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Abstract

Background: Recent years have seen an explosion in the availability of data in the chemistry domain. With this
information explosion, however, retrieving relevant results from the available information, and organising those
results, become even harder problems. Computational processing is essential to filter and organise the available
resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a
hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI
provides a classification of chemicals based on their structural features and a role or activity-based classification. An
example of a structure-based class is ‘pentacyclic compound’ (compounds containing five-ring structures), while an
example of a role-based class is ‘analgesic’, since many different chemicals can act as analgesics without sharing
structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the
underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural
classification in use in chemistry nor a comparison to the capabilities of available technologies.

Results: We analyze the different categories of structural classes in chemistry, presenting a list of patterns for
features found in class definitions. We compare these patterns of class definition to tools which allow for
automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going
into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent
extensions for modelling structured objects. Finally we discuss the relationships and interactions between
cheminformatics approaches and logic-based approaches.

Conclusion: Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying
computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-
based classification of chemical entities, essential to managing the vast swathes of chemical data being brought
online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We
provide a thorough review of the available tools and methodologies, and identify areas of open research.

Background
Recent years have seen an explosion in the availability of
data throughout the natural sciences. Availability of data
facilitates research through complex data-mining and
knowledge discovery methods. However, with the infor-
mation explosion, retrieving relevant information from
these data has become much more difficult. Computa-
tional processing is essential to filter, retrieve and orga-
nise such data. Traditional large-scale data management

methods in chemistry include chemical structure-based
algorithmic and statistical methods for the construction
of hierarchies and similarity landscapes. These techni-
ques are essential not only for human consumption of
data in the form of effective browsing and searching but
also in scientific methods for interpreting underlying
biological mechanisms and detecting bioactivity patterns
associated with chemical structure [1].
In biomedicine and the natural sciences more gener-

ally, hierarchical organisation and large-scale data man-
agement are being facilitated by formal ontologies:
machine-understandable encodings of human domain
knowledge. Such ontologies are used in several different
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ways [2-4]. Firstly, they ensure standardisation of termi-
nology and identification across all entities in a domain
so that multiple sources of data can be aggregated
through comparable reference terms. Secondly, they
provide hierarchical organisation so that such aggrega-
tion can be performed at different levels for novel data-
driven scientific discovery. Thirdly, they facilitate brows-
ing and searching in an easily accessible fashion. They
also allow for logic-based intelligent applications that
are able to perform complex reasoning tasks such as
checking for errors and inconsistencies and deriving
logical inferences. Logic-based knowledge representation
(where ontologies serve as knowledge engineering arte-
facts) can be contrasted with algorithmic ‘knowledge
representation’, in which software algorithms procedu-
rally define outputs based on stated inputs, and with sta-
tistical ‘knowledge representation’, in which complex
statistical models are trained to produce outputs based
on a given set of inputs by learning weights for a com-
plex set of internal parameters. An advantage of logic-
based knowledge representation is that it allows the
knowledge to be explicitly expressed as knowledge, i.e.
as statements that are comprehensible, true and self-
contained, and available for modification by persons
without a computational background such as domain
experts; this is in contrast to statistical methods that
operate as black boxes and to procedural methods that
require a programmer in order to manipulate or extend
them.
Bio-ontologies have enjoyed increasing success in

addressing the large-scale data integration requirement
emerging from the recent increase in data volume [4].
One example of such a successful bio-ontology is the
Gene Ontology (GO) [5], which is used inter alia to
unify annotations between disparate biological databases
and for the statistical analysis of large-scale genetic data
to identify genes that are significantly enriched for spe-
cific functions. For the domain of biologically interesting
chemistry, the Chemical Entities of Biological Interest
ontology (ChEBI) [6] provides a classification of chemi-
cal entities such as atoms, molecules and ions. ChEBI
organises chemical entities according to shared struc-
tural features, for example, carboxylic acids are all mole-
cular entities that possess the characteristic carboxy
group, and according to their activities in biological and
chemical contexts, for example, acting as an antiviral
agent. ChEBI is widely used as a database of chemical
entities that can be queried both by structural classes
and by functional annotations in the role ontology. The
ontology has been applied in diverse applications such
as annotation of chemicals in biological databases for
pathways, interactions, and systems biology models
[7-9]; chemical text mining [10]; formalising the

chemistry underlying biological ontologies [11]; semantic
similarity [12]; and metabolome prediction [13].
With the large-scale availability of chemical data

through projects such as PubChem [14], making sense
of the data and mapping between different internal and
external collections has become one of the most press-
ing challenges facing chemical integration into modern
biomedical science. Such mappings are facilitated by the
spiderweb of annotations and cross-references attached
to each entity in a chemical ontology such as ChEBI:
the mappings to other chemical identifiers (such as
InChI, PubChem, KEGG, DrugBank, Chembl, Reaxys
and, where publicly available, CAS), and the annotations
that use the ontology identifiers to identify chemical
entities in biological databases such as pathway data-
bases, protein interaction databases, systems biology
modeling databases, biochemical reaction databases and
many more. The availability of such a growing diction-
ary of cross-references in the public domain that oper-
ates at a broader level than only that of fully-specified
chemical structures(as InChI does) allows mapping to
be extended to classes of chemical entities that may
behave similarly and therefore be described in one refer-
ence in a reaction database, for example.
Similarly to GO, ChEBI is manually maintained by a

team of expert curators. Historically, bio-ontologies such
as GO and ChEBI have been developed as Directed
Acyclic Graphs (DAGs), a deliberately simplified ontol-
ogy format which allowed domain experts (non-logi-
cians) to directly participate in ontology engineering at a
time when tools that supported more sophisticated
semantics were rather difficult for non-technical persons
to use. However, with the increasing availability of sup-
porting tools and widespread adoption, there is a grow-
ing trend of evolution of bio-ontologies towards the
greater expressive power provided by the Web Ontology
Language (OWL) [15] and its extensions, which provides
a sophisticated suite of logic-based constructs to support
eloquent knowledge representation and automated rea-
soning in real-world domains [16]. ChEBI is an ideal
ontology to take advantage of increasing formalisation,
due to the elegant inherent regularities and symmetries
in the chemical domain.
However, there has been little communication

between the logicians driving the research underlying
ontology technology and applications and the computer
scientists and cheminformaticians driving the more tra-
ditional chemistry data management approaches. Thus,
the applicability of the approaches commonly used in
cheminformatics and in logic-based ontology, and
potential interactions between these approaches has not
heretofore been systematically assessed with respect to
the requirements in the chemistry domain. It is to
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address this gap that we offer the current communica-
tion, addressing the following issues:

1. We present the requirements for structure-based
chemical classification based on the results of an
analysis of the structure-based classes included in
the ChEBI chemical ontology;
2. We map the features identified in our require-
ments analysis onto the capabilities of existing che-
minformatics tools for class definition and hierarchy
construction, and to available logical formalisms
underlying ontology technology;
3. We describe several strategies for combining these
different methods to achieve a hybrid approach that
harnesses the strengths of each field while meeting
the challenges common to both;
4. We identify open research areas in structure-
based chemical classification and ontology.

