025 and 0.975 and allow for 95% prediction intervals



Conclusion
In this article, we have evaluated the performance of various molecular fingerprints for predicting a number of ADMET and ADMET-related endpoints. A total of 1500 models were analysed spanning 75 responses and 20 fingerprints. The results show that the machine learning performance using the different fingerprint encodings rival those of traditional descriptor-based methods. Future work will focus on combining different data sets in a multitask modeling approach which has been shown to yield statistically superior results compared with single-task models [12, 30]. In order to facilitate ADMET evaluation, the best performing models have been compiled into an open access software package called FPADMET that can be downloaded from https://​gitlab.​com/​vishsoft/​fpadmet.
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