
METHODOLOGY Open Access

Semantic Web integration of Cheminformatics
resources with the SADI framework
Leonid L Chepelev1* and Michel Dumontier1,2,3

Abstract

Background: The diversity and the largely independent nature of chemical research efforts over the past half
century are, most likely, the major contributors to the current poor state of chemical computational resource and
database interoperability. While open software for chemical format interconversion and database entry cross-linking
have partially addressed database interoperability, computational resource integration is hindered by the great
diversity of software interfaces, languages, access methods, and platforms, among others. This has, in turn,
translated into limited reproducibility of computational experiments and the need for application-specific
computational workflow construction and semi-automated enactment by human experts, especially where
emerging interdisciplinary fields, such as systems chemistry, are pursued. Fortunately, the advent of the Semantic
Web, and the very recent introduction of RESTful Semantic Web Services (SWS) may present an opportunity to
integrate all of the existing computational and database resources in chemistry into a machine-understandable,
unified system that draws on the entirety of the Semantic Web.

Results: We have created a prototype framework of Semantic Automated Discovery and Integration (SADI)
framework SWS that exposes the QSAR descriptor functionality of the Chemistry Development Kit. Since each of
these services has formal ontology-defined input and output classes, and each service consumes and produces
RDF graphs, clients can automatically reason about the services and available reference information necessary to
complete a given overall computational task specified through a simple SPARQL query. We demonstrate this
capability by carrying out QSAR analysis backed by a simple formal ontology to determine whether a given
molecule is drug-like. Further, we discuss parameter-based control over the execution of SADI SWS. Finally, we
demonstrate the value of computational resource envelopment as SADI services through service reuse and ease of
integration of computational functionality into formal ontologies.

Conclusions: The work we present here may trigger a major paradigm shift in the distribution of computational
resources in chemistry. We conclude that envelopment of chemical computational resources as SADI SWS
facilitates interdisciplinary research by enabling the definition of computational problems in terms of ontologies
and formal logical statements instead of cumbersome and application-specific tasks and workflows.

Background
The introduction and subsequent widespread availability
of computers in the latter half of the 20th century has
had an enormous impact on chemistry and related
sciences. A wide range of problems which could only be
addressed by tedious manual or semi-automated compu-
tation a few decades prior suddenly became readily
accessible with computers. The explosion of the diver-
sity of the various software packages addressing every

aspect of chemistry that followed can only be compared,
in relative terms, to the Cambrian explosion in species
diversity. Myriads of file formats, programming lan-
guages, platforms, operating systems, programming
paradigms, distribution models, and access methods
have been employed in hundreds of largely-independent
projects, each vying for widespread adoption and often
offering a unique set of functionalities and features to
target a specific subdomain or application of chemistry.
Consequently, computational life scientists are now
obliged to spend considerable efforts on software* Correspondence: leonid.chepelev@gmail.com

1Department of Biology, Carleton University, Ottawa, Canada
Full list of author information is available at the end of the article

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

© 2011 Chepelev and Dumontier; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:leonid.chepelev@gmail.com
http://creativecommons.org/licenses/by/2.0

package integration to make any progress in their daily
investigations.
This problem has been especially acute for interdisci-

plinary studies, perhaps rising in relevance and impor-
tance with the relatively recent rise of Systems Science
to prominence. For instance, to build a simple ordinary
differential equation-based model of a system of partially
enzyme-catalysed reactions, one may need to generate
the three-dimensional structures of involved molecules,
compute their energies of formation and solvation,
approximate pKa values, evaluate enzyme interactions,
predict kinetics, and finally solve kinetic equations, all in
different software packages, which might be located on
different operating systems or have unique shamanic
execution procedures known only to the high priests of
these packages. Even practitioners of narrower special-
ities are not spared the wrath of software integration,
albeit on a smaller scale. Although tools to interconvert
the output and input files for many of these software
components have been developed [1,2], and although a
number of chemical packages offer access to their func-
tionalities through programming interfaces (e.g.[3-5]),
one is left wishing that researchers in chemistry-related
fields could still do more science rather than pipelining.
As scientific publishing accelerates and high-through-

put experimentation platforms become increasingly per-
vasive, the problem of integration of the disparate
computational, literature, and experimental resources is
transformed from that of removing a daily nuisance to
that of finding a solution without which science cannot
move forward effectively. With the introduction of com-
putational web services for life sciences (e.g. [6,7]), a
step in the direction of addressing this problem has
been made. With web services, tasks can be posted
directly to computational resources with job execution
instructions that conform to service-specific schemas,
usually defined with a standard specification, most pro-
minently the Web Service Definition Language (WSDL)
[8]. Given sufficient knowledge of the service schemas,
it is technically possible to automate workflow construc-
tion and provide seamless integration of web service
components to fulfil a greater overarching task. In prac-
tice, however, the lack of shared and consistent schema
elements with formal semantics has severely limited this
integrative potential due to difficulties of automatically
integrating service schemas themselves.
The next step of the evolution of web services was

reached with the adoption of the Semantic Web and the
corresponding development of Semantic Web Technolo-
gies to enable not only machine-understandable knowl-
edge representation, but also the exposition of this
knowledge and underlying concepts to automated, for-
mal logic-based reasoning. Given a collection of knowl-
edge triples that utilize types and relations from a

formal ontology, it has finally become possible to auto-
matically classify, integrate, and interconnect entities
and concepts, much like a human expert would. To
truly capitalize on this potential, simple XML-based
approaches in resource specification and annotation
would have to make way for Resource Description Fra-
mework (RDF) [9] and Web Ontology Language (OWL)
[10] to enable automated integration of static knowledge
resources with computationally generated information
and provide results for cross-domain queries. This abil-
ity is indispensable in the life sciences domain to
address interdisciplinary problems in toxicology or
metabolism, for example. For such problems, it is not
only often the case that no single database contains all
the information necessary to build a working model or
formulate trustworthy predictions, but it is also true
that much database information is fragmented and often
incomplete. Some of this missing information could be
computed to fill in the gaps preventing integrative
model construction, but relevant computational
resources, many of which are web services, remain inac-
cessible to a single query method, partly due to the
aforementioned integration issues. Although large col-
lections of chemical data have recently become repre-
sented in RDF and exposed to SPARQL querying
[11-13], seamless and facile integration of computational
resource output to enable query completion has been
difficult to attain with currently existing technologies.
Early solutions proposed for automated service inte-

gration in life sciences often drew on elements of
Semantic Web Technologies. With Semantic Annota-
tions for WSDL and XML Schema (SAWSDL), it has
become possible to annotate WSDL documents with
terms from formal ontologies, in a process termed ‘lift-
ing’ to enable a greater degree of resource integration
than with simple XML service specifications [14]. Ser-
vices thus annotated would then be more readily avail-
able to integration from a central service registry.
However, tight integration into the Semantic Web that
would allow natural formal reasoning over such services
has not yet been adequately addressed, with SAWSDL
and WSDL services often requiring adaptors for service
integration. The Web Service Modelling Ontology
(WSMO), on the other hand, aims to construct and sup-
port a complex framework, implemented in Web Service
Modelling eXecution environment (WSMX), whereby
web services and all aspects of their behaviour are for-
mally semantically represented [15].
Within the life sciences web service domain, numer-

ous practical solutions to web service integration have
been proposed, but are too numerous to completely dis-
cuss here [16]. Often, these solutions focussed on the
construction of a common domain ontology, vocabulary,
or registry to improve service annotation and discovery