We anticipate that this will facilitate research both in
the primary area of logic-based reasoning that underlies
ontology technology and in cheminformatics, and pave
the way for fruitful cheminformatician-logician colla-
borative opportunities. We further aim to facilitate the
enhancement of the representation of chemical knowl-
edge throughout biomedicine with accompanying bene-
fits in disciplines such as drug discovery, metabolomics,
systems biology and chemical genomics.
The remainder of this paper is organised as follows.

This Background section presents some relevant chemis-
try classification and ontology preliminaries. Following
that, in our Results we firstly present the types of classes
used in chemical classification and thereafter compare
these types of classes to the capabilities of hierarchy
construction methods in cheminformatics and those of
logic-based methods in chemical ontologies. In our Dis-
cussion, we further elucidate the relationship between
cheminformatics and logical approaches, and present
some applications of chemical ontology. We conclude
with our outlook and open research areas.

Classification in chemistry
The ability to classify raw information into meaningful
groups is an essential component of human intelligence,
which thus far has proven difficult to replicate in
machine reasoning, except in narrowly defined domains.
In particular, classification has a long tradition in chem-
istry: the periodic table of the elements is one of the
longest-standing and most-used systems of hierarchical
classification throughout the natural sciences.
The type of hierarchical classification that interests us

here is structure-based in that it is the classification of
molecules into groups based on which atoms in them
are connected to which other atoms or aspects of overall

atomic constitution. In both chemical synthesis in the
lab and biosynthesis in organisms, the methods and
pathways involved are entirely based on related struc-
tures, and this is why so many research agendas and
publications in chemistry involve classes of chemicals,
examples of which are:

• Synthesis of (pyrazolo)pyrimidines/pyridines
• BOP-mediated one-pot synthesis of C5-symmetric
macrocyclic pyridone pentamers
• Halonium-initiated electrophilic cascades of 1-alke-
noylcyclopropane carboxamides: efficient access to
dihydrofuropyridinones and 3(2H)-furanones
• Spontaneous formation of a dibromoborenium
cation driven by interaction between a borane Lewis
acid and an arene π system
• Structural diversity for phosphine complexes of sti-
benium and stibinidenium cations

or involve a natural product based name such as a
‘polyketide’ or a ‘spongistatin’.
This categorisation of chemical space is orthogonal to

the sorts of machine-learning based classification tradi-
tionally used in cheminformatics analyses that concen-
trate on whether a molecule is likely to bind to a
particular site in a protein or to display a particular
activity based on a heuristic analysis of large amounts of
data. These types of classification are not relevant for
the methods described in the current paper, although
the methods of classification we describe here are fre-
quently used to delineate the input for training these
sorts of classification methods.

Benefits of classification in chemistry
The benefits of classification systems are severalfold. Clas-
sification organises large volumes of information into sen-
sible groupings so that they are more accessible to
humans. Such hierarchical organisations can be more
easily browsed; research in cognitive science shows that
humans can only browse and compare a relatively low
number of concepts at the same level at the same time,
thus grouping into hierarchies reduces the amount of
detail that has to be dealt with at each level [17]. A hier-
archical structure allows narrowing in on the area of inter-
est within a large domain, and only exploring the details of
that narrowed in area, rather than observing the full
domain at such a detailed level. A second benefit of a hier-
archical organisation is that it allows for the compact
representation of generalised knowledge at the highest
level to which it applies. For example, statements that are
true for all mammals need to be expressed at the level of
mammals as a whole, and not repeated for every specific
mammal that occurs. Similarly, features that apply to all
carboxylic acids can be expressed at the level of carboxylic
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acids as a whole, rather than repeated at the level of the
different molecules as is required in databases or other flat
structures that allow no general grouping or hierarchical
organisation.
Hierarchical organisation of knowledge in a domain

allows for data-driven discovery, enabling useful predic-
tions to be made. For example, in functional genomics,
the analysis of large-scale genetic data is facilitated by
the grouping together of different genes that perform
the same function. Modular analysis of such data reveals
organisation at an aggregate level which is sometimes
not apparent at the level of the raw data, due to over-
loading of detail and noise in the underlying signal.
Hierarchical organisation of knowledge also allows use-
ful predictions to be made, since it allows generalisation
of knowledge to the highest possible level of applicabil-
ity, and consequent prediction of properties of novel
discovered members of the class.
Chemical classes, the objects found within a chemical

classification system, group together chemical entities in
a meaningful, scientifically relevant hierarchy. Ideally, all
members of a chemical class should share important
causal powers, such as undergoing decarboxylation in
common circumstances. In fact, almost the only meth-
ods of classification available to historical chemists,
before compound structures were well understood, were
(i) based on the observation of reactivity through means
of performing controlled reactions between different
substances; or (ii) based on the origin of the molecule,
when the molecule was isolated from a natural product
substance. Much of these historical forms of classifica-
tion are still inherited today, and are taught in chemistry
classes and reproduced in textbooks. Knowledge about
the structural features that form the underlying causes
of the shared dispositional properties (where such
existed), and the structural features shared between
similar natural product substances, was only developed
later. However, now that chemical structures are well
described (within the limits of the chemical graph form-
alism), many more structural features are able to be
used for chemical class definitions.
Note that in this paper, we do not attempt to compare

hierarchical classification approaches with non-classifica-
tion-based approaches to large-scale data management.
Such an endeavor would be very valuable, but is out of
scope for our current contribution. Rather, we assume
the context of hierarchical classification systems that are
already in use within the communities using chemical
data, and in that context we will compare different
approaches to representation and automation.

Structure-based and non-structure-based classes
Interesting classes in chemistry can be grouped into
those which are structure-based and those which are

not. Structure-based classes are defined based on the
presence of some shared structural feature across all
members of the class. This feature, however, may be
crisply defined or vaguely defined. Crisply defined struc-
tural classes will form the focus in this paper, and are
discussed further in the section sec:resultsclasses below.
Vaguely defined structural classes, by comparison, are
those based on a family resemblance between a group of
molecules, that are often of natural origin or have biolo-
gical relevance. For example, steroids are defined in
ChEBI as ‘Any of naturally occurring compounds and
synthetic analogues, based on the cyclopenta[a]phenan-
threne carbon skeleton, partially or completely hydroge-
nated; there are usually methyl groups at C-10 and C-13,
and often an alkyl group at C-17. By extension, one or
more bond scissions, ring expansions and/or ring con-
tractions of the skeleton may have occurred.’ The vague-
ness is indicated by terms and phrases such as ‘usually’,
‘one or more’ and ‘may have’. The approaches to chemi-
cal class definition that we will discuss in this paper are
not able to represent such vagueness, although exten-
sions such as fuzzy logic or logic enhanced with prob-
ability constraints may in the future be able to support
this use case.
Chemical classes can also be defined based on where

