
Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15
http://www.jcheminf.com/content/4/1/15

DATABASE Open Access

The semantics of Chemical Markup Language
(CML) for computational chemistry :
CompChem
Weerapong Phadungsukanan1, Markus Kraft1*, Joe A Townsend2 and Peter Murray-Rust2

Abstract

This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It
has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by
adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio
quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single
point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also
describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database
repositories. In addition, some of the challenges and difficulties in developing common computational chemistry
dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

Background
Introduction
Computational Quantum Chemistry is a very popular
area of research today and will be even more popular in
the future. This is due to several emerging key technolo-
gies. Developments in computational quantum theory,
better numerical methods, as well as parallel and dis-
tributed computing, have significantly reduced the com-
putational time (from months to days or hours). With
software packages such as Gaussian [1], GAMESS (US)
[2], and GAMESS-UK [3] properties of large or short-
lived molecules can be calculated which may be diffi-
cult or impossible to obtain experimentally. Increasingly,
this is done with little human intervention, as automated
chemical model generators are becoming more and more
popular [4]. As a consequence the amount of data avail-
able will very soon become too vast to be analyzed manu-
ally. Regardless of how advanced the technology is, these
calculations will always require resources which may be
wasted if somebody else has completed the same calcula-
tion already. For this reason efficient storage and retrieval
of computational chemistry data is an important issue. To

*Correspondence: mk306@cam.ac.uk
1 Department of Chemical Engineering and Biotechnology, University of
Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
Full list of author information is available at the end of the article

address this issue the development of an easily accessible
and usable infrastructure is necessary.
At present, most computational results are output as

“log files” which are designed to record information as
human-readable plain text. The log files contain not
only information about the calculated properties, but
also metadata, such as computing environments, errors,
warnings, etc. Many crucial pieces of information, such as
units, computational methods or algorithms, are usually
omitted from the outputs because they are often con-
sidered to be “obvious” [5] or are provided in separate
documentation. Moreover, the structure of the log files
depends on the software used, which creates difficulties
in retrieving textual information among the different for-
mats. This impedes the automation of the data analysis
which is essential in the study of a large chemical system.
A typical solution to the problem is to extract the infor-

mation from the log files (known as “parsing”) and cast
them into a format that is more efficient for retrieval and
processing. The eXtensible Markup Language [6] (XML)
is usually selected for storing data due to its universal-
ity and extensibility for both simple and complex data.
Furthermore, XML provides the means for checking con-
formance of the structure and data ensuring that the XML
instances meet the requirements of the application in
question. The fact that XML has become an industrial

© 2012 Phadungsukanan et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 2 of 16
http://www.jcheminf.com/content/4/1/15

standard for data storage, in addition to the fact that most
modern software is built to support it, are the strongest
testaments to its usefulness.
For chemistry applications, the Chemical Markup

Language (CML) [7-10] has been developed based on
the XML standard in order to provide the semantics for
chemical data. CML allows the representation of complex
chemical objects by using the hierarchical tree structure
of XML. In addition, CML is accompanied by a num-
ber of methodologies [11-13] and infrastructures, such
as CMLXOM [14], Jumbo6 [15], Jumbo-Converter [16]
and CMLValidator [17], which support the development
of a more general computational chemistry format. The
following features make CML specifically suited for our
purpose:

1. CML contains a set of hundreds of chemical name
tags covering all aspects of chemistry and so allows
one to compose a suitable representation for any
chemical data;

2. CML is widely supported by chemistry software, such
as, OpenBabel [18], PyBel [19], Jmol [20], Avogadro
[21], making it easy to integrate a subdomain format
of CML into most of the existing systems which use
these libraries with little modification;

3. CML has been developed over 15 years so the
terminology, concepts and semantics have become
highly stable, complete and well understood with
relatively small changes in its schema and, as a result,
it has been accepted by the chemistry community.

The purpose of this paper is to use CML to develop
a standard called CompChem, which is suitable to rep-
resent computational chemistry information, including
a set of supporting open-source tools. Furthermore, we
illustrate the use of CompChem for managing computa-
tional chemistry data and for calculating thermodynamic
properties.
The paper is structured as follows. We briefly review

the important CML concepts used throughout this paper
in section “CML overview”. In section “Methodology
in CompChem”, we describe the requirements for the
design of CompChem and the semantics and the detailed
specification of CompChem. Finally, in section “Utility :
example use cases”, we report a recent application with
examples.

CML overview
In this section, we briefly outline the key CML concepts
and terminologies, which are adopted by CompChem,
for readers who are not familiar with CML. Detailed
discussions have already been published in Murray-Rust
et al. [13] and Townsend et al. [11]. The latest infor-
mation of the ongoing developments are also publicly

available online at www.xml-cml.org. The development of
CompChem is based on the following components and
concepts:

• XML Schema [22] is an XML-based schema
language which specifies the constraints on the
structure of an XML document. It is also written in
XML and referred to as XML Schema Definition
(XSD). The term “XML Schema” (with a capital “S”)
should not be confused with XML schema. The latter
is a term describing schema languages in general.
XML Schema is one of the most commonly used
schema languages today. It was published as a W3C
recommendation in 2001 [23] to replace Document
Type Definition (DTD) and provide additional
features for defining the constraints and validating
the contents of XML document.

• CML Schema [10,24] is an XML Schema containing
hundreds of chemical definitions (XML tags and
attributes). It covers most aspects of chemistry, e.g.,
CMLReact [25] for chemical reactions, CMLSpec
[26] for spectral data, CML for crystallography [27]
and CML for polymers (PML) [28]. With the CML
Schema, one can determine if a CML document
conforms to the specification or not. For example, the
schema will tell whether a CML document contains a
misspelled element name or an undefined attribute.
This ensures that the applications will not generate
any errors due to using a “bad” CML document as
their input. In the latest version of CML Schema
(version 3), the content model restrictions have been
lifted in order to make it more flexible for creating
any type of chemical documents.

• CML Convention is a set of rules and constraints on
the content model of a CML document. It is a subset
of the CML Schema with some additional rules for a
specific chemistry domain, some of which cannot be
defined using XSD.When a convention is specified on
a CML element (using the @convention attribute),
the structure of the element must conform to the
rules defined by the convention. The convention is
represented by a short-hand notation, known as a
qualify name (QName [29]), which represents a
globally unique Uniform Resource Locator (URL).