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 2 of 12

in a given domain (e.g. [17,18]). More recently, service
frameworks that relied on more general ontologies for
service annotation and input/output specification have
also become available [19,20]. Further, frameworks inte-
grating REST service discovery and ontology-assisted
workflow composition have also appeared recently [21].
Implicit in these approaches has been the need to adopt
and adhere to common service annotation, input and
output specifications, or common domain ontologies.
This has meant that although some of these SWS initia-
tives have enjoyed considerable success in enabling ser-
vice interoperability and supporting facile manual
workflow composition, truly seamless and automated
service integration into the Semantic Web was not
reached, as it was inhibited by semantic service plat-
forms themselves.
This situation has changed with the recent introduc-

tion of the SADI framework [22]. Web services created
with SADI consume and produce RDF graphs, operating
on instances of input and output classes formally
defined in supporting service OWL ontologies. The
input class of a SADI service subsumes the output class,
as these services are stateless, atomic, and annotative.
That is, each service carries out a single primitive func-
tion and annotates an instance of the input class with
information through a particular predicate. SADI ser-
vices are also REST-like, in that there is only a standard
basic set of HTTP verbs that they may respond to,
namely GET and POST. A GET operation on a given
service returns its semantic description, while a POST
of a well-formed RDF graph to the service initiates ser-
vice execution and returns the same RDF graph with
the annotations created by the service. If a SADI service
is computationally-intensive, standard asynchronous
execution mechanisms are available.
Unlike its aforementioned predecessors, SADI service

specification is extremely simple as it neither imposes
nor invents a central schema, ontology, or message
structure, using standard web components instead.
Because of the formal logical definition of the input
class, output class, and the introduced predicate, SADI
services can be tightly integrated into the Semantic Web
and very naturally reasoned about by a machine client.
This combination of simplicity of specification and
power of formal reasoning allows SADI web services to
be seamlessly integrated into SPARQL queries with sim-
ple machine reasoning clients, as if the data that they
can potentially generate was already available in an RDF
triple store. One such prototype client, Semantic Health
And Research Environment (SHARE), operates on
SPARQL queries and is capable reasoning about the
desired overall query goal and chaining services and
information together such as to reach this goal in the
least computationally expensive way [23]. SHARE draws

on a central freely accessible service registry that con-
tains information about service input, output, and predi-
cate types to carry out this automated workflow
construction. Thus, in order to pose a query through
SHARE, a human agent has to be aware of service speci-
fication details in the registry to be able to create a well-
formed query. For this, the user needs to acquaint them-
selves with the input and output classes operated upon
and annotations created by the collection of SADI ser-
vices available in a given SADI instance by perusing the
service registry [24]. Thus, one only needs to identify an
input class that contains the information that is already
available as a starting point, as well as the service-speci-
fic predicates corresponding to the annotation that is
desired.
In order to maximise service interoperability, it is of

course recommended to reuse concepts and classes as
much as possible by adhering to upper-level domain
ontologies, but this is not a requirement in SADI and
concepts can be manually mapped to those appearing in
supporting service ontologies, if required. By the virtue
of allowing external formal ontologies to be referenced
in SPARQL queries executed by SHARE, this approach
provides support for discourse in science while disam-
biguating and explicitly highlighting the points of dis-
agreement. For example, a small molecule according to
one researcher may be one that is no heavier than 500
Daltons, while another may insist that number to be
750 Daltons. With OWL, both of these viewpoints may
be represented with an explicit specification which can
then be used to classify a set of molecules automatically
using the same SADI services, and filter down into
further assertions and reasoning seamlessly. Further,
multiple researchers may construct ontologies that may
model molecules, and consequently smilesmolecule dif-
ferently. So long as a formal logical mapping can be
either inferred or directly made to concepts used by the
service ontologies, this difference can be accommodated
and the construction of computational workflows may
be initiated. In other words, SADI enables liberation
from conformity in existing consortia-generated ontolo-
gies and facilitates discourse and disagreement which
drive science forward, at the cost of making the end
user aware of the ontologies used by the existing SADI
services.
SADI, with supporting machine reasoning clients, also

enables the conversion of ontologies into workflows. As
we have seen, a formal definition of a small molecule as
having a molecular mass descriptor within a particular
range in an external ontology will trigger the execution
of an appropriate service through a SPARQL query
posted to SHARE, if no such data is already available,
and the input and output classes the service operates
upon are consistent with the external ontology.

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 3 of 12

Therefore, integrative workflows (in e.g. molecular clas-
sification) can be constructed just by redefining the pro-
blem in terms of classifying a given entity into a
particular formal ontology-defined class or a set of
classes of interest in a given study (Figure 1). Further-
more, because computational tasks are explicitly speci-
fied and service invocation is controlled, SADI allows
for a greater reproducibility and interoperability of com-
putational analysis.
In this work, we shall describe and discuss the exposi-

tion of a range of computational chemical resources as
SADI services and their resultant amenability to seam-
less automated semantic integration through ontologies,
SPARQL queries, and with graphical interfaces.

Results and Discussion
Exposing CDK QSAR Functionality with SADI
The exposure of computational functionality of a particu-
lar software package or application programming interface
begins with the isolation of the smallest accessible func-
tional units of the software at hand. At the most detailed
level, this process may be likened to decomposition of an
API into its constituent classes, which may often become
input classes in the supporting service ontology, and their
corresponding methods, which may be viewed as the
actual computational functionality of these services (Figure
2). This comparison is limited and highly simplified, but it
captures the general essence of what we are trying to do. If
one concerns themselves solely with the primary function-
alities of a given piece of software relevant to a particular
problem, individual services may envelop more than one
basic method in a given API or software. One limitation
that arises as a consequence of the annotative nature of
SADI services is the requirement to support transforma-
tive functionalities by differentiating the input and output,

even if both are of the same class in the software package.
For example, a method that removes hydrogen atoms
from a given input molecule specified by a SMILES string
and returns a SMILES string (or void), would have to be
converted into a SADI service that operates upon an input
class that consists of molecules that have a SMILES string
specified and produces output typed to a class that con-
sists of molecules that are annotated with a SMILES string
as well as a hydrogen-free SMILES string. It must be
noted that SADI services do not have to return all of the
information present in the specification of the annotated
entity that is a member of the input class. For a member
of the output class of a service whose input is a molecule
that has a SMILES string, it is possible to introduce only
the new service-generated annotations on the existing
input entity (present at a dereferenceable URI) in the out-
put. Thus, in our hydrogen depletion example, only a
reference to the input entity and the new annotation need

Figure 1 Seamless service integration into the Semantic Web with SPARQL queries over RDF-encoded resources in chemistry, as
enabled by SADI.