the chemical came from in synthetic or natural path-
ways. Chemicals of natural metabolic origin are called
natural products. As our ability to determine molecular
structure by such methods as crystallography, NMR,
CASE has improved over the past century, so too has
our ability to describe what is in a particular structural
class. For example the klymollins [18], extracted from
the coral Klyxum molle, are all produced by reactions
from a common core molecule and have very similar
connectivities and compositions. This is a common pat-
tern for recently-discovered natural product molecules.
Contrast this with alkaloids, one of the earliest classes of
natural products to be identified, for which the best for-
mal definition we have for the class reads (from ChEBI)
‘Any of basic nitrogen compounds (mostly heterocyclic)
occurring mostly in the plant kingdom (but not exclud-
ing those of animal origin). Amino acids, peptides, pro-
teins, nucleotides, nucleic acids, amino sugars and
antibiotics are not normally regarded as alkaloids. By
extension, certain neutral compounds biogenetically
related to basic alkaloids are included.’ A flexible and
expressive language is needed to fully do justice to the
wide range of class names that are intuitive to chemists
and can be found in natural language in electronic lab
notebooks (such as are used in industry) and indeed in
more traditional scientific publications.
Many interesting classes of chemicals are defined

based on what the chemical does (its function or activ-
ity) in a biological or chemical context. Included in this
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group are drug usage classes such as antidepressant and
antifungal; chemical reactivity classes such as solvent,
acid and base; and biological activities such as hormone
[19]. These are included in ChEBI under the ‘role’
ontology.
While the standardised descriptions of bioactivity

assays and experimental protocols in chemical discovery
are out of scope for our discussion in this paper, we
note briefly that other projects within the chemical biol-
ogy community are addressing these needs, including
the BioAssay Ontology [20] and the Ontology for Bio-
medical Investigations [21].
Hybrid classes are composed from an intersection of

the members of two different classes, howsoever defined.
Examples are ‘tricyclic antidepressant’, ‘tetracyclic anti-
biotic’, ‘organofluorine pesticide’, ‘pyrazole pesticide’,
‘organophosphorus pesticide’ and ‘thiourea pesticide’.
Compositional entities such as these are easily dealt
with by logical intersection, described further below.
Throughout this paper, we operate on the assumption
of compositionality, which is the notion that the mean-
ing of the whole is completely determined by the mean-
ings of the parts and the way that they are arranged. If
there were compounds that were tricyclic and antide-
pressant but were not themselves ‘tricyclic antidepres-
sants’, these would be violations of compositionality,
because then there would be some extra condition not
present in the name which would be necessary to decide
whether something was itself a ‘tricyclic antidepressant’.
Compositionality works in chemistry and is harnessed in
name-to-structure software such as Opsin [22], but for
hybrid classes in which some aspects of the class defini-
tion is not structural, a database of annotated chemicals
to non-structural classes is needed, as is provided by
ChEBI.

Desiderata for structure-based classification
The desiderata that we identify for structure-based clas-
sification in chemistry are as follows:

1. Class definitions should be expressed in a lan-
guage or formalism which is accessible to domain
experts (chemists);
2. It should be possible to combine different elemen-
tary features into sophisticated class definitions
using compositionality;
3. The specification of class definitions should allow
automatic arrangement of those classes into a hier-
archy, i.e. it should not be necessary to manually
place classes into a hierarchy as is currently done in
ChEBI;
4. Mid-level groupings within the constructed hierar-
chy should be semantic, i.e. they should make sense
to chemists and be named;

5. It should be possible for the system to automati-
cally classify compounds (based on a description of
their structural features) within the most specific
classes to which they belong.

A further benefit of a formalisation of class definitions
is that this would allow disambiguation of different class
definitions that are used by different communities in
reference to the same entities. For example, some com-
munities may use the term ‘hydrocarbons’ as encom-
passing derivatives such as chlorohydrocarbons, while
other communities may use the term in a stricter sense.
The use of different definitions for the same class may
lead to different chemical hierarchies as produced by
classification tools implementing the same algorithms
(structure-based and/or logic-based). Standardisation of
class definitions across disparate communities requires
communication between cheminformaticians/logicians
and chemists. Formalisation of class definitions in sup-
port of automatic classification allows explicit disambi-
guation of these different senses; this can be achieved
through convergence on a community-wide shared
ontology which assigns different labels to classes that
are defined differently, but which provides both of the
disputed versions of the definition, thus allowing differ-
ent user communities of user to select their preferred
version.

Ontological knowledge and logic-based reasoning
Logic lies at the heart of modern knowledge representa-
tion (KR) technologies. Logic-based representation
employs formal methods developed in the context of
mathematical logic in order to encode knowledge about
the world. The key advantage of these methods is that
the knowledge is stored in a machine-processable form.
A core feature that the vast majority of KR formalisms
share is the use of a well-defined syntax and semantics.
The syntax serves as the alphabet of the language: it
provides a set of symbols and a set of rules that regulate
the arrangement of the symbols in valid expressions.
The semantics enriches the syntactic objects with a
meaning so that expressions complying with certain syn-
tactic forms, known as axioms, have a universal and pre-
defined interpretation. It is their semantics that enables
machine processing. A set of valid syntactic expressions,
known as axioms, constitutes an ontology in the compu-
ter science sense.
The amenability of KR languages to automated rea-

soning is of crucial importance. A reasoning algorithm -
relying on principles of logical deduction - detects possi-
ble inconsistencies and computes the inferences that fol-
low from a set of formally defined axioms; note that a
reasoning algorithm is tied uniquely to the specific syn-
tax and semantics of the given KR language. A
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reasoning engine can be used to check the logical con-
sistency of a set of logical axioms. For instance, if a
knowledge base (i) defines organic and inorganic com-
pounds as disjoint chemical classes (ii) contains the fact
that cobalamin is an organic compound and (iii) also
classifies cobalamin as inorganic, then a contradiction
will be detected. Another standard reasoning task is the
discovery of information that is not explicitly stated in
the ontology. For example, if an ontology categorises
cobalamin as a B vitamin and also asserts that B vita-
mins participate in cell metabolism, then the fact that
cobalamin participates in cell metabolism is derived.
The automation of the above tasks - traditionally per-
formed by humans - has a clear advantage as it permits
the allocation of research resources to more intellec-
tually demanding activities.
A reasoning procedure needs to exhibit certain prop-

erties in order to be practically useful. Namely, a rea-
soning algorithm needs to derive correct inferences,
that is inferences that are in accordance with the
semantics of the language; this property is known as
soundness. Additionally a reasoning algorithm ought to
be complete, i.e. to compute all the correct inferences
that are entailed by a set of axioms. Finally, an essen-
tial requirement for a reasoning algorithm is to termi-
nate, that is to issue an answer after a finite amount of
time. A vital contribution of logic is that it can offer
guarantees - by means of formal proofs - for the
soundness, completeness and termination of a reason-
ing algorithm for all input ontologies. A KR formalism
for which a sound, complete and terminating reasoning
algorithm exists is (informally) called decidable, though
strictly speaking and according to the formal defini-
tions of logic, it is the problem of deciding whether a
knowledge base is inconsistent that is (un)decidable,
rather than the actual language. As a consequence,
decidability is a highly desirable feature for a logic-
based formalism that is suitable for being the founda-
tion of real-world applications.
Apart from decidability, another important feature of