• CML Dictionary is a collection of “controlled
vocabularies” which are used to add semantics to
generic CML elements, especially for <parameter>
and <property>. There are several types of CML
dictionaries, for example, property and parameter
dictionaries (specified using @dictRef), unit
dictionaries (specified using @unit) and unit type
dictionaries (specified using @unitType). The
existing dictionaries can be found at http://www.xml-
cml.org/dictionary/.

www.xml-cml.org
http://www.xml-cml.org/dictionary/
http://www.xml-cml.org/dictionary/

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 3 of 16
http://www.jcheminf.com/content/4/1/15

• Validation is the most important step to verify
whether a CML document conforms to the structure
required by your application. The CML approach to
validation [11] consists of several steps, e.g., CML
Schema, CML convention, CML dictionary
validations, and so on. These are usually performed
sequentially (as shown in Figure 1), however, they are
completely independent. A sophisticated online
validator is available at http://validator.xml-cml.org/.

Methodology in CompChem
CompChem design
The development of CompChem started back in the sum-
mer of 2009 with the initial goal of archiving our published
computational quantum chemistry results [30-34], which
were calculated using the convenient software Gaussian
03, in a machine readable format and stored in a que-
riable database for automating the studies of chemical
reactions in a combustion system. It was a collaborative
effort between chemical engineers and cheminformatic
scientists to explore the power of SemanticWeb technolo-
gies for storing scientific data. The format was developed
purely using the existing CML without making any modi-
fication to its schema. The number of elements we use in
CompChem, see sections “CompChem convention” and
2, is currently relatively small compared to the whole set
of CML elements available, but it is sufficient for most of
the data that needs to be stored in the current work. It is
very likely that other CML elements will be included to
support other functionalities in later years as CompChem
evolves.
Like other XML standards, the CompChem convention

can only work well if it is widely accepted and, until now,
there has not been one for computational chemistry, due
to the varied nature of studies. This is a fact that we have
to accept and, therefore, we only focus on formalizing the

data calculated from the quantum chemistry software in
this work.
The design of the CompChem convention shares and

inherits the common goals of CML, PolymerMarkup Lan-
guage (PML) and other XML standards, which are quoted
from XML 1.0 W3C Recommendation [6]. (Readers are
advised to read this documentation for further details)
These are as follows:

1. CompChem shall be straightforwardly usable over
the Internet;

2. CompChem shall support a wide variety of
applications;

3. CompChem shall be compatible with Standard
Generalized Markup Language (SGML);

4. It shall be easy to write programs which process
CompChem documents;

5. The number of optional features in CompChem is to
be kept to the absolute minimum, ideally zero;

6. CompChem documents should be human-legible
and reasonably clear;

7. The CompChem design should be prepared quickly;
8. The design of CompChem shall be formal and

concise;
9. CompChem documents shall be easy to create;
10. Terseness in CompChem markup is of minimal

importance.

Apart from these general goals, there are more specific
goals which distinguish CompChem from CML and other
XML standards:

1. CompChem should be based on CML and reuse
its components where appropriate. This is a
typical goal of all subdomain formats of CML.
Reusing CML and its components is the fundamental
key to improve the quality and consistency of the

Figure 1 A linear schematic diagram of validation process for CompChem.

http://validator.xml-cml.org/

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 4 of 16
http://www.jcheminf.com/content/4/1/15

format and reduce development cost and effort. In
addition, any future improvement made into CML
and its technologies will also be immediately applied
to CompChem. In the development of CompChem,
we introduced no new components into the CML
Schema. Instead, the new concepts are defined using
CML dictionaries and are applied to generic CML
containers, see Section “Using dictionary in
CompChem”.

2. CompChem should capture the semantics of most
computational chemistry calculations. This is the
main goal of our work. It is to reduce the flexibility in
CML Schema and introduce a stricter structure into
the documents so that software and applications
know exactly how to process the information. The
semantics of CompChem is modelled based on the
typical nature of computational simulations or
calculations, i.e., contains model input and output
steps, see Section “CompChem convention”.

3. CompChem shall support any chemical data.
CML provides a rich set of chemical data types in
addition to standard XML data types. It is also
possible to build more complex chemical objects
from the abstract CML data types and components,
thus, CompChem has gained this advantages from
reusing CML.

4. CompChem should be able to be validated using
standard processing tools. This is an important
consideration to make the CompChem platform
independent. The development of CompChem
involves using both CML components and CML
technologies. The CML components, i.e., CML
elements and attributes, are validated using CML
Schema and any standard XML Schema processor.
The XML stylesheet, XPath [35] and XSLT [36] are
chosen for implementing and validating the CML
conventions. Therefore, one should be able to
validate the CompChem convention by using any
web browser capable of rendering XSLT.

5. CompChem should represent both
computational input and output. CompChem is
designed to be used as both input and output for the
calculations. The computation input contains critical
information, such as calculation model, basis set,
level of theory, job type, etc., that defines the
calculation itself. This information is required for the
search functionality of the digital repository and the
calculation output is usually what is returned from
the search. Being able to store input and output are
required features of CompChem.

6. CompChem should interoperate with other XML
or CMLmodels (conventions). This is one of the
common goals that is shared by all CML works.
Interoperability is a requirement for CompChem to

be used in conjunction with other existing
XML-based formats such as Dublin Core© Metadata
(DCMI) and Object Reuse and Exchange (OAI-ORE)
standards. This makes CompChem not only reuse
the CML components but also other well established
formats.

7. CompChem shall allow users to define and insert
new concepts. As discussed earlier, new concepts
are added into CompChem through the use of a
dictionary mechanism. This is not only applied to the
basic values, such as <property>, <parameter>,
@unit and @unitType, but also the complex model
objects. It is feasible to insert an entire new
convention into CompChem, although, it may not be
understood by all standard chemistry tools.

8. CompChem Convention rules must be clear and
well documented. Although the convention rules
are implemented into the CompChem convention
validator using stylesheets, it is important that there
must also be human readable documentation. Clear
documentation benefits both users and developers in
the long term. We will adhere to this in all of our
development. In practice, we make the decisions on
what are the rules that should be in CompChem and
then write documentation from these rules. After
that, we implement the rules into the convention
validator. This discipline ensures that there is always
documentation for every convention we develop.