Figure 2 In principle, classes and methods in APIs can, with
some adjustments, be converted to input/output classes and
functionality-encapsulating services. Note that since SADI
services are annotative, the input class subsumes the output class
which merely contains the extra annotation computed by the
service.

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 4 of 12

to be included in the output, without the need to include
all of the inherited entity attributes.
In this study, we have exposed a portion of QSAR

descriptor calculating functionality, to calculate descrip-
tors starting from a SMILES string molecular specifica-
tion, as implemented in the Chemistry Development Kit.
Because we are primarily concerned with demonstrating
the envelopment of functionalities of CDK in this work,
we have chosen to distribute the calculation of every
available descriptor as a separate web service, even if
such services relied on multiple methods and classes in
CDK (Table 1).
The second step in service creation is formal descrip-

tion of the input and output classes in a service ontol-
ogy. For our whole set of QSAR descriptor services, we
have created a single service ontology [25], extended
from the CHEMINF ontology [26] that contains con-
cepts relevant to formal specification of chemical infor-
mation in general and descriptor information in
particular. The reuse of concepts and relations from
widely accepted higher-level ontologies in CHEMINF
translates into greater integration of service input and
output classes into cross-domain queries.
For each descriptor calculating service, the input class

is a smilesmolecule which is formally defined as the fol-
lowing.

molecule and ‘has attribute’ some (’SMILES descrip-
tor’ and ‘has value’ some string)

This input specification assures that the service will
receive and operate upon an entity of the type molecule
that has a SMILES descriptor and that this descriptor
has a string value which the service can parse, transform
into a molecular graph, and for which it can carry out
descriptor calculations with a given API, in this case
CDK. Note that the terms molecule, has attribute, and
has value are reused from upper-level ontologies, mean-
ing that concepts introduced in third-party ontologies
constructed using the same upper-level ontologies will
be much easier to integrate with than if we were to
invent our own terms. The input is an RDF-XML graph
submitted to the service through a simple HTTP POST
to the service URL (Listing 1).
Listing 1. A fragment of the RDF input graph for the

CDK descriptor services, in N3 form.
@prefix ss:http://semanticscience.org/.
@prefix sio:http://semanticscience.org/resource/.
ss:Ethanol rdf:type sio:SIO_011125.
ss:Ethanol sio:SIO_000008 ss:

EthanolSmilesDescriptor.
ss:EthanolSmilesDescriptor rdf:type

sio:CHEMINF_000018; sio:SIO_000300 “OCC”.

Because the input class has to subsume the output
class, the output entity has to have all the features of
the input entity, but service-computed annotations
should decorate the entity in the output. For instance,
the definition of the output class bondcountsmilesmole-
cule for a bond count descriptor calculating service [27]
is as follows.

smilesmolecule and ‘has attribute’ some (’bond count’
and ‘has value’ some int)

This class definition specifies that in the output, a
given smilesmolecule instance will be annotated with a
bond count descriptor which would have an integer
value (Listing 2).
Listing 2. A fragment of the RDF output graph pro-

duced by the CDK bond count calculator service, con-
verted to N3 RDF form.
@prefix:http://semanticscience.org/sadi/ontology/

lipinskiserviceontology.owl#.
@prefix ss:http://semanticscience.org/resource/.
prefix rdf:http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#.
ss:Ethanol a:bondcountsmilesmolecule,:

smilesmolecule.
ss:Ethanol sio:SIO_000008 ss:

EthanolSmilesDescriptor.
ss:EthanolSmilesDescriptor a sio:CHE-

MINF_000018; sio:SIO_000300 “OCC”.
ss:Ethanol sio:SIO_000008 ss:

EthanolBondCount.
ss:EthanolBondCount a sio:

CHEMINF_000233.
ss:EthanolBondCount sio:SIO_000300

“3"^^http://www.w3.org/2001/XMLSchema#int.
The service OWL ontology, containing these input

and output class specifications, along with the relevant
predicate (has attribute) specifications, has to be made
distributed such as to assure that these resources have
dereferenceable URIs and that the ontology itself is
readily available for machine reasoning agents. In order
to expose services for invocation and automated work-
flow composition with the SHARE client, one needs to
also register the service on the central SADI registry.
Descriptor information can then be obtained by submit-
ting SPARQL queries that are no different from queries
over triple stores that are already populated with RDF
knowledge, to the SHARE client. In essence, we are
seamlessly querying all the data at our disposal, even
the knowledge that does not yet exist, but can be gener-
ated. For example, to determine the number of hydro-
gen bond donors in a given molecule, one may submit
the following query to the SHARE client (Listing 3).

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 5 of 12

http://semanticscience.org/
http://semanticscience.org/resource/
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2001/XMLSchema#int

Listing 3. A sample SPARQL query to determine the
value (specified by the ?value variable) of the hydrogen
bond donor count descriptor for a molecule specified in
the given (lipinski_test) RDF graph, submitted to a
SHARE client [28].
PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#.
PREFIX ss:http://semanticscience.org/resource/.

PREFIX lso:http://semanticscience.org/sadi/ontol-
ogy/lipinskiserviceontology.owl#.
select ?s ?value
FROMhttp://semanticscience.org/sadi/ontology/lipinski-

serviceontology.owl.
FROMhttp://semanticscience.org/sadi/ontology/lipins-

ki_test.rdf.
where {

Table 1 A highly abbreviated representative list of the descriptors created for this study

Descriptor Explanation

AlogP Atomic calculation-based octanol-water partition coefficient.

Aromatic Atom Count Number of aromatic atoms in a given molecule.

Atom Count Number of atoms in a molecule.

Atomic Polarizability Sum of atomic polarizabilities of all atoms in a given molecule.

Bond Count Number of bonds in a molecule.

Eccentric Connectivity Index A topological molecular descriptor that reflects on atom connectivity and distance.