KR formalisms is tractability, that is how expensive the
reasoning tasks are in terms of computational resources,
e.g. performance time. The trade-off between the
expressive power and the tractability of a logic-based
language is a fundamental one: increasing the expressiv-
ity of the language usually results in a more resource-
consuming reasoning algorithm or even undecidability.
For instance, consider first-order logic (FOL) and propo-
sitional logic (PL); FOL allows one to model a much
broader range of statements than PL. For example, FOL
allows to encode that for every molecule X, if × is
organic and contains a hydroxy group, then × is an alco-
hol, whereas in PL one may state that implication only
for one specific molecule. Nevertheless, reasoning in

propositional logic is decidable, whereas reasoning tasks
in unrestrained first-order logic are undecidable.
The need for decidable formalisms has been the driv-

ing force behind the development of Description Logics
(DLs), a family of logic-based languages with well-
understood computational properties and rich expressiv-
ity. DLs serve as the underlying formalism for the Web
Ontology Language (OWL).
A powerful feature of OWL is the ability to perform

automatic classification using highly optimised OWL
reasoners. For instance, given the following axioms (illu-
strated in Manchester OWL syntax [23]):

ZincAtom subclassOf MetalAtom (1)

MetallicCompound equivalentTo Compound and hasAtom some MetalAtom (2)

ZincOxide subclassOf Compound and hasAtom some ZincAtom (3)

An OWL reasoner can automatically infer by (1)-(3)
that ZincOxide is a subclass of Met MetallicCompound.
OWL is extensively used for knowledge representation
and reasoning purposes in the Semantic Web. While, in
general, OWL is a very efficient KR formalism for the
encoding of tree-like structures (i.e. those whose
‘branches’ do not rejoin), it is fundamentally unable to
correctly represent cyclic structures, such as molecular
entities containing rings [24]. OWL exhibits the tree-
model property [25] that on the one hand ensures
important computational properties, such as decidability,
but on the other hand prevents the users from describ-
ing non-tree-like structures using OWL axioms. For
instance, one may state using OWL axioms that cyclo-
butane has four carbon atoms, but it is not possible to
specify that these four atoms are arranged in a ring.
Therefore, one of the prevailing challenges in chemical
knowledge representation is crafting logic-based formal-
isms that are able to faithfully represent cyclic structures
and, thus, support ontology-based applications that
automatically classify chemical compounds.

Results
Analysis of structural features used in class definitions
By examination of the definitions of higher-level struc-
tural classes included in ChEBI, we have identified the
following categories of elementary features used in
structural chemical class definitions:

1. Interesting parts (IP), such as the carboxy group
or the cholestane scaffold
2. Basic chemical properties (CP), such as the charge
of the entire species
3. Topological features (TF), such as rings, chains
and fused ring systems
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4. Mechanical connectivity and shape (MC), such as
rotaxanes, host-guest compounds, catenanes and
cage compounds
5. Schemata for structural formulae (SF) such as
CnH2n.

Most of these elements can be used singly or in com-
bination with other elements via compositionality.
Further explanations as well as examples follow in the
sections below. For clarity, the classes and examples are
summarised in Table 1, where each feature is assigned a
unique code that will be used in the sections that follow.

Interesting parts (IP)
Perhaps the most prominent of methods for classifying
chemical entities based on features of their structures is
based on the presence or absence of specific parts. Such
parts may be the overall ‘skeleton’ of the structure or
they may be minor constituents. The skeleton is usually
loosely defined as the major or most relevant part of the
molecule, the ‘backbone’ to which other groups are
attached as decorations. For example, ‘metalloporphyrin’

is defined as any compound containing a porphyrin ske-
leton and a metal atom.
Note that as the term is commonly used in chemistry,

a skeleton is not always a straightforward substructure,
since bonds may be added or removed while retaining
the same skeleton with different degrees of saturation.
Allowing for different degrees of saturation, or the addi-
tion or removal of parts of the skeleton, gives rise to a
vague class definition. Here, therefore, we focus on the
stronger sense of skeleton that implies that the skeleton
as specified must be a substructure of the molecule of
which it is a skeleton. Classes defined with skeletons in
this fashion are often named for the skeleton, such as
‘porphyrin’ for the compound and the class ‘porphyrins’.
Indeed, the same name is often used to mean a single
compound, a class of compounds with the skeleton of
that compound, and the larger class of compounds con-
taining a part which has that skeleton [26].
Parts may also be straightforward constituents in

which there is no implication that the part is somehow
maximal, as there is in the case of skeletons. General
parts are termed ‘groups’. Groups may be simple atoms,

Table 1 A summary of the features used to define structure-based classes, either singly or in combination

Abbrev. Feature Description Examples of features Examples of classes

IP.1 Skeleton The main carbon backbone of the
molecule

A porphyrin skeleton Porphyrins, pyridines

IP.2 Attached group A functional group attached in some
position on a skeleton

A methyl group on a pyridine
skeleton

Methylpyridine

IP.3 Arbitrary part A group or atom present in any position
within the molecule

A carboxy group, an oxygen
atom

Carboxylic acid,
oxygen molecular
entity

IP.4 Count of parts The specific number, or a constraint on
the number, of parts of a specified type

Three carboxy groups Tricarboxylic acid

IP.5 Relative arrangement of parts Relative arrangement of parts of a
specified type

Relative arrangement of
hydroxy group and amino
group

Allothreonine,
threonine

CP.1 Basic chemical properties such as
charge

Presence of a specific number of charges,
or unpaired electrons

Presence of a single positive
charge

Anion, cation,
dication

TF.1 Topological features - presence of
cycles

Whether a molecule contains cycles of
specified types

Presence of a cycle containing
a hetero atom

Heterocyclic
molecule

TF.2 Topological features - count of cycles Presence of the specified number of
distinct (smallest) cycles

Presence of two cycles Bicyclic molecule,
tricyclic molecule

TF.3 Topological features - interrelation
between cycles (fusing, arrangements)

Relative arrangements and fusing
between cycles

Presence of two cycles
sharing one bond

Ortho-fused
molecule

TF.4 Topological features Overall aspects of connectivity, such as
ring arrangements

Arrangement of rings into a
cage shape

Polycyclic cage,
fullerene, nanotube

MC.1 Mechanical connectivity Mechanical connectivity/interlocking Molecule with interlinked
rotating parts

Rotaxanes, catenanes

MC.2 Mechanical shape of molecule Features of overall shape of molecule Knot-shaped molecule Molecular Möbius
strips, molecular
knots

SF.1 Structural formula - atomic A schema for structural formulae in terms
of the overall atomic constitution

Molecule with formula CnH2n Hydrocarbons,
alkanes

SF.2 Structural formula - repeating
substructural units (polymers)