Using dictionary in CompChem
Because dictionaries play a central role in defining the
semantics within a CompChem document, it is essential
to fully understand the concepts and how the dictio-
nary referencing mechanism works. Both are explained in
detail in this section.
Concepts are the building blocks of scientific knowl-

edge. In natural language, similar concepts can be
expressed using several words or synonyms which are
the common causes of ambiguity, confusion and error
when the information is being processed. In software
development, several similar concepts or synonyms can
be grouped and represented by a carefully pre-determined
term or vocabulary, commonly known as controlled
vocabulary. Using controlled vocabulary, one can impose
an order and reduce ambiguity by allowing the same
concepts to be labelled using a single unique term.
In XML, the tags and attributes are predetermined

terms, in other words, an XML schema is a set of con-
trolled vocabularies. CML is no exception. The CML
elements and attributes are predefined to cover almost
all general aspects of chemistry and computational
chemistry. However, it is impossible and futile to pre-
define every possible chemistry concept into CML. For
example, concepts like boiling point, melting point, basis

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 5 of 16
http://www.jcheminf.com/content/4/1/15

set, entropy, enthalpy, methodology, algorithm, etc., are
not included in the CML Schema. Instead, CML uses
a dictionary and a referencing mechanism to specify a
new concept on the generic CML containers, such as
<parameter>, <property>, <scalar>, <matrix>, etc.,
which can be used to hold the values of any types.
A new concept can be added as an entry into a CML

dictionary without requiring the CML Schema to be mod-
ified. The dictionary referencing mechanism consists of
3 steps; defining the new concept, creating a reference
to the defined concept and applying the reference to the
CML generic container.

• Defining a new concept. In Figure 2 (1), we show a
snippet of a CML dictionary which is created
according to the CML dictionary convention. A
dictionary can contain multiple child elements of

entries allowing the vocabulary in the same category
to be grouped as one set. The figure only briefly
illustrates how a dictionary and its vocabulary should
be defined so readers are strongly advised to read the
latest detailed specifications of the dictionary
convention on www.xml-cml.org for more
information.

• Creating a reference to the defined concept. In
CML, a qualify name (QName) [29] is used to
identify an entry in the dictionary. A QName
contains a namespace URI [29], a local part and a
prefix. The prefix is only used as a placeholder for the
associated namespace URI and is declared in a
namespace declaration. Therefore, in order to be able
to identify the dictionary, each dictionary must have a
unique identifier and it is specified using
@namespace on <dictionary>. This is not to be

Figure 2 Diagram illustrating the dictionary referencing mechanism using @dictRef in 3 steps. A snippet of the dictionary and its entry are
shown in the top (orange) box and a snippet of CompChem job module is show in the bottom (blue) box.

www.xml-cml.org

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 6 of 16
http://www.jcheminf.com/content/4/1/15

confused with the XML namespace which is denoted
by @xmlns. Specifying @namespace on
<dictionary> does not change the actual XML
namespace of <dictionary>; it remains in the
CML namespace (http://www.xml-cml.org/schema).
Each entry must have a unique @id (unique within
the dictionary) and this is used as the local part of the
QName. The combination of the dictionary
@namespace and entry @id generates a globally
unique reference for the defined concept. In Figure 2
(2), the prefix “cc” is associated to the same URI
(http://www.xml-cml.org/dictionary/compchem/)
that is declared for the CompChem-core dictionary’s
@namespace. Using the entry id “job”, a QName
“cc:job” is constructed as a reference in this step.

• Applying the reference. The reference or QName
can be applied to a container using @dictRef,
shown in Figure 2 (3).

This referencing mechanism is not only applied to
@dictRef but also @units, @unitType and other
attributes. Although the mechanisms are similar,
the unit and unit type dictionaries are not defined
using <dictionary> but rather <unitList> and
<unitTypeList> respectively. This is because the unit
and unit type are common concepts for scientific data so
it has been defined in the CML Schema.

CompChem convention
According to our design criteria that CompChem con-
vention should capture the typical underlying processes
of quantum calculations and their relationships, the pro-
posed architecture described here is broad and may
be applied to any computational modeling in general.
The core concepts of CompChem contain the following
components:

1. Job list (jobList) In computational quantum
chemistry, calculations are often comprised of a
series of subtasks, e.g., coarse optimization → fine
optimization → NMR Spectrum Analysis. Each job
performs a different type of calculation and passes
the results to the next calculation job; this is because
most quantum chemistry software packages are
designed to be modularized and only to perform a
single task at a time. The jobList concept is
introduced to capture this series of successive
subtasks and links the information from one subtask
to the next subtask. It behaves like a wrapper for job
modules.

2. Job (job) The job concept represents a
computational job or a computer simulation task,
e.g., geometry optimization and frequency analysis
jobs, performed by quantum chemistry software. The

job concept is the smallest module that fully
describes an overall picture of a computational
modeling unit. It consists of model parameters
(initialization) and model optimizations or
calculations (calculation), model results
(finalization) and computing environments
(environment). These four components are
fundamental to every simulation. However, it is not
required that all four components be present in every
job. Only model parameters are mandatory. A
module that contains only model parameters may be
used as an abstract quantum chemistry input.

3. Model initialization (initialization) The
model initialization concept represents the model
parameters and inputs for a computational job.
The model parameters are one of the most important
elements that exist in every modeling study. There-
fore, it is required in the CompChem convention.

4. Model calculation (calculation)

A model calculation concept represents
the computation, the optimization or the iteration
processes for the computational job specified
by the initialization. The calculation process may or
may not be of interest to some scientists; therefore,
it is an optional information in CompChem.

5. Model finalization (finalization)

A model finalization concept represents
the model output or result of a computational
job. In some cases, a CompChem module may only
represent the model inputs and does not contain any
calculations, therefore, it is optional in CompChem.

6. Computing environment (environment) The
computing environment concept refers to the con-
figuration settings with respect to the hardware plat-
form, software application and operating system. The
environment also includes metadata such as machine
id, username, starting and finishing date time, tools,
compilers, and Internet Protocol address (IP address).

7. User defined concept CompChem allows users
to define their own concepts if the recommended
concepts above do not fit into their requirements.
A user defined concept in CompChem is represented
by a module element with a @dictRef attribute
whose value points to an entry in a dictionary
that defines the concept. Users are free to design
any structure for a user defined module. However,
it is recommended to use existing structures or
a structure that has a schema for validation. Informa-
tion in a user defined module cannot be guaranteed
to be understandable by all processing software tools.

Each concept, defined above, is associated with the
core CompChem dictionary (available at http://www.xml-
cml.org/dictionary/compchem/), whose @dictRefs and

http://www.xml-cml.org/schema
http://www.xml-cml.org/dictionary/compchem/
http://www.xml-cml.org/dictionary/compchem/
http://www.xml-cml.org/dictionary/compchem/

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 7 of 16
http://www.jcheminf.com/content/4/1/15

Table 1 Rules of CompChem

dictRef. Rules

cc:jobList - A jobList module element MUST have an id attribute the value of which MUST be unique within the
module specifying the compchem convention.