Fractional Polar Surface Area Total partially positively charged molecular surface area divided by the total molecular surface area.

Hydrogen Bond Acceptor Count Number of atoms that can act as hydrogen bond acceptors.

Hydrogen Bond Donor Count Number of atoms acting as hydrogen bond donors.

Ionization Potential Propensity of a given molecule to lose an electron.

Largest Chain The length of the longest chain of heavy atoms in a molecule

Largest PI System The number of atoms in the largest conjugated pi-bond system.

Maximal Length/Breadth Ratio Descriptor of molecular shape describing the ratio of a molecule’s length to breadth in the region where it is
highest.

Minimal Length/Breadth Ratio Descriptor of molecular shape describing the ratio of a molecule’s length to breadth in the region where it is
lowest.

MlogP Mannhold algorithm-based octanol-water partition coefficient.

Molar Refractivity Total polarizability of a mole of a given molecule.

Molecular Complexity A descriptor reflecting on the complexity of a given molecule in terms of quantities of heteroatoms and their
connectivity.

Molecular Formula A molecular formula that captures the types and counts of atoms present in a molecule.

Molecular Mass The mass of a given molecule, in Daltons.

Petitjean Geometric Shape Index A descriptor that reflects on the shape of the molecular connectivity graph and factors in distance information.

Petitjean Number An index characterizing molecular graph topology.

Petitjean Topological Shape
Index

A descriptor that reflects on the topological shape of the molecular graph.

Relative Hydrophobic Surface
Area

The fraction of the overall molecular surface area that is hydrophobic.

Topological Polar Surface Area Total molecular surface area that has a non-zero partial charge.

Total Hydrophilic Surface Area Sum of solvent-accessible surfaces of partially charged atoms.

Total Hydrophobic Surface Area Sum of solvent-accessible surfaces of nonpolar atoms.

Total Partially Negative Surface
Area

Total surface area of a molecule that has a partially negative charge.

Total Partially Positive Surface
Area

Total molecular area that has a partially positive charge.

Vertex Adjacency Magnitude A descriptor reflecting upon the number of bonds between heavy atoms in a given molecule.

Wiener Polarity Number A descriptor that reflects on atomic connectivity and molecular topology.

XlogP Group contribution-based octanol-water partition coefficient.

Zagreb Index The sum of squares of all heavy atom degrees.

A full, dynamically updated list of services is available [23].

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 6 of 12

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://semanticscience.org/resource/
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl
http://semanticscience.org/sadi/ontology/lipinski_test.rdf
http://semanticscience.org/sadi/ontology/lipinski_test.rdf

?s rdf:type lso:smilesmolecule. #S is a
molecule with a SMILES descriptor.
?s lso:hasChemicalDescriptor ?attr. #S
has a chemical descriptor attr.
?attr rdf:type ss:CHEMINF_000244. #Attr
is a CHEMINF H bond donor descriptor.
?attr ss:SIO_000300 ?value. #Attr must
have some value.
}

This query returns the identity of the input molecule
(whose SMILES descriptor is specified in the lipinski_t-
est RDF graph), along with the value of its correspond-
ing logP descriptor. In the background, SHARE reasons
about the available services based on the information
requested in the SPARQL query, as well as the informa-
tion already available in the input graph, and automati-
cally matches the appropriate service or services to the
request. Thanks to the formal reasoning carried out by
the SHARE client using the service-specific ontologies
and any other ontologies referenced in the query, it is
possible to infer the services needed to carry out a parti-
cular task even if the request does not use concepts
identical to those found in the service definition. For
example, if a predicate hatChemischeDeskriptor can be
inferred to be equivalent to hasChemicalDescriptor
through its formal axiomatic definition, the same set of
services shall be called to fulfil queries using either pre-
dicate. Thus, the integration of SADI services into the
Semantic Web by means of integration into SPARQL
queries with SHARE is seamless and requires no addi-
tional programming on the part of the life science
researcher.

SADI-Enabled Format Interconversion and Software
Interfacing
Though ubiquitous in chemical databases, SMILES
strings do not address every chemical entity specifica-
tion need. For example, one may be interested in the
three-dimensional configuration of a given molecule
directly, or in a more standard and canonical way of
representing chemical graph structure with InChI
strings [29]. Conversely, the SMILES string needed for
our services to operate may not be present, but an
InChI descriptor may be available instead. Finally, dispa-
rate services may operate on different formats, such that
one may produce a molecule specified with an InChI
string, while another may need to consume a SMILES
string. Clearly, the ability to interconvert a wide range
of chemical formats and representations is essential for
wrapping and integrating into a single workflow the
functionality of entire software packages that have no
exposed programming interfaces, but are accessible for
command-line interface scripting.

As a means of demonstrating the format conversion
capacity as well as integration of multiple disparate soft-
ware packages with SADI, we have created an Open
Babel (version 2.3.0) based format conversion service to
convert InChI strings to SMILES strings [30]. The
implementation of this functionality and SPARQL
querying for resultant data is virtually identical to that
of other descriptor computing services, and is readily
accessible, either through the SHARE client or through
a direct POST of an RDF graph containing an instance
of the inchimolecule class (specified below) as input.

molecule and ‘has attribute’ some (’InChI descriptor’
and ‘has value’ some string)

The resultant output, by virtue of classifying into the
smilesmolecule class, since it now contains the SMILES
string representation of the queried molecule, can sub-
sequently be consumed by all of the QSAR descriptor
computing services. A collection of services to convert
file formats can therefore be envisioned in order to con-
nect multiple chemical calculation packages together, on
the fly.

Lipinski Rule of Five the Semantic Way
The simplicity of SADI architecture allows for natural
computational resource integration into the Semantic
Web, as demonstrated by seamless service invocation
through simple SPARQL queries. The automated com-
putational workflow construction that can be achieved
thanks to this tight resource integration can be demon-
strated by carrying out simple Lipinski Rule of Five ana-
lysis [31]. This well-known rule postulates that drug-like
compounds can be most often characterized as having a
molecular mass of less than 500 Daltons, fewer than 5
hydrogen bond donors, fewer than 10 hydrogen bond
acceptors, and a logP value between -5 and 5. The defi-
nition of a Lipinski-consistent molecule lends itself quite
easily for formal representation using concepts from the
CHEMINF ontology, as follows.
smilesmolecule

and ‘hasChemicalDescriptor’ some (’mass descriptor’
and ‘has value’ some double[< = 500.0])
and ‘hasChemicalDescriptor’ some (’hydrogen bond
donor count’ and ‘has value’ some int[< 5])
and ‘hasChemicalDescriptor’ some (’hydrogen bond
acceptor count’ and ‘has value’ some int[< 10]
and ‘hasChemicalDescriptor’ some (’logP descriptor’
and ‘has value’ some double[< 5.0, > -5.0])