Structural formulae in terms of relative
numbers of substructural units

Macromolecule with repeated
ethylene units

poly(ethylene), poly
(propylene)
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and classes defined based on the presence of certain
types of atoms can be organised according to the layout
of the periodic table. Examples are ‘carbon molecular
entities’ and ‘lanthanoid molecular entities’. Classes qua-
lify as subclasses of carbon molecular entities if they
contain any atom of carbon, regardless of what other
atoms they contain in addition. Classes qualify as sub-
classes of lanthanoid molecular entities if they contain
any of the lanthanoid group atoms. As most complex
molecular entities belong to several such classes, auto-
mation of this aspect of classification is obviously highly
desirable. Groups may also be more complex, such as
the carboxy group or the chloroacetyl group.
The number (count, cardinality) of such groups is also

important. For example, tricarboxylic acids can be
defined as a compound containing exactly three, i.e. no
fewer and no more than three carboxy groups. With
regard to the cardinality of groups within a molecule, a
challenge that is absolutely key to machine-based classi-
fication in chemistry is scalar implicature. Scalar impli-
cature means that when one specifies a number, that
number is the maximal description of the number of
entities of interest. While it is literally true that I have
one leg, normal behaviour is to say that I have two legs,
as this is maximally descriptive. The chemical parallel is
as follows: if one is working in material science or devel-
oping liquid crystals, or are interested in lipids in biolo-
gical systems, one will make extensive use of alkyl
chains which are chains of methylene (CH2) groups. It
is trivially true that a chain of n methylene groups is
also a chain of (n-1) methylene groups. However, it
would be misleading to describe a molecule with a
dodecyl group attached as a methylated compound sim-
ply because it contains a substructure with the formula
CH3 at the end of the alkyl chain.
The class definition may also specify the position at

which a group (or set of groups) is attached to a skele-
ton. Such positions are assigned by rules for numbering
the skeleton of a molecule in a reproducible (and com-
munity-agreed-upon) fashion.
Some particularly problematic classes refer to the rela-

tive arrangement of parts or attachments within the
whole molecule. A special case is the relative configura-
tion of stereocentres. Chemical graphs can be specified
for completely stereochemically specified entities, and
for completely stereochemically unspecified entities, but
relative configurations of stereogenic centers cannot be
specified using traditional chemical graph representation
formalisms. For example, ‘allothreonine’ [rel-(2xtitR,3R)-
2-amino-3-hydroxybutanoic acid] and ‘threonine’ [rel-
(2R,3S)-2-amino-3-hydroxybutanoic acid] are com-
pounds with a relative configuration of stereogenic cen-
tres, thus for which a graph cannot currently be drawn.
What cannot be represented in the graph formalism is a

relative arrangement of these: if one is up, the other is
down or if one is down, the other is down. Another
example are gem-diols, which are diols, i.e. compounds
with exactly two hydroxy groups, where both hydroxy
groups are attached to the same atom. Similarly, a,b-
unsaturated alcohols have a double bond between the
atom bearing the hydroxy group (the a atom) and one
of its immediate neighbours (the b) atom. In the same
fashion, a,ω-disubstituted compounds have substituents
of interest to the chemist at either end of the molecule,
regardless of its length.

Basic chemical properties (CP)
Straightforward chemical properties such as charge and
number of unpaired electrons are used to define broad
classes of molecules such as ion and radical. The latter
are particularly of interest to chemists working in the
gas-phase, especially in atmospheric chemistry, where
hydroxyl radicals play an important role in mopping up
air pollution and can even be smelt at certain times of
day. Aromaticity and saturation are other properties
commonly found in class definitions. These also apply
at a lower level of classification, such as ‘aromatic diazo-
nium ion’.
While aromaticity as a property is commonly algorith-

mically determined based on alternating patterns of sin-
gle and double bonds within ring structures, we should
note that there are edge cases for which aromaticity
may not necessarily be safely inferred given a particular
substructure. This is particularly true for large or heavily
substituted systems [27].

Topological features (TF)
Another element commonly used in class definitions is
the number and arrangement of rings (cycles) in a ring
system that is a part of the molecule. For example, the
classes ‘ring assembly’ and ‘polycyclic cage’ both refer, in
their definitions, to numbers and arrangements of rings
in the molecule. Polycyclic cages are molecules that are
composed entirely of cycles that are fused together in
such a way as to form an overall cage-like structure.
Examples are the fullerenes, cucurbiturils (so named for
their similarity to pumpkins), nanotubes, and small reg-
ular compounds such as cubane. Polycyclic compounds
are also named for the number of rings they contain, e.
g. tetracyclic or pentacyclic.
The manner in which the ring systems is arranged

may also have relevance. For example, an ortho- and
peri-fused compound is a polycyclic compound in which
one ring contains two, and only two, atoms in common
with each of two or more rings of a contiguous series of
rings. Such compounds have n common faces and fewer
than 2n common atoms; an ortho-fused compound is a
polycyclic compound in which two rings have two, and
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only two, adjacent atoms in common, having n common
faces and 2n common atoms.
Related to the chemical properties from the previous

section, the ‘cyclic’ modifier is often treated as an overall
property of the molecule and as a modifier for other
class types. Consider: ‘cyclic ketone’, ‘cyclic peptide’,
‘cyclic ether’ and ‘cyclic tetrapyrrole’.

Mechanical connectivity and shape (MC)
With the rising development within the field of nano-
technology and the development of molecular machines
with the goal of emulating the performance and scale of
biological machinery, chemists have been increasingly
interested in molecules which are able to display device-
like properties, including the presence of stationary and
movable parts, and the ability to respond with con-
trolled movements to the external environment. Classes
of molecules that are mechanically interlocked - such as
bistable rotaxanes and catenanes as well as pseudorotax-
anes - are some of the most intriguing systems in this
area because of their capacity to respond to stimuli with
controlled mechanical movements of one part of the
molecule (e.g. one interlocked ring component) with
respect to the other stationary part [28]. Similarly, mole-
cules which display unusual energetic properties by vir-
tue of their overall shape, such as molecular Möbius
strips and trefoil knots, are an active research area for
many novel applications, and in many cases mimic the
extraordinary properties of biomolecular machinery
such as active sites within protein complexes [29,30].

Structural formulae (SF)
Another form of definition by atomic composition is the
definition of classes of molecular entity based on speci-
fying the exclusive atomic composition. This can be con-
trasted to parthood (where other attachments are
allowed). An example of such a definition is that for the
class ‘hydrocarbon’, compounds that may contain only
hydrogen and carbon atoms as parts. Note that the term
‘hydrocarbon’ is sometimes used ambiguously in chemis-
try between this strict sense and a broader sense in
which molecules derived from hydrocarbon are also
named hydrocarbons. An example of the latter is the
class ‘chlorohydrocarbon’. In this case, the relationship
that is captured in ChEBI to ‘hydrocarbon’ is not ‘is a’
but ‘has parent hydride’, indicating the distinction
between true and derived hydrocarbons.
Finally, an interesting, yet problematic to depict with

existing graph-based tools, feature used in chemical
class definitions, is that based on schemata for structural
formulae. For example, ‘alkane’ is defined as ‘an acyclic
branched or unbranched hydrocarbon having the gen-
eral formula CnH2n+2.’

This is similar to the scenario for defining macromole-
cules (from which polymers are composed), for example
‘poly(ethylene)’ that has the schematic formula (C2H4)n.
Note that such macromolecules can be named (and clas-
sified) based on the individual source molecules from
which the macromolecule was formed (usually through
a polymerization chemical reaction) or from the result-
ing constitution subsequently to the chemical reaction
taking place; this is known as source-based or structure-
based naming respectively.