- A jobList module element MUST contain at least one job module child element.

- A jobList module element SHOULD have a title attribute the value of which MUST be a non-empty string
specifying a human-readable title for the module.

- A jobList module element MAY contain more than one child element in any namespace.

cc:job - A job module element MUST contain exactly one initialization module child element.

- A job module element MAY contain zero or more calculation module child elements.

- A job module element MAY contain no more than one finalization module child element.

- A job module element MAY contain no more than one environment module element.

- The order of the calculationmodule elements in a jobmoduleMUST represent the order of the calculation
steps but there is no restriction on the order of other child element types.

- If a calculation module element is present, a finalization module element MUST also be present as a child
of a job module element.

- A job module element SHOULD have a title attribute, the value of which MUST be a non-empty string
specifying a human-readable title for the module.

- A job module element MAY also contain other child elements in any namespace.

cc:initialization - An initialization module element MUST NOT contain more than one <molecule> child element. The
<molecule>MUST specify a convention using the convention attribute and the convention SHOULD be
one of the RECOMMENDED molecular conventions.

- An initialization module element MUST NOT contain more than one <parameterList> element.

- An initialization module element MAY contain any number of user defined module element.

- An initialization module element MUST contain at least one child of molecule, <parameterList> or
user defined module elements.

- An initialization module element MAY contain more than one child element in any namespace but MUST
NOT contain a property child element or a <propertyList> child element.

- A job module element MAY also contain other child elements in any namespace.

cc:initialization - An initialization module element MUST NOT contain more than one <molecule> child element. The
<molecule>MUST specify a convention using the convention attribute and the convention SHOULD be
one of the RECOMMENDED molecular conventions.

- An initialization module element MUST NOT contain more than one <parameterList> element.

- An initialization module element MAY contain any number of user defined module element.

- An initialization module element MUST contain at least one child of molecule, <parameterList> or
user defined module elements.

- An initialization module element MAY contain more than one child element in any namespace but MUST
NOT contain a property child element or a <propertyList> child element.

cc:calculation - A calculation module element MUST NOT contain more than one molecule child element. The molecule
MUST specify a convention using the convention attribute and the convention SHOULD be one of the
RECOMMENDED molecular conventions.

- A calculation module element MUST NOT contain more than one <parameterList> element.

- A calculation module element MUST NOT contain more than one <propertyList> element.

- A calculation module element MAY contain any number of user defined module elements.

- A calculation module element MUST contain at least one child of molecule, <parameterList>,
<propertyList> or user defined module elements.

- A calculation module element MAY contain more than one child element in any namespace.

cc:finalization - A finalization module element MUST NOT contain more than one molecule child element. The molecule
MUST specify a convention using the convention attribute and the convention SHOULD be one of the
RECOMMENDED molecular conventions.

- A finalization module element MUST NOT contain more than one <propertyList> element.

- A finalization module element MAY contain any number of user defined module elements.

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 8 of 16
http://www.jcheminf.com/content/4/1/15

Table 1 Rules of CompChem (Continued)

- A finalization module element MUST contain at least one molecule child, <propertyList> child or
user defined module element.

- A finalization module element MAY contain more than one child element in any namespace but MUST
NOT contain a parameter child element or a <parameterList> child element.

cc:environment - An environment module element MUST NOT contain more than one <propertyList> element.

- Any environment property element MUST be a child of a <propertyList> element.

- An environment module element MAY contain more than one child element in any namespace including
any number of user defined module elements. However, CompChem can only understand a particular set
of concepts.

- An environmentmodule MUST contain at least one child of <parameterList> or userDefinedModule
elements.

- An environmentmodule element MAY containmore than one child element in any namespace but MUST
NOT contain a parameter child element or a <parameterList> child element.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are
to be interpreted as described in RFC 2119 [37].

rules are given in Table 1. The rules in this table are
coded into a stylesheet which can be used to validate a
CompChem document. It is anticipated that the rules
need to be modified or extended when more complex
calculations, such as transition state searches ormolecular
dynamic simulations are included in CompChem.
Figure 3 shows a snippet of a CompChem document

with the key features labeled accordingly.

Semantics of properties and parameters
There is a core set of CML which is required for stor-
ing the actual contents and data. Since CML Schema are
content model free, it is necessary to precisely define how
the elements should be used. In this section, we list and
describe the CML elements which are often found to be
useful in CompChem documents. The rules given here
for these components are meant to serve only as a guide-
line for using the common CML components, such as
<property>, <parameter>, <scalar>, <array>, and
<matrix>. If the given rules are not applicable, users are
allowed to define their own structures and annotate it
with their own dictionary reference using the @dictRef

attribute. However, the new structures should be clearly
specified and documented in the user dictionary so that
anyone is able to write a code that can process the
dictionary.

Parameter and property containers
A container is a general notion for an XML element that
contains data. The CompChem element parameter is also
a container. The exact definition of parameter depends
on the context where it is used. In the context of Com-
pChem, parameters are a set of model conditions which
can be numerical quantities, options, constraints, text or
any chemical objects, for example, a basis set (e.g., 6-
311+G(d,p)), level of theory, convergence criteria, calcula-
tion type (e.g., geometry optimization, frequency analysis,

NMR). Some values can be enumerated. For example,
Gaussian 03/09 [1] may need to know whether it should
use symmetry in the wave function or not. This option
can be set to only either “NoSymm” or “Symm” according
to the online manual for Gaussian software [1] and this
can be pre-enumerated for use in a CompChem document
with values “On” or “Off”.
In CompChem, a value cannot be added directly as

a text child of a parameter. It must be wrapped by a
CML primitive data container, see Section “Data con-
tainers”, which is usually one of <scalar>, <array> or
<matrix>. For plain text, a scalar should be used. This
allows the computer software to understand exactly which
variable type (i.e., variable type in programming language)
is suitable for the value of a given parameter. In many
cases, a primitive container is not sufficient and it requires
a complex object representation to hold the data. Figure 4
shows examples of both primitive and complex chemistry
objects. In Figure 4(b), we illustrate a complex object using
<table>.
Similar to parameter, a property is also another CML

generic container which is used to wrap any primitive
or complex object data type. In the context of Com-
pChem, properties are derived quantities from the output
of the model calculation, for example, a set of vibrational
frequencies of a molecule, electronic energy, derived ther-
modynamical properties from statistical mechanics cal-
culations. It is often found that properties are numeri-
cal quantities rather than enumerated values or text so
primitive containers such as <scalar>, <array> and
<matrix>, are usually sufficient for storage. For complex
objects, they are supported in exactly the same ways as for
the parameters.
CompChem also uses @dictRef to provide the seman-

tics for parameter and property. For example, in Figure 3,
a parameter has a @dictRef value of cc:basis which
points to a cc:basis entry in a CompChem dictionary.