In this formal definition of a drug-like molecule, each
statement linking the input SMILES molecule to a parti-
cular descriptor conforms to the output class and

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 7 of 12

annotating predicate specification of a corresponding
descriptor calculator service. This means that when a
SPARQL query is posed to a SHARE client to determine
whether a given instance of the smilesmolecule class is
drug-like, the client will be capable of identifying and
executing the four services necessary for the completion
of this query (Listing 4).
Listing 4. A SPARQL query to determine whether a

molecule (in lipinski_test RDF graph) is drug-like. If it is
the case, the URI corresponding to the matching mole-
cule will be returned.
PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#.
PREFIX lso:http://semanticscience.org/sadi/ontol-

ogy/lipinskiserviceontology.owl#.
select ?s
FROMhttp://semanticscience.org/sadi/ontology/lipinski-

serviceontology.owl.
FROMhttp://semanticscience.org/sadi/ontology/lipins-

ki_test.rdf.
where {
?s rdf:type lso:lipinskismilesmolecule.
}
The overall effect of this is that in the absence of

necessary existing data, SHARE creates a web service
workflow to complement the information already avail-
able, based solely on the formal definition of Lipinski
drug-like molecules in a reference ontology. Not only
does this lead to improvements in computational work-
flow reproducibility and concept disambiguation, but it
also allows for straightforward means of concept reas-
sessment from within a common framework during the
course of scientific discourse. For example, the Lipinski
Rule of Five has been extensively discussed, assessed
and revised since its introduction [32]. By expressing
their alternative definitions of drug-like compounds
within the same framework as that of the original Rule
of Five, it may have been possible to reduce ambiguity
and inconsistencies in results stemming from inadver-
tent inconsistencies of data sources or precise methods
of computational resource invocation. Further, the inte-
gration of service-computed data with more involved
analysis (e.g. statistical regressions) as well as operations
on entire data sets are possible, and demonstrations of
this have been discussed at length elsewhere [22].

Mechanisms for Parameter and Computational
Experiment Provenance Specification
A number of algorithms and software packages, which
may be wrapped as SADI services, require the specifica-
tion of one or more parameters. The abundance of algo-
rithm implementations and implementation-specific
parameters, coupled with their under-reporting in scien-
tific literature may often result in irreproducibility of

computational experiments or discrepancies in research
findings and conclusions. SADI services can specify
parameters defined in an OWL ontology to control the
execution of a specific computational algorithm, or to
select a given algorithm from a set of equivalent algo-
rithms which would otherwise be logically equivalent
and called either together or at random, depending on
the preferences and settings employed by the end user.
The service description (using the GET) will display
which type corresponds to the parameter class. A user
wanting to specify the parameter must do so by adding
its explicit description to the input RDF graph. Addi-
tionally, the provenance for the data item obtained by
running the service is preserved by annotating the out-
put as being the product of a parameterized data trans-
formation. Besides the parameters used, this approach
also allows us to explicitly specify the software (and its
version), the agent (who executed it). For instance, using
CHEMINF concepts, one may construct the following
simplified generic output class.
molecule that

’has attribute’ some (’descriptor’ and
‘is output of’ some (

’parameterized data transformation’
and ‘has agent’ some ‘software’
and ‘has input’ some ‘smiles’
and ‘has parameter’ some (
’parameter’
and ‘has value’ some double
)

)

An instance of parameterized data transformation
may be placed, along with the input, into the input RDF
graph and referred to in the SPARQL query to execute
service computational functionality according to explicit,
precise, and reproducible specifications. To demonstrate
parametric execution capacity, we have created a proto-
type service to compute a scaled octanol-water partition
coefficient value [33]. For some compounds, it may be
necessary to apply correction factors to arrive at more
accurate predicted logP values. Our service computes a
logP value which is multiplied by the value of the scal-
ing factor parameter specified in the input as follows.
Listing 5. A simplified input to the parameterized logP

calculating service, converted to N3.
@prefix ss:http://semanticscience.org/.
@prefix sio:http://semanticscience.org/resource/.
ss:parameterX rdf:type sio:SIO_000144;

sio:SIO_000300 “1.05”.
ss:Ethanol rdf:type sio:SIO_011125.
ss:Ethanol sio:SIO_000008 ss:

EthanolSmilesDescriptor.

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 8 of 12

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl
http://semanticscience.org/sadi/ontology/lipinski_test.rdf
http://semanticscience.org/sadi/ontology/lipinski_test.rdf
http://semanticscience.org/
http://semanticscience.org/resource/

ss:EthanolSmilesDescriptor rdf:type
sio:CHEMINF_000018; sio:SIO_000300 “OCC”.
If no parameter is specified, the service has an intern-

ally-specified default parameter to fall back on. In both
cases, the value of the parameter is reported in the out-
put, and the parameter itself is linked to the process
executed in order to obtain the value of the descriptor
(Listing 6). Because the output of a parameterized ser-
vice preserves this provenance information explicitly on
the descriptor this service generates, it is then possible
to query over only descriptors generated using a particu-
lar set of parameters, or with a given software package.
This is useful when addressing the construction of toxi-
cological models using data derived from multiple dispa-
rate data sources or across chemical entity databases.
Finally, this preserved provenance information makes
our calculation fully and unambiguously reproducible.
Listing 6. A simplified output of the parameterized

logP calculating service, converted to N3.
@prefix:http://semanticscience.org/sadi/ontology/

lipinskiserviceontology.owl#.
@prefix ss:http://semanticscience.org/resource/.
@prefix rdf:http://www.w3.org/1999/02/22-rdf-

syntax-ns#.
ss:Ethanol a:bondcountsmilesmolecule,:

smilesmolecule.
ss:Ethanol sio:SIO_000008 ss:

EthanolSmilesDescriptor.
ss:EthanolSmilesDescriptor a sio:CHE-

MINF_000018; sio:SIO_000300 “OCC”.
ss:Ethanol sio:SIO_000008 ss:

EthanolBondCount.
ss:EthanolParamlogP a sio:

CHEMINF_000251.
ss:EthanolParamlogP sio:SIO_000300

“1.727"^^http://www.w3.org/2001/
XMLSchema#double.
ss:EthanolParamlogP sio:SIO_000232 ss:

PDTOCCLOGP.
ss:PDTOCCLOGP:hasParameter ss:

parameterX.
ss:parameterX rdf:type sio:SIO_000144.
ss:parameterX sio:SIO_000300

“1.05"^^http://www.w3.org/2001/
XMLSchema#double.