Algorithmic and statistical approaches to automatic
hierarchy construction
Cheminformatics solutions have been developed to clas-
sify sets of chemical entities automatically, both to
search for robust relationships between structures and
given biological activities and to organise large collec-
tions of data. Such algorithmic automatic classification
systems are in common use in industry, particularly in
areas such as drug discovery, agrochemicals and consu-
mer goods.
Algorithms for automated classification tend not to

perform efficiently when executed on arbitrary graph-
based data structures, so a usual technique is to reduce
graphs to characteristic features or descriptors, which
serve as the input for classifiers. As defined by
Todeschini and Consonni [31], a molecular descriptor is
the final result of a logical and mathematical procedure
that transforms chemical information encoded within a
symbolic representation of a molecule into a useful
number (calculated descriptors), or the result of standar-
dized experiments (experimental descriptors). Among
the calculated descriptors, if we focus on structural fea-
tures, molecular fingerprints are binary strings in which
each bit represents a feature. In the most common types
of fingerprint, a feature could be either a pre-defined
substructure or a random substructure mapped by a
hashing algorithm.
In hierarchy construction algorithms, such as hier-

archical similarity clustering [32,33], feature sets are
clustered on the basis of high mutual pairwise similarity
along a particular dimension. The clustering can be
based on either agglomerative methods, where all
instances are assigned their own class and these classes
are merged, or divisive methods, where everything is
assigned to a single class and this class is subdivided.
The results depend both on the feature-identification
algorithms and on the similarity calculations between
resulting feature sets. There are many different algo-
rithms for computing similarity measures between com-
pounds and for aggregating compounds into clusters
based on pairwise similarity measures, leading to arbitra-
rily many different classification hierarchies, even given
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the same compound collection as input. A limitation of
such an analysis is that each node in the hierarchy
represents a class with an arbitrary meaning, lacking a
formal definition. The tree is highly sensitive to changes
in input structures and the calculated features, making
it very difficult to compare results across datasets even
when the same clustering and fingerprinting algorithms
are used. Another limitation is that most feature sets on
which similarity measures are calculated, in order to be
efficiently computable, represent only a subset of the
total features of the molecules concerned, and local
paths through the structures predominate over the
(more expensive) overall molecular structure. Thus,
molecules may turn out to appear quite similar accord-
ing to such an algorithm (due, perhaps, to a predomi-
nance of similar parts), while displaying rather different
structures overall. This problem is exacerbated for mole-
cules of high structural regularity (e.g. polycyclic carbon
compounds). Nevertheless, similarity landscapes are of
paramount importance in reducing the complexity and
understanding the features of large collections of com-
pounds. Figure 1 shows an example of a similarity hier-
archy generated by a similarity clustering tool that is
part of the PubChem toolkit [14]. PubChem offers sev-
eral different types of similarity clustering feature based
on different underlying measures for similarity calcula-
tion, including two-dimensional and three-dimensional
similarity. In terms of the features we identify for che-
mical classification, similarity-based hierarchy generation
corresponds to the features used in the underlying fin-
gerprint, which may be based on parts (IP) or chemical
properties (CP), although the approach does not provide
a generic solution that is able to handle all parts and

properties, but is specific to those that are encoded in
the underlying fingerprint.
While the above is mainly rule-based, machine learn-

ing approaches have become prominent in recent
research. Supervised methods, such as Bayesian classi-
fiers, decision trees and support vector machines, are
employed to classify compounds for a particular func-
tional activity class. However, these approaches result in
binary output for non-structure-based classes. Super-
vised machine learning for prediction of chemical class
membership based on an existing structural hierarchy is
an interesting option, but would require large training
sets of chemicals that are already classified. Although
existing databases like ChEBI and MeSH [34] could act
as training sets, the size of these data is still a tiny frac-
tion of the enormous chemical space, and the problem
is further complicated by the fact that the leaf nodes of
such classification trees normally contain few structures.
Manually constructed classifications may furthermore be
far from complete in the sense that an arbitrary com-
pound belongs to a vast number of classes yet will only
have been classified under one or two - those deemed
to be the most relevant.
Beyond feature-based, similarity-based and statistical

approaches to automatic classification, an additional
approach is classification based on substructures [35]. A
substructure represents a wholly contained part of a mole-
cule, and characteristic molecular substructures (skeletons
or scaffolds and attached groups) are usually highly corre-
lated with characteristic activities. Nodes in hierarchies
based on substructures are able to be labelled with the
relevant substructure that is shared for all members of the
class; thus, such classes are more meaningful to humans
than statistical or similarity-based classes. Variants on this
approach include Maximum Common Substructure
(MCS) based clustering and scaffold tree clustering.
LibraryMCS [36] is a commercial application that can per-
form MCS based clustering on a set of structures.
Although the technical details of the underlying imple-
mentation are not available, from the output it can be
determined that structures sharing a common substruc-
ture are organized in the same class, and the common
substructures define the scope of each class. Scaffold Tree
[37] is a product that hierarchically classifies scaffolds,
which are molecular frameworks obtained by removing
side chains. By recursive removal of rings in scaffolds, scaf-
folds are decomposed into smaller ones which form the
higher levels in the hierarchy tree. Along similar lines is
the Scaffold Explorer tool which allows visualisation and
interaction with scaffold hierarchies [38]. Chemical
Abstracts Service (CAS) [39] offers a SubScape tool for
visualisation and browsing based on scaffolds. Figure 2
illustrates an example of chemical hierarchies generated
by scaffold and MCS approaches.

Figure 1 Similarity-based hierarchical structure clustering.
Similarity-based hierarchical structure clustering is illustrated as it is
computed in PubChem [14]. The figure was generated by searching
for ‘aspirin’ and then executing the ‘Structure Clustering’ tool from
the menu at the right. Numbers on the right are compound
identifiers, unique numbers associated with chemical structures
within the PubChem database.
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Both MCS- and scaffold-based methods allow visuali-
sation and present an overview of a given dataset.
Furthermore, the intermediate nodes which represent
shared scaffolds or MCS structures correspond to the
definition of classes based on an important part. These
definitions could be extracted and formalised. But the
output of these algorithmic approaches is still highly
dependent on the input and thus could not act as a uni-
versal chemical classification system. (Even if it were
possible to guarantee that the input corresponded to the
universal chemical space, it is likely that the conse-
quence would be a non-terminating classification algo-
rithm.) These approaches are generally directly useful,
since scaffolds often specify the general overall structure
of the molecule, which in bioactive and especially in
synthetic chemistry has a large influence on the activity
of the molecule in the biological system. However, hier-
archies based on scaffolding do not allow for the specifi-
cation of overall properties of the molecule, nor for
clustering based on similar aspects of molecules aside
from their scaffolds. Scaffolds resemble skeletons, and
MCS- and scaffold-based approaches address the

automatic construction of hierarchies for classes defined
based on interesting parts of the molecule (IP) with the
exclusion of positional attachments (IP.2) and specific
counts of parts (IP.4).
Leaving aside cheminformatics methods which have