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 9 of 16
http://www.jcheminf.com/content/4/1/15

Figure 3 The structure of CML for storing computational chemistry output: (1) CompChem convention declaration, (2) CML convention
namespace, (3) a jobList module, (4) a job module, (5) an initialization module, (6) Molecular convention declaration, (7) a basis set
parameter specified by cc:basis dictionary reference, (8) a Gaussian specific parameter declared in Gaussian dictionary, (9) a finalization
module, (10) si:none for dimensionless units, (11) CML identifier.

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 10 of 16
http://www.jcheminf.com/content/4/1/15

<parameter dictRef="cc:basis">

<scalar>6-311+G(d,p)</scalar>

</parameter>

(a)simple basis set object of a parameter.

<property dictRef="cc:vibrations">

<table>

<array dataType="xsd:double" size="3" units="nonSi:amu" dictRef="cc:reduced_masses">

 1.0826 1.0452 1.0821

</array>

<array dataType="xsd:double" size="3" units="nonSi:mDyne.A^-1" dictRef=

"cc:force_consts">

 1.6569 9.1308 9.9834

</array>

<array dataType="xsd:double" size="3" units="nonSi:GHz" dictRef="cc:frequencies">

 1611.7139 3850.6027 3957.1237

</array>

</table>

</property>

(b)complex vibrational object of a property.

Figure 4 Simple (a) and complex (b) objects in CML.

Thus, this parameter can be interpreted using the defini-
tion of the associated dictionary entry, i.e., cc:basis.
However, there is one exception for molecule elements.

Although, an initial molecular geometry can be consid-
ered as a model parameter or a model input, CompChem
does not categorize it as parameter or property. This is
to avoid creating unnecessary concepts and to distinguish
the molecule, which is fundamental to every computa-
tional chemistry calculation, from other parameters and
properties. The semantics of a molecule is considered
to be implicit and is determined by its location in the
CompChem document. For example, if a molecule is a
child of initialization or calculation module, it is consid-
ered as an input, i.e., parameter, of that model or cal-
culation. If it is found as a child of finalization module,
it is considered to be an output, i.e., property, of the
model.

Data containers
CML provides elements to hold many different types of
mathematical, scientific and computational values, e.g.,
scalar, vector, matrix, array, etc., which we will refer to as
“data containers”. The rules of the key containers are given
in Table 2. We will briefly describe the more commonly
used data containers.

• scalar is used to hold scalar data, which is a single
value of type integer, real, boolean, string, date, etc.

• array is used to hold a one dimensional array data
structure of primitive data type such as integer, real
or boolean but it is not suitable for all data types such
as string and date, for example.

• matrix is used to hold a two-dimensional rectangular
matrix data structure of primitive data type such as

integer and real, and it is not suitable for all data
types such as string, date or boolean, for example.

• zMatrix In many quantum chemistry calculations,
some atomic coordinates are represented using a
z-Matrix coordinate system. CompChem adopts the
<zMatrix> from the CML schema and uses it as
container for <length>, <angle> and <torsion>.

Utility : example use cases
MolHub
MolHub is an online infrastructure for chemical data that
is used in combustion kinetic studies (http://como.cheng.
cam.ac.uk/molhub/), a web browser snapshot is shown in
Figure 5. Its architecture is highly flexible allowing add-on
modules, i.e., plugins, to be added independently. It was
originally named “CoMo CompChem” (CMCC), which
was published as part of Shirley et al. [33] for determin-
ing thermochemistries and studying the equilibrium of
new titanium gas phase species which are involved in an
industrial rutile chlorinator.
In MolHub the operating data resources are mainly in

XML format (CompChem for computational chemistry
data) but it also offers alternative access to the raw data
(in legacy format), in the case that the XML formats do
not contain the required information. The resources are
uniquely identified by URLs and linked semantically by
the Resource Description Framework (RDF) [38] allowing
the data to be accessed and queried using standard HTTP
protocol. The design of URLs and services are based on
the REpresentational State Transfer (REST) principles in
which the URL represents the location of the resource and
the HTTP method represents the operation that can be
applied to the resources.

http://como.cheng.cam.ac.uk/molhub/
http://como.cheng.cam.ac.uk/molhub/

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 11 of 16
http://www.jcheminf.com/content/4/1/15

Table 2 Rules of data containers

CML element Rules

<scalar> - A <scalar>MUST conform to the CML Schema.

- The data type of <scalar> is REQUIRED and MUST be specified using a @dataType attribute. The
value of @dataType attribute MUST be a primitive data type, e.g., xsd:integer, xsd:double,
xsd:real, xsd:float, xsd:boolean, etc.

- A <scalar>MUST have units unless the @dataType is an xsd:string. (si:none for dimension-
less units).

- A <scalar>MUST NOT have unit and unit type if the @dataType is an xsd:string.

<array> - An <array>MUST conform to the CML Schema.

- The data type of <array> is REQUIRED and MUST be specified using the @dataType attribute. The
value of @dataType attribute MUST be a primitive data type, e.g., xsd:integer, xsd:double,
xsd:real, xsd:float, xsd:boolean, etc., but it MUST not be an xsd:string.

- An <array>MUST have units even if they are dimensionless (si:none for dimensionless units).

- The size of <array> is OPTIONAL and is specified using the @size attribute with the minimum value
of 1.

- The @delimiter attribute is OPTIONAL. If not set, the array entries are separated by whitespace.

<matrix> - A <matrix>MUST conform to the CML Schema.

- The data type of <matrix> is REQUIRED and MUST be specified using the @dataType attribute.
The value of @dataType attribute MUST be a primitive data type, e.g., xsd:integer, xsd:double,
xsd:real, xsd:float, xsd:boolean, etc., but it MUST not be an xsd:string.

- A <matrix>MUST have units even if it is dimensionless (si:none for dimensionless units).

- The dimension of a <matrix> is REQUIRED and MUST be specified using @rows and @columns
attributes with the minimum values of 1.

- The @delimiter attribute is OPTIONAL. If not set, the matrix entries are separated by whitespace.

<zMatrix> - A <zMatrix>MUST conform to the schema of CML matrix.

- A <zMatrix> SHOULD be a child of a <molecule> in molecular convention.