Integration and Repurposing of Chemical Resources
Service interoperability, even within a single framework,
relies on the compatibility of service inputs and outputs.
With SADI, formal definition of input and output
classes in supporting service ontologies, especially if
these ontologies draw on common upper-level concepts,
facilitates service integration by enabling class equiva-
lence inference. However, if one service produces output

in terms of a molecule that has a SMILES descriptor for
example, no conceivable web service framework will
magically enable that output to be directly consumed by
a service that demands three-dimensional molecular
structure specified. In these cases, intermediary services
have to be made available to bridge the gap. For exam-
ple, the existing SADI service to retrieve the KEGG
pathways a given drug is involved in, based on a mole-
cule’s KEGG Drug identifier [34], would have to be con-
nected to smilesmolecule instance-generating services
through a KEGG Drug identifier matching service.
If service input/output classes are logically equivalent

or compatible, however, no such pipelining services are
required to repurpose services for uses not originally
anticipated. Consider, for example a functional group
annotation service created by us to assist in lipid anno-
tation and classification [35]. Given an instance of a smi-
lesmolecule, this service enumerates functional group
instances (from a predefined collection) occurring in the
input molecule through an upper-level ontology has
proper part predicate and produces a semantic equiva-
lent of a chemical fingerprint in the annotatedsmilesmo-
lecule output class. Although this information was
originally used to classify molecules into various lipid
classes, we may repurpose it for defining a customized
class of chemical compounds: drug-like alkynes, as fol-
lows.

lipinskismilesmolecule and hasProperPart some
Alkyl_Group

In order to invoke service execution, one needs to
submit a SPARQL query, much like that for the Lipinski
Rule of Five use case, to SHARE. The SHARE client will
then be capable of inferring not only the necessary ser-
vices to invoke in order to classify an input molecule
into the lipinskismilesmolecule class, but would also call
on the functional group annotator service to obtain
hasProperPart annotations and complete the reasoning.
Thus, it is possible to build up increasingly complex
queries ad infinitum and let the machine reasoning cli-
ents take care of the invocation and orchestration of the
web services necessary to obtain the information needed
to address the query.
It is also easy to imagine a service that enumerates

pharmacologically active functional groups working in
conjunction with QSAR descriptor computing services
to logically select compounds that are predicted to be
drug-like and non-toxic, out of a large collection of
combinatorially-generated chemical entities. Further-
more, thanks to the ready integration and repurposing
of SADI services, it is also possible to combine QSAR
descriptors with molecular pharmacological activity data
to obtain a formally defined QSAR model as an output

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 9 of 12

http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl#
http://semanticscience.org/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#double

of a model creator service that could wrap existing
QSAR software or mathematical scripts. Finally, it is
worth stressing that due to the simplicity of SADI ser-
vices, they are not precluded from working with other
services, or be described and accessed through other
web service frameworks.

Exposing Chemical Database Resources as SADI Services
Web services are not solely limited to tasks involving
computational capacities, but can be linked to a range
of processes, including those carried out by experimen-
tal or industrial platforms. In certain cases, it is advanta-
geous to use web services to encapsulate relational
database lookup and the conversion of resultant infor-
mation to RDF. Although large corpora of RDF data
derived from the numerous publically accessible chemi-
cal databases have been exposed for querying through
SPARQL endpoints [11,13], and although this has a pro-
ven potential in facilitating cross-domain querying in
chemistry, there is a number of reasons web service-
based lookups may be preferable. For example, because
the major data providers do not directly publish their
information in RDF there may sometimes be a delay in
the conversion and incorporation of new data by the
RDF triple store providers. Further, not all of the desir-
able information may be available in the RDF triple
stores, or information might be available in a form that
makes it difficult or awkward to map to one’s own ser-
vice ontologies, for example.
To preserve the atomic nature of SADI web services

and allow for maximal flexibility in workflow construc-
tion, it is preferable to encapsulate the lookup of each
index-value pair type as a separate web service in a
manner identical to that of creating a CDK QSAR ser-
vice. Here, the input class definition would have to
require specification of the index used to look up the
database and the service output class would contain
entities annotated with the value or values retrieved
from the database. Because this task has been demon-
strated and implemented elsewhere, we shall limit our
discussion of implementation to what is already stated.
One point that we would like to observe is that encap-
sulation of database lookup functionality as SADI ser-
vices allows seamless integration of chemical database
resources into SPARQL queries even in the absence of
corresponding RDF data. In the end, both computational
and experimental resources will be available in addres-
sing a given SPARQL query.

Conclusions
Chemistry is indeed an immense and rapidly growing
discipline with a wealth of disparate computational and
database resources which are currently largely isolated
and inaccessible to truly integrative queries across the

entirety of the chemical (deep) web. Thus, we believe
that there is an urgent need of exposing chemical
resources in a manner that would be conducive to sup-
porting a more productive way of carrying out chemical
research. In this work, we have attempted to address
this issue by demonstrating what we believe to be the
future of chemical service distribution and chemical
resource integration into the rapidly expanding Seman-
tic Web. Using our set of SADI services to envelop the
CDK QSAR-relevant descriptor functionality to decide
whether a molecule was drug-like, we have demon-
strated a highly integrative behaviour afforded by the
simplicity of the formal semantic service specification of
the SADI framework. In the future, the widespread
adoption of explicit formal specification of computa-
tional tasks afforded by Semantic Web technologies may
lead to an improved reproducibility and reduced ambi-
guity of chemical research.
With the Lipinski Rule of Five example of SHARE-

assisted automated workflow construction, we have
demonstrated the kinds of powerful and natural
queries that could be accessible in cheminformatics
research if all of the functionalities of CDK were dis-
tributed as SADI services. Although the complexity of
queries amenable to SHARE automated reasoning is
somewhat limited to the capacity of the supporting
formal reasoning software and computational resources
of the host machine, we believe that with time, this
limitation shall diminish to the point of vanishing, as
existing reasoners are improved and new ones become
available. Engineering limitations aside, provided an
ontology of common tasks and a set of adequately spe-
cified services, researchers in the future would, in prin-
ciple, only need to specify their end goal or the kind of
information they seek, potentially with natural lan-
guage queries, and obtain it without having to be well-
versed with computational tools, programming, or
pipelining. At the same time, parameter-based service
control would enable advanced users to express service
execution specifics. Intermediate users or those
wishing to specify parameters manually or string
together SADI services alongside the many other che-
minformatics and bioinformatics services would also
be able to do this through graphical programming in
the Taverna web service interface, using the Taverna
SADI plugin [36]. This approach could be applied to
computational queries, both big and small, because the
SADI framework specifically addresses synchronous
and asynchronous service execution modes. This paves
the way to integration of more than just database and
computational resources into scientific queries, but
also potentially to automation of experimentation plat-
forms, similar to the platform deployed for the robot
scientist.