already been applied to automated hierarchy construc-
tion, there are other methods that have been used for
definition of classes of molecules. A useful approach to
the definition of chemical classes used in cheminfor-
matics is the SMiles ARbitrary Target Specification
(SMARTS) [40], that allows the specification in a com-
pact line notation of structure-based classes of chemi-
cals. SMARTS allows the expression of features that
members of a class must have, including features such
as atom types, bond types, cycles and aromaticity. An
example SMARTS for the class of aliphatic amines is
[$([NH2][CX4]),$([NH]([CX4])[CX4]),$[NX3]([CX4])
([CX4])[CX4])]. Wild cards are supported, as are logical
operators such as ‘and’. SMARTS is a rich language for
specifying structure-based chemical classes. Until lately,
it was not very well supported by visualisation and edit-
ing tools, but a graphical displayer for SMARTS was
recently released [41], and various structure editors pro-
vide support for SMARTS editing, including the Pub-
Chem chemical structure editor [42], although without
yet making use of the SMARTS Viewer visualization for
generic features. The PubChem chemical structure edi-
tor allows specification of SMARTS atom environments
using the GUI query interface, and these are visualised
by annotation on the atom in the rendered chemical
structure and converted into SMARTS codes that can
be used in PubChem searching. PubChem also makes
use of SMARTS in defining features of molecules used
for aspects of the error detection, standardisation and
fingerprinting procedures in the PubChem computa-
tional architecture. Limitations of SMARTS are that it
does not provide support for repeated units such as
duplicated attached groups or an aliphatic carbon chain
within a range of length, and the support provided for
logical operators is limited in applicability to atoms,
bonds, or nested features using the recursive group defi-
nition option. SMARTS are not compositional in the
general sense, as substituents need to be enumerated
explicitly.
SMARTS can be compared to query formalisms such

as the Markush structure encoding formalism com-
monly used in patents [43] and the Molecular Query
Language [44]. The molecular query language (MQL)
provides a context-free grammar for description of parts
of molecules, including primitives for atoms, bonds,
properties, branching, and rings. Markush structures
allow the description of compound classes by generic
notation around the chemical graph formalism. The
core of the representation is the specification of a

Figure 2 Scaffold and MCS-based hierarchies. Scaffold-based and
maximum common substructure-based hierarchies are constructed
by searching for shared common parts between a group of
molecules. Higher positions in the hierarchy correspond to smaller
shared scaffolds and substructures, with the root being ‘any atom’.
The MCS-based hierarchy includes non-ring structures, while the
scaffold-based hierarchy only includes ring structures. Both images
were generated based on hierarchies constructed using the
structures belonging to the ‘organic heterocyclic molecule’ class in
ChEBI.
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compound scaffold together with varying parts. Types of
varying parts that can be specified include R-groups,
link nodes, atom lists, position variation and repeating
units with repetition ranges. Such query languages facili-
tate matching against compound collections and they
provide a compact representation that can serve as
input to combinatorial enumeration algorithms. How-
ever, query formalisms do not lend themselves straight-
forwardly to generic computation of the arrangement of
classes into a hierarchy, although it would of course be
possible to write dedicated algorithms which performed
such arrangement based on a specified set of definitions
in any of the formalisms. The computation of hierarchi-
cal organisation in a generic (domain-independent, i.e.
not specific to chemistry) fashion is one of the key bene-
fits of logic-based ontology technology, as well-studied
reasoning algorithms allow the rapid computation of
hierarchical arrangement of large sets of class definitions
as well as the computation of the most specific class to
which a given compound belongs based on its structural
features.
Another approach within algorithmic cheminformatics

that is closely related to the hierarchical classification of
entities within the chemical domain is that of computing
systematic names for structures and structures from
names. IUPAC naming rules for compounds such as
described in the ‘Gold book’ [45] and implemented in
various tools including the open source Opsin [22] pro-
vide a method for obtaining a systematic name from a
given chemical structure, and for interpreting a name to
determine the intended underlying structure. Impor-
tantly, rules for chemical naming in IUPAC confer simi-
lar information to the classification of molecular entities
into hierarchies in the sense that parts of a chemical
name correspond to parts of the molecule, and the same
parts of the molecule are also used for parts-based clas-
sification. Thus, there could be a close integration
between software that computes names and software
that computes classification. Such an integration would
also allow the naming of mid-level groupings in a con-
structed hierarchy based on IUPAC rules. We are not
aware of any research projects currently that combine
these two approaches towards this goal. More impor-
tantly, however, we note that IUPAC rules generate sys-
tematic names, which can be unwieldy and lengthy, and
that chemists in many cases prefer to use shorter trivial
names such as ‘caffeine’. Such trivial names cannot be
automatically computed and need to be stored in a
knowledge base such as ChEBI.

Automatic classification in chemical ontologies
In this section we describe the applicability of several of
the KR formalisms underlying ontology technology to

structure-based class definition and classification, high-
lighting the capabilities and limitations of each formal-
ism. The section is arranged according to the features
outlined in the analysis of chemical class definitions.

Interesting parts (IP)
Structure-based classification of chemicals based on the
presence of specific functional groups is among the
most well-developed areas of ontology-supported chemi-
cal classification. Existential quantification in OWL
(expressed with keyword ‘some’) allows the definition of
chemical classes based on the existence of parts. For
instance, a compound is a carboxylic acid if and only if
there exists a carbon contained in the compound such
that (i) the carbon has a double bond with an oxygen
and(ii) the carbon has a single bond with an oxygen that
is connected through a single bond to a hydrogen (O =
C - OH). This can be formulated in OWL as follows:

CarboxylicAcid equivalent hasAtom some (Carbon and (doubleBond some Oxygen) and

(singleBond some (Oxygen and (singleBond some Hydrogen))))

We can represent formic acid (HCOOH) with the fol-
lowing OWL axiom:

FormicAcid equivalentTo hasAtom some(Carbon and (doubleBond some Oxygen) and ( singleBond some

Hydrogen) and (singleBond some(Oxygen and (singleBond some Hydrogen))))

By performing OWL reasoning we correctly infer that
FormicAcid subclassOf CarboxylicAcid. However,
according to this definition for formic acid there is no
restriction on additional atoms that an instance of for-
mic acid may contain; i.e. it is acceptable if an instance
of formic acid contains an additional nitrogen. This is
due to the open world semantics underlying OWL, and
creates obvious problems for the correct representation
of fully specified chemical structures such as formic acid
that are not intended to allow additional atoms; it thus
prohibits the definition of chemical classes based on the
absence of some kinds of atoms. Additionally, as OWL
cannot faithfully describe non-tree-like structures, this
approach is not applicable to structure of functional
groups with rings, such as phenyl groups.
One of the first uses of OWL for chemical classifica-

tion was by Dumontier et al. [46], who classified mole-
cules based on the presence of functional groups into an
OWL ontology where the functional groups were
described by axioms similar to the above. The tree-
model property of OWL is acknowledged as a restric-
tion, and DL-safe rules [46] are recommended as an
alternative, although in fact the use of DL-safe rules for
this purpose is also limited, as we discuss in the below
section Topological features. More recently, this work
has been extended in the Lipid Ontology, which encodes
classes of lipids using OWL axioms for automatic classi-
fication of lipids [47]; the classification is mostly
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dependent on the detection of specific functional groups
which is done using algorithmic approaches. This work
has been recently extended towards classification of che-
micals in ChEBI and MeSH in [48], which includes an
algorithm for the discovery of shared features among
groups of chemical structures and the assertion of those
features into an OWL ontology. The features which are
detected again include common functional groups and
additionally the presence of charges and cycles.
In related work extending the notion of parthood and

features for classification of chemical entities, Stevens
describes an approach using OWL for the classification
of the atoms in the periodic table [49].