- A <zMatrix>MAY contain any number of <length>, <angle> and <torsion>, which MUST also
conform to the CML Schema.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are
to be interpreted as described in RFC 2119 [37].

The MolHub online service can be accessed either
directly from a web browser or from within software.
Since MolHub’s core API is based on the pure HTTP
protocol, it is possible to use almost any programming
language that provides HTTP libraries, e.g., httplib in
Python, URLConnection and HttpClient in Java, libcurl
in C++, etc. We achieve the goal of creating a collab-
orative environment, while at the same time allowing
the use of the programming language that works best
in the developer’s environment. However, simple web
interfaces such as a form to upload data are also pro-
vided. Users can access these features through the web
browser without additional tools, allowing them to
easily interact with MolHub. The web frontend is built
using standard HTML5 and Javascript, in which the
Javascript codes communicate with our core API using
Ajax (Asynchronous JavaScript and XML).

Example A: Indexing computational chemistry data
Semantics in CompChem are implicit, i.e., the relation-
ships of elements are conveyed based on a mutual under-
standing (not by RDF [38] and OWL ontologies [39]).

The implicit semantics of CompChem can be easily trans-
lated into RDF allowing each resource to be identified
and related in the form of subject-predicate-object triples
(RDF statements). So far, there exist no ontology for com-
putational chemistry which can be used as a starting point
for a semantic conversion from CompChem to RDF. The
development of relationships in RDF is currently based
on the demand for very specific applications. The graph
database (Triple store for RDF) has proven to be easy
to understand and maintain (in comparison to multiple
tables in a relational database management system), espe-
cially for scientific data in which the information is not
frequently changing all the time.
At the current stage, MolHub has been developed

to support the data of Gaussian 03 calculations (by
converting into CompChem format) providing several
online services for calculating thermochemistries of exist-
ing online molecular resources. It automatically converts
the uploaded Gaussian log files into CompChem, RDF,
HTML, N3 (Notation3, an RDF alternative) and PNG
(Portable Network Graphics) images. The RDF files are
added to a triple store, i.e., we use OpenRDF [40] in

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 12 of 16
http://www.jcheminf.com/content/4/1/15

Figure 5MolHub - data repository for computational quantum chemistry.

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 13 of 16
http://www.jcheminf.com/content/4/1/15

Figure 6 A snippet of TiO2 data in CompChem format consisting of two jobmodules.

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 14 of 16
http://www.jcheminf.com/content/4/1/15

this work, offering a queriable back-end through SPARQL
[41]. Various data formats are viewable from the web
browser without any additional software which makes
it easy for users to explore, and for search engines to
discover and index our data.

Example B: titanium species’ Thermochemistries
In our recent publication, Shirley et al. [33], we have
demonstrated the use of CompChem and RDF for inves-
tigating the thermodynamic properties of new titanium-
oxygen molecules. In that paper, the python codes were
implemented to make a SPARQL query to an early proto-
type ofMolHub, i.e., “CoMoCompChem”.We successfully
illustrated several advantages of the graph database. First,
the relationships between chemical entities are clear and
it is easy to define a graph pattern to match the desired
criteria. Users with no specific training can quickly learn
how to make a query and produce a useful result. Second,
resources are uniquely labeled with a URL and exist online
which make them promptly accessible from a small script
to a large application. Third, visualization of the data is
very useful as the molecule’s geometry reveals problems
instantaneously if there are any. In MolHub an embed-
ded Jmol applet is implemented allowing users to rapidly
see the 3D structure of the molecules in the database and
hence there is no need to use an external viewer.
In Figure 6, a snippet of a TiO2 molecule is shown. The

calculations consist of two separate jobs, which are the
geometry optimization and the frequency analysis. Our
thermochemistry software, which runs on MolHub, reads
the information in CompChem format and produces the
thermodynamic properties, such as entropy (S), enthalpy
(H), and specific heat capacity (Cp and Cv) and returns it
as a downloadable web resource.

Conclusions
An XML-based data storage format, CompChem, has
been proposed to capture common aspects of compu-
tational chemistry modeling, i.e., model inputs (parame-
ters), application model, calculation steps and model out-
puts (computed properties), into a well-formed structured
manner. The new format minimizes the loss of informa-
tion from its original source and adds semantics to the
data set. The main contributions are:

• The development of CompChem convention;
• The development of the validation tools, such as

stylesheet and online CMLValidator;
• The digital repository, MolHub.

An important problem of the Semantic Web is that
there is no generally-accepted standardized concept in
use today, causing difficulty in the ontology design. This
problem also applies to other chemistry domains. In

order to insert a certain level of semantic information to
CompChem, the concept of control vocabulary has been
brought into use through a CML dictionary. The vocab-
ulary terms used in CompChem can be documented and
inserted to CompChem documents. The term modifiers,
such as datatype, units, relationships, etc., can be added
into a CML dictionary providing additional instructions
to the processing software. The recent work by Shirley
et al. [33] uses this method to process thermochemistry
as part of an automated species screening investigation.
However, we have yet to finalize a formal computational
chemistry ontology. It is clear that the development of
such an ontology cannot be undertaken by an individ-
ual, but must be driven by the community and experts in
related fields in order to guarantee that it will be of benefit
to the maximum number of people and therefore widely
adopted.
For data validation, a rule-based schema language for

CompChem has been developed to ensure that compu-
tational chemistry data is formed according to our spec-
ifications. The rule-based schema is developed using the
XSLT standard and provided in the form of a stylesheet
which can be processed separately from CML grammar-
based validation using any XSLT processor. Although
CompChem rules in the stylesheet can check for all the
structural details, it cannot be used to check the validity
of contents. For example, it cannot test whether the data
type of a property for the associated term matches the
data type defined in a dictionary. Such an assertion can
be easily added to the stylesheet. A new method may be
employed to solve this problem in future work.

Availability and requirements
The CompChem Convention is available at http://
www.xml-cml.org/convention/compchem and the Com-
pChem dictionary is available at http://www.xml-cml.
org/dictionary/compchem/. The code of CompChem val-
idation stylesheet is available at https://bitbucket.org/
wwmm/cml-specs and the CMLValidator is available at
http://bitbucket.org/cml/cmllite-validator-code.