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 10 of 12

Finally, distribution of resources with SADI may act as
a form of insurance against computational resources
being lost into oblivion as a result of changes in plat-
form popularity or difficulties in porting computational
resources across platforms, since SADI services expose a
standard, platform-independent interface. Distributing
computational capacity as SADI web services in the
cloud may become an attractive possibility in the future.
In our future work, we intend to significantly expand
our collection of web services to envelop all of chemical
functionality of CDK, as well as openly accessible che-
minformatics and computational packages, potentially in
the cloud.
We believe that the amount of knowledge created or

creatable in chemistry and related fields on a daily basis
has far exceeded the potential of a single human to ana-
lyse and integrate information efficiently. In order for
chemistry to progress and in order for us to handle
these massive and exponentially growing amounts of
data, the greater chemistry and life sciences commu-
nities have to start exploiting the power of the Semantic
Web and deferring some reasoning to machine agents.
We believe that the SADI web services, the semantic
resource envelopment, and the seamless machine rea-
soning they enable constitute the first step on our jour-
ney to a way of practicing science that transcends
disciplines, knows no barriers, and encompasses all
human knowledge without taxing the beholder with
menial and irrelevant tasks: a self-aware science.

Methods
Supporting Service Ontologies
We have developed a formal OWL ontology, Lipinski
Service Ontology (LSO) to capture the formal definition
of service input and output classes, as well as the predi-
cate with which a given service carries out annotations.
LSO is a derivative of the CHEMINF ontology for repre-
senting chemical information and chemical descriptors,
and relies on an upper level ontology, Semantic Science
Integrated Ontology (SIO) [37]. Within LSO, we have
defined a single input class for all the services, smiles-
molecule, and a large and growing set of output classes
to correspond to the output of each service individually.

Service Creation with CDK and OpenBabel
We implemented descriptor calculating functionality
based on classes implementing the IMolecularDescriptor
interface of CDK, version 1.3.0. Where a descriptor cal-
culation returned multiple results, we created a separate
service for each of the results within the descriptor vec-
tor thus returned, in order to preserve the atomic nature
of SADI services. For cases where a three-dimensional
molecular configuration was necessary in order to com-
pute a particular descriptor, we employed the

ModelBuilder3D class of CDK. For the InChI-to-
SMILES service demonstrating the wrapping of pro-
grammatically inaccessible computational capacity distri-
bution, we employed Java system calls to Open Babel
[38] (version 2.3.0) from within the SADI service.
Although we are well aware of the Open Babel API, we
have chosen to access the compiled Babel binary from
the command line as a means of demonstrating that
numerous other command-line tools may be semanti-
cally exposed in a similar fashion.

SHARE and SADI Service Distribution
The SHARE client and SADI skeleton for generating
services are freely available for download and develop-
ment. We distributed our services as Java servlets, using
the Jetty servlet container. We then registered our SADI
services to the central service registry and queried them
on the freely accessible public SHARE interface with the
queries provided in text. Functionality of SADI web ser-
vices that are registered in either the central or a local
service registry can also be employed in manually cre-
ated workflows in Taverna through the SADI Taverna
plugin.

Acknowledgements
This research was funded in part by NSERC CGS for
LLC and the CANARIE NEP-2 Program for the C-
BRASS project. We would like to thank Dr. Mark Wilk-
inson and Luke McCarthy for helpful discussions on
SADI.
We acknowledge the article processing charge for this

article that has been partially funded by Pfizer, Inc. Pfi-
zer, Inc. has had no input into the content of the article.
The article has been independently prepared by the
authors and been subject to the journal’s standard peer
review process.

Author details
1Department of Biology, Carleton University, Ottawa, Canada. 2School of
Computer Science, Carleton University, Ottawa, Canada. 3Institute of
Biochemistry, Carleton University, Ottawa, Canada.

Authors’ contributions
LLC wrote the paper and created the demonstration services. LLC and MD
created the supporting service ontologies. MD contributed to the paper and
provided guidance. Both authors have read and approved the final
manuscript.

Received: 2 December 2010 Accepted: 16 May 2011
Published: 16 May 2011

References
1. Steinbeck C, Han YQ, Kuhn S, Horlacher O, Luttmann E, Willighagen EL: The

Chemistry Development Kit (CDK): An open-source Java library for
chemo- and bioinformatics. J Chem Inf Comp Sci 2003, 43:493-500.

2. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C,
Wegner JK, Willighagen E: The Blue Obelisk - Interoperability in Chemical
Informatics. J Chem Inf Model 2006, 46:991-998.

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/16711717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16711717?dopt=Abstract

3. Benfenati E, Benigni R, Demarini DM, Helma C, Kirkland D, Martin TM,
Mazzatorta P, Ouédraogo-Arras G, Richard AM, Schilter B, Schoonen WG,
Snyder RD, Yang C: Predictive models for carcinogenicity and
mutagenicity: frameworks, state-of-the-art, and perspectives. J Environ Sci
Health C Environ Carcinog Ecotoxicol Rev 2009, 27:57-90.

4. JOELib Java-based cheminformatics library. [http://www.ra.cs.uni-
tuebingen.de/software/joelib/].

5. RDKit Cheminformatics Package. [http://rdkit.org/].
6. DiBernardo M, Pottinger R, Wilkinson M: Semi-automatic web service

composition for the life sciences using the BioMoby semantic web
framework. J Biomed Inform 2008, 41:837-47.

7. Kuhn T, Willighagen EL, Zielesny A, Steinbeck C: CDK-Taverna: an open
workflow environment for cheminformatics. BMC Bioinformatics 2010,
11:159.

8. Web Service Description Language Specification. [http://www.w3.org/TR/
wsdl].

9. Resource Description Framework Specification. [http://www.w3.org/RDF/].
10. Web Ontology Language Specification. [http://www.w3.org/TR/owl2-

overview/].
11. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J: Bio2RDF: towards a

mashup to build bioinformatics knowledge systems. J Biomed Inform
2008, 41(5):706-16.

12. Chen B, Dong X, Jiao D, Wang H, Zhu Q, Ding Y, Wild DJ: Chem2Bio2RDF:
a semantic framework for linking and data mining chemogenomic and
systems chemical biology data. BMC Bioinformatics 2010, 11:255.

13. Linking Open Drug Data Project. [http://esw.w3.org/HCLSIG/LODD].
14. Semantic Annotations for WSDL and XML Schema Specification. [http://

www.w3.org/TR/sawsdl/].
15. Vitvar T, Mocan A, Kerrigan M, Zaremba M, Zaremba M, Moran M,

Cimpian E, Haselwanter T, Fensel D: Semantically-enabled Service
Oriented Architecture: Concepts, Technology and Application. J Service
Oriented Comp Applications 2007, 1:129-154.