Abbreviations
CML, Chemical Markup Language; CompChem, CML for computational
chemistry; XML, eXtensible Markup Language; CMLXOM, A Java XML Object
Model library for CML; Jumbo6, A set of chemistry libraries which provide
abilities to manipulate CMLXOM; Jumbo-Converter, A set of libraries
(“converters”) which provide conversion to and from CML; CMLValidator, A
CML library for CML Convention validation; XSD, XML Schema Definition; DTD,
Document Type Definition; W3C, The World Wide Web Consortium; CMLSpec,
CML for spectral data; CMLReact, CML for chemical reactions; PML, Polymer
Markup Language; QName, A Qualified Name as defined in the XML
specifications; URL, Uniform Resource Locator; URI, Uniform Resource
Identifier; SGML, Standard Generalized Markup Language; XPath, A syntax for
defining parts of an XML document; XSL, eXtensible Stylesheet Language;
XSLT, XSL Transformations; DCMI, Dublin Core©Metadata; OAI-ORE, Object
Reuse and Exchange standards; NMR, Nuclear Magnetic Resonance; MolHub,
An online infrastructure for chemical data (http://como.cheng.cam.ac.uk/
molhub/); RDF, Resource Description Framework; HTTP, Hypertext Transfer

http://www.xml-cml.org/convention/compchem
http://www.xml-cml.org/convention/compchem
http://www.xml-cml.org/dictionary/compchem/
http://www.xml-cml.org/dictionary/compchem/
https://bitbucket.org/wwmm/cml-specs
https://bitbucket.org/wwmm/cml-specs
http://bitbucket.org/cml/cmllite-validator-code
http://como.cheng.cam.ac.uk/molhub/
http://como.cheng.cam.ac.uk/molhub/

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 15 of 16
http://www.jcheminf.com/content/4/1/15

Protocol; REST, REpresentational State Transfer; API, Application Programming
Interface; Ajax, Asynchronous JavaScript and XML; OWL, Web Ontology
Language; N3, Notation3; PNG, Portable Network Graphics; SPARQL, SPARQL
Protocol and RDF Query Language; OpenRDF, An RDF Schema-based
Repository and Querying facility (http://www.openrdf.org/).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WP and JAT developed the specification for CompChem, created the codes
and CompChem dictionary. WP wrote the manuscript and was checked by MK
and PMR. All authors read and approved the final manuscript.

Acknowledgements
The authors are grateful to Churchill College Cambridge and the
Development and Promotion of Science and Technology Talents Project for
the financial support of WP.

Received: 23 March 2012 Accepted: 20 June 2012
Published: 7 August 2012

References
1. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,

Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS,
Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson
GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida
M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian
HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE,
Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY,
Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG,
Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD,
Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S,
Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin
RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe
M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA:
Gaussian 03, Revision C.02 2003. Wallingford, CT: Gaussian, Inc.; 2004.

2. Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S,
Matsunaga N, Nguyen K, SSu T, Windus DupuisM, Montgomery J:
General Atomic andMolecular Electronic Structure System. J Comput
Chem 1993, 14:1347–1363.

3. Guest MF, Bush IJ, Van Dam HJJ, Sherwood P, Thomas JMH, Van Lenthe,
J H, Havenith RWA, Kendrick J: The GAMESS-UK electronic structure
package: algorithms, developments and applications.Mol Phy 2005,
103(6–8):719–747.

4. Song J: Building Robust Chemical Reaction Mechanisms: Next
Generation of Automatic Model Construction Software. PhD thesis,
Massachusetts Institute of, Technology, Cambridge, MA, USA 2004. http://
hdl.handle.net/1721.1/30058.

5. Wakelin J, Murray-Rust P, Tyrrell S, Zhang Y, Rzepa HS, Garcı́a A: CML tools
and information ow in atomic scale simulations.Mol Simul 2005,
31(5):315–322.

6. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F: Extensible
Markup Language (XML) 1.0 (Fifth Edition), W3C 2008. [http://www.
w3.org/TR/xml/]

7. Murray-Rust P, Rzepa HS: Chemical Markup, XML , and the Worldwide
Web. 1. Basic Principles. J Chem Inf Comput Sci 1999, 39(6):928–942.

8. Murray-Rust P, Rzepa HS: Chemical Markup, XML and
theWorld-WideWeb. 2. Information Objects and the CMLDOM.
J Chem Inf Comput Sci 2001, 41(5):1113–1123.

9. Gkoutos GV, Murray-Rust P, Rzepa HS, Wright M: Chemical Markup, XML
, and the World-Wide Web. 3. Toward a Signed Semantic Chemical
Web of Trust. J Chem Inf Comput Sci 2001, 41(5):1124–1130.

10. Murray-Rust P, Rzepa HS: Chemical Markup, XML , and the World Wide
Web. 4. CML Schema. J Chem Inf Comput Sci 2003, 43(3):757–772.

11. Townsend J, Murray-Rust P: CMLLite: a design philosophy for CML.
J Cheminformatics 2011, 3:39.

12. Murray-Rust P, Adams S, Downing J, Townsend J, Zhang Y: The semantic
architecture of theWorld-Wide Molecular Matrix (WWMM).
J Cheminformatics 2011, 3:42.

13. Murray-Rust P, Townsend J, Adams S, Phadungsukanan W, Thomas J: The
semantics of Chemical Markup Language (CML): dictionaries and
conventions. J Cheminformatics 2011, 3:43.

14. CMLXOM. [Online; accessed 20-December-2011]. [https://bitbucket.org/
wwmm/cmlxom/]

15. Jumbo6. [Online; accessed 20-December-2011]. [https://bitbucket.org/
wwmm/jumbo6/]

16. JUMBO-Converters. [Online; accessed 20-December-2011]. [https://
bitbucket.org/wwmm/jumbo-converters/]

17. CMLValidator service. [Online; accessed 20-December-2011]. [http://
validator.xml-cml.org/]

18. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G:
OpenBabel: An open chemical toolbox. J Cheminformatics 2011, 3:33.
[http://www.jcheminf.com/content/3/1/33]

19. O’Boyle N, Morley C, Hutchison G: Pybel: a Python wrapper for the
OpenBabel cheminformatics toolkit. Chem Cent J 2008, 2:5.
[http://journal.chemistrycentral.com/content/2/1/5]

20. Jmol: an open-source Java viewer for chemical structures in 3D.
[Online; accessed 24-October-2011]. [http://www.jmol.org/]

21. Avogadro: an open-source molecular builder and visualization tool.
Version 1.0.3. [Online; accessed 25-April-2011]. [http://avogadro.
openmolecules.net/]

22. Thompson HS, Beech D, Maloney M, Mendelsohn N: XML Schema
Part 1: Structures Second Edition, W3C Recommendation 2004.
[Online; accessed 21-December-2011]. [http://www.w3.org/TR/
xmlschema-1/]

23. w3schools: Introduction to XML Schema. [Online; accessed
21-December-2011]. [http://www.w3schools.com/schema/schemaintro.
asp]

24. Murray-Rust P, Rzepa H: Chemical Markup Language (CML) Schema
version 3. [Online; accessed 24-December-2011]. [http://www.xml-cml.
org/schema/]

25. Holliday GL, Murray-Rust P, Rzepa HS: Chemical Markup, XML , and the
World WideWeb. 6. CML- React, an XML Vocabulary for Chemical
Reactions. J Chem Inf Model 2006, 46:145–157.