16. Neerincx PB, Leunissen JA: Evolution of web services in bioinformatics.
Brief Bioinform 2005, 6:178-88.

17. Stevens R, Baker P, Bechhofer S, Ng G, Jacoby A, Paton NW, Goble CA,
Brass A: TAMBIS:transparent access to multiple bioinformatics
information sources. Bioinformatics 2000, 16:184-185.

18. Lord P, Alper P, Wroe C, Goble C: Feta: A Light-Weight Architecture for
User Oriented Semantic Service Discovery. ESWC 2005, LNCS 3532 2005,
17-31.

19. Wilkinson MD, Links M: BioMOBY: an open source biological web services
proposal. Briefings in Bioinformatics 2002, 3:331-41.

20. Gessler DDG, Schiltz GS, May GD, Avraham S, Town CD, Grant D, Nelson RT:
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic
web services. BMC Bioinformatics 2009, 10:309.

21. Kietz J, Serban F, Bernstein A, Fischer S: Data Mining Workflow Templates
for Intelligent Discovery Assistance and Auto-Experimentation. European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases Workshop on Third Generation Data Mining: Towards
Service-oriented Knowledge Discovery (SoKD’10), Barcelona, Spain, 20
September 2010 - 24 September 2010, 1-12.

22. Wilkinson MD, Vandervalk BP, McCarthy EL: SADI SemanticWeb Services -
‘cause you can’t always GET what you want! Asia-Pacific Services
Computing Conference; December 7-11, 2009; Singapore IEEE Press; 2009,
13-18.

23. Vandervalk BP, McCarthy EL, Wilkinson MD: SHARE: A Semantic Web Query
Engine for Bioinformatics. Lecture Notes in Computer Science 2009,
5926:367-369.

24. SADI Service Registry. [http://sadiframework.org/registry/services/].
25. Lipinski Service Ontology. [http://semanticscience.org/sadi/ontology/

lipinskiserviceontology.owl].
26. CHEMINF Ontology. [http://semanticchemistry.googlecode.com/svn/trunk/

ontology/cheminf.owl].
27. Bond Count Descriptor Service. [http://s6.semanticscience.org:8080/

bondcount/bondcount].
28. SHARE Web Interface. [http://dev.biordf.net/cardioSHARE/].
29. McNaught A: The IUPAC International Chemical Identifier: InChl - A New

Standard for Molecular Informatics. Chem International 2006, 28:12-15.
30. Service for converting InChI to SMILES. [http://s7.semanticscience.

org:9090/wyrm/inchi2smilesbabel].

31. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental and
computational approaches to estimate solubility and permeability in
drug discovery and development settings. Adv Drug Del Rev 1997,
23:3-25.

32. Lipinski CA: Lead- and drug-like compounds: the rule-of-five revolution.
Drug Discov Today: Technologies 2004, 1:337-341.

33. Parameterized LogP Calculator Service. [http://s7.semanticscience.
org:9090/parameters/paramlogp].

34. KEGG Pathway Association Retrieval Service. [http://dev.biordf.net/
~kawas/cgi-bin/getKeggPathwaysByKeggDrug].

35. Functional Group Annotation Service. [http://s7.semanticscience.org:9090/
computesas/fgannotate].

36. SADI Taverna Plugin. [http://www.taverna.org.uk/documentation/taverna-
plugins/taverna-2-x-plugins/#sadi_plugin].

37. Semanticscience Integrated Ontology. [http://semanticscience.org].
38. Open Babel Open Source Chemistry Toolbox. [http://openbabel.org/wiki/

Main_Page].

doi:10.1186/1758-2946-3-16
Cite this article as: Chepelev and Dumontier: Semantic Web integration
of Cheminformatics resources with the SADI framework. Journal of
Cheminformatics 2011 3:16.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Chepelev and Dumontier Journal of Cheminformatics 2011, 3:16
http://www.jcheminf.com/content/3/1/16

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/19412856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19412856?dopt=Abstract
http://www.ra.cs.uni-tuebingen.de/software/joelib/
http://www.ra.cs.uni-tuebingen.de/software/joelib/
http://rdkit.org/
http://www.ncbi.nlm.nih.gov/pubmed/18373957?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18373957?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18373957?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20346188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20346188?dopt=Abstract
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/RDF/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.ncbi.nlm.nih.gov/pubmed/18472304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18472304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478034?dopt=Abstract
http://esw.w3.org/HCLSIG/LODD
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.ncbi.nlm.nih.gov/pubmed/15975226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://sadiframework.org/registry/services/
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl
http://semanticscience.org/sadi/ontology/lipinskiserviceontology.owl
http://semanticchemistry.googlecode.com/svn/trunk/ontology/cheminf.owl
http://semanticchemistry.googlecode.com/svn/trunk/ontology/cheminf.owl
http://s6.semanticscience.org:8080/bondcount/bondcount
http://s6.semanticscience.org:8080/bondcount/bondcount
http://dev.biordf.net/cardioSHARE/
http://s7.semanticscience.org:9090/wyrm/inchi2smilesbabel
http://s7.semanticscience.org:9090/wyrm/inchi2smilesbabel
http://s7.semanticscience.org:9090/parameters/paramlogp
http://s7.semanticscience.org:9090/parameters/paramlogp
http://dev.biordf.net/~kawas/cgi-bin/getKeggPathwaysByKeggDrug
http://dev.biordf.net/~kawas/cgi-bin/getKeggPathwaysByKeggDrug
http://s7.semanticscience.org:9090/computesas/fgannotate
http://s7.semanticscience.org:9090/computesas/fgannotate
http://www.taverna.org.uk/documentation/taverna-plugins/taverna-2-x-plugins/#sadi_plugin
http://www.taverna.org.uk/documentation/taverna-plugins/taverna-2-x-plugins/#sadi_plugin
http://semanticscience.org
http://openbabel.org/wiki/Main_Page
http://openbabel.org/wiki/Main_Page

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Exposing CDK QSAR Functionality with SADI
	SADI-Enabled Format Interconversion and Software Interfacing
	Lipinski Rule of Five the Semantic Way
	Mechanisms for Parameter and Computational Experiment Provenance Specification
	Integration and Repurposing of Chemical Resources
	Exposing Chemical Database Resources as SADI Services

	Conclusions
	Methods
	Supporting Service Ontologies
	Service Creation with CDK and OpenBabel
	SHARE and SADI Service Distribution

	Acknowledgements
	Author details
	Authors' contributions
	References