26. Kuhn S, Helmus T, Lancashire RJ, Murray-Rust P, Rzepa HS, Steinbeck C,
Willighagen EL: Chemical, Markup, XML and theWorld WideWeb. 7.
CMLSpect, an XML Vocabulary for Spectral Data. J Chem Inf Model
2007, 47(6):2015–2034. [http://pubs.acs.org/doi/abs/10.1021/ci600531a]

27. Day N, Downing J, Adams S, England NW, Murray-Rust P: CrystalEye.
[Online; accessed 26-December-2011]. [http://wwmm.ch.cam.ac.uk/
crystaleye/]

28. Adams N, Winter J, Murray-Rust P, Rzepa HS: Chemical Markup, XML and
theWorld-Wide Web. 8. Polymer Markup Language. J Chem Inf Model
2008, 48(11):2118–2128. [http://pubs.acs.org/doi/abs/10.1021/ci8002123]

29. Bray T, Hollander D, Layman A, Tobin R, Thompson H S Rzepa:
Namespaces in XML 1.0 (Third Edition)., 2009. [Online; accessed
26-December-2011]. [http://www.w3.org/TR/xml-names/]

30. Totton TS, Shirley R, Kraft M: First-principles thermochemistry for the
combustion of in a methane flame. Proc Combust Inst 2011,
33:493–500.

31. West RH, Beran GJO, Green WH, Kraft M: First-Principles
Thermochemistry for the Production of TiO2 from TiCl4. J Phys Chem
A 2007, 111(18):3560–3565.

32. Shirley R, Liu Y, Totton TS, West RH, Kraft M: First-Principles
Thermochemistry for the Combustion of a TiCl4 and AlCl3 Mixture.
J Phys Chem A 2009, 113(49):13790–13796.

33. Shirley R, Phadungsukanan W, Kraft M, Downing J, Day NE, Murray-Rust P:
First-Principles Thermochem- istry for Gas Phase Species in an
Industrial Rutile Chlorinator. J Phys Chem A 2010,
114(43):11825–11832. [http://pubs.acs.org/doi/abs/10.1021/jp106795p]

34. Phadungsukanan W, Shekar S, Shirley R, Sander M, West RH, Kraft M:
First-Principles Thermochemistry for Silicon Species in the
Decomposition of Tetraethoxysilane. J Phys Chem A 2009,
113(31):9041–9049.

35. Berglund A, Boag S, Chamberlin D, Fernández MF, Kay M, Robie J,
Siméon J: XML Path Language (XPath) 2.0 (Second Edition) 2010.
[Online; accessed 26-December-2011]. [http://www.w3.org/TR/xpath20/]

36. Kay M: XSL Transformations (XSLT) Version 2.0., 2007. [Online;
accessed 26-December-2011]. [http://www.w3.org/TR/xslt20/]

http://www.openrdf.org/
http://hdl.handle.net/1721.1/30058
http://hdl.handle.net/1721.1/30058
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
https://bitbucket.org/wwmm/cmlxom/
https://bitbucket.org/wwmm/cmlxom/
https://bitbucket.org/wwmm/jumbo6/
https://bitbucket.org/wwmm/jumbo6/
https://bitbucket.org/wwmm/jumbo-converters/
https://bitbucket.org/wwmm/jumbo-converters/
http://validator.xml-cml.org/
http://validator.xml-cml.org/
http://www.jcheminf.com/content/3/1/33
http://journal.chemistrycentral.com/content/2/1/5
http://www.jmol.org/
http://avogadro.openmolecules.net/
http://avogadro.openmolecules.net/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3schools.com/schema/schema intro.asp
http://www.w3schools.com/schema/schema intro.asp
http://www.xml-cml. org/schema/
http://www.xml-cml. org/schema/
http://pubs.acs.org/doi/abs/10.1021/ci600531a
http://wwmm.ch.cam.ac.uk/ crystaleye/
http://wwmm.ch.cam.ac.uk/ crystaleye/
http://pubs.acs.org/doi/abs/10.1021/ci8002123
http://www.w3.org/TR/xml-names/
http://pubs.acs.org/doi/abs/10.1021/jp106795p
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt20/

Phadungsukanan et al. Journal of Cheminformatics 2012, 4:15 Page 16 of 16
http://www.jcheminf.com/content/4/1/15

37. Bradner S: Key words for use in RFCs to Indicate Requirement Levels
1997. [Online; accessed 24-December-2011]. [http://www.ietf.org/rfc/
rfc2119.txt]

38. Manola F, Miller E: Resource Description Framework (RDF) Primer.,
2004. [Online; accessed 6-February-2012]. [http://www.w3.org/TR/rdf-
primer/]

39. OWL 2Web Ontology Language., 2009. [Online; accessed
6-February-2012]. [http://www.w3.org/TR/owl2-overview/]

40. OpenRDF - Aduna Software. [Online; accessed 11-May-2012].
[http://www.openrdf.org/]

41. Prud’hommeaux E, Seaborne A: SPARQL Query Language for RDF.,
2008. [Online; accessed 11-May-2012]. [http://www.w3.org/TR/rdf-sparql-
query/]

doi:10.1186/1758-2946-4-15
Cite this article as: Phadungsukanan et al.: The semantics of Chemical
Markup Language (CML) for computational chemistry : CompChem. Jour-
nal of Cheminformatics 2012 4:15.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://www.ietf.org/rfc/ rfc2119.txt
http://www.ietf.org/rfc/ rfc2119.txt
http://www.w3.org/TR/ rdf-primer/
http://www.w3.org/TR/ rdf-primer/
http://www.w3.org/TR/owl2-overview/
http://www.openrdf.org/
http://www.w3.org/TR/ rdf-sparql-query/
http://www.w3.org/TR/ rdf-sparql-query/

	Abstract
	Background
	Introduction
	CML overview

	Methodology in CompChem
	CompChem design
	Using dictionary in CompChem
	CompChem convention
	Semantics of properties and parameters
	Parameter and property containers
	Data containers

	Utility : example use cases
	MolHub
	Example A: Indexing computational chemistry data
	Example B: titanium species' Thermochemistries

	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