Basic chemical properties (CP)
A number of chemical classes are specified using
numerical features of chemical entities, such as charge
or mass. OWL 2 offers facilities for advanced handling
of datatypes such as integers or strings. Datatypes allow
knowledge engineers to define classes by referring to
particular values or value ranges: for example, one may
define small molecules as the molecules whose molecu-
lar weight is less than 800 Daltons. Furthermore, OWL
2 reasoners provide datatype reasoning support [50] in
order to exploit this knowledge and derive new infer-
ences: if it is stated that the weight of atropine is 289
Daltons, then atropine is automatically classified as a
small molecule.
This is a convenient feature in applications such as e.

g. drug discovery, that require filtering out molecules
above a critical weight. For instance, one may want to
retrieve all the small tetrapyrrole molecules, that is com-
pounds that contain four pyrrole rings and with weight
less than a threshold value.

Topological features (TF)
One of the first attempts to overcome the limitations of
OWL for representing cycles was DL-safe rules [51].
The extension of OWL ontologies with DL-safe rules
allowed certain reasoning tasks to be performed over
non-tree-like structures while preserving decidability.
Nevertheless, the restrictions that are necessary in order
to enforce decidability restrain the applicability of the
rules to only explicitly named objects of the ontology -
that is, individuals. Assuming a simplified knowledge
base whose contents appear in Table 2 (bonds are

assumed to have been defined as symmetric), an infer-
ence engine can derive the assertion CyclicMolecule(m)
but not that Benzene subclassOf CyclicMolecule, as the
DL-safe rules extension does not allow the deduction of
subclass relationships that concern all the benzene
molecules.
In order to address the need for class-level reasoning

over structured objects as outlined above, a further
OWL extension was suggested that combines OWL,
rules and Description Graphs (DGs), a new modelling
primitive for the representation of complex structures
[52]. Using unextended OWL, a benzene ring is mod-
elled with the following OWL axiom, which states that
an object is a benzene ring if and only if it has exactly
six carbon atoms each of which has a single bond with
exactly one carbon atom and a double bond with exactly
one carbon atom:

BenzeneRing equivalentTo hasAtomexactly6(Carbon and hasSingleBondWith exactly 1 Carbon

and hasDoubleBondWith exactly1 Carbon)

Note that this representation would be different if aro-
maticity was explicitly included in the model. In that
case, we would replace the single and double bond rela-
tionships with a single aromatic bond relationship.
Figure 3 (a) shows the ‘canonical’ model of this ben-

zene ring according to the OWL semantics: informally,
the canonical model is what the logical definition
encodes. The OWL model is tree-shaped.
Using DGs, the canonical model looks like Figure 3(b)

that, in contrast to Figure 3(a), does capture the under-
lying cyclic structure.
However, certain syntactic restrictions are enforced on

knowledge bases containing DGs in order to guarantee
decidability. One of these restrictions is the strong
separation requirement that prevents the user from mix-
ing properties used in the OWL ontology with proper-
ties used in the DGs axioms. Therefore, if one uses the
property hasSingleBondWith in the DGs formulas, then
hasSingleBondWith may not occur in e.g. an axiom of
the form hasSingleBondWith subPropertyOf hasBond-
With. This constraint imposes limitations on the applic-
ability of the formalism to general utility for chemical
ontology, as evaluated in [53].
In an effort to relax the limitations imposed by the

DGs approach, a radically different KR formalism with
the name Description Graph Logic Programs (DGLP) has

Table 2 An example of rules that are safe for use with OWL ontologies

OWL axiom hasAtom some RingAtom subclassOf CyclicMolecule

OWL
assertions

Benzene(m),singleBond(a1,a2), doubleBond(a2,a3), singleBond(a3,a4), doubleBond(a4,a5), singleBond(a5,a6), doubleBond(a6,a1), Carbon(ai),
hasAtom(m,ai) for each 1≤i≤6

DL-safe rule ^1≤i≤6 Carbon(xi)^singleBond(x1, x2)^ doubleBond(x2,x3)^singleBond(x3,x4)^

doubleBond(x4,x5)^ singleBond(x5,x6)^ doubleBond(x6,x1)®RingAtom(x1)

Hastings et al. Journal of Cheminformatics 2012, 4:8
http://www.jcheminf.com/content/4/1/8

Page 13 of 20



been developed [24]. The DGLP framework adopts the
logic programming paradigm in order to represent
objects whose parts are interconnected in arbitrary
ways. Unlike description logics, the decidability guaran-
tees of logic programs do not rely on the tree-model
property and, so, the modeller is no longer restricted to
tree-like structures. Since DGLP ensures decidability in
different ways, the need for strong property separation
is eliminated; thus, the ontology designer is free to mix
up properties for both structured objects and general
knowledge of the domain which implies more flexibility
in the modelling decisions.
To represent classes with more advanced overall topo-

logical features such as polycyclic cages is beyond the
expressivity of DGLP as it requires quantification over
all atoms in a molecule rather than specific parts or
properties. An approach for the representation of the
overall structure of highly symmetrical polycyclic mole-
cules is set out in [54] using a combination of monadic
second-order logic and ordinary OWL. This approach
has not yet been implemented in practice, but shows
promise for logical reasoning over features involving
regularity in the overall structure of molecules.

Structural formulae
Some chemical classes are defined in part by the absence
of certain characteristics, such as e.g. hydrocarbons
(strictly defined, excluding derivatives), in which atoms
of types other than hydrogens and carbons are absent.

Inorganic molecules are often defined as those that do
not include carbon atoms. Note that some carbon-con-
taining molecules, such as carbonates and cyanides, are
often classified as inorganic carbon compounds. These
exceptions would need to be appended as additional con-
straints on the definition. However, we leave this compli-
cation aside in what follows.
Due to the open world semantics of OWL, everything

that is not explicitly stated in the ontology is assumed
to be not known to hold rather than known not to hold.
This property of the semantics is a challenge for the
knowledge engineer in capturing conditions based on
the absence of information. For instance, consider the
following OWL representation of a water molecule:

WatersubclassOf (hasAtom exactly 1 Oxygen) and (hasAtom exactly 2 Hydrogen) (4)

Consider also the following OWL definition of inor-
ganic molecules:

hasAtom only ( not Carbon) subclassOf Inorganic (5)

In accordance with the OWL semantics, Water sub-
ClassOf Inorganic is not derivable as there are models
of water that comply with axiom (4) but contain addi-
tional carbon atoms. One may eliminate these models
by constraining the number of atoms that water may
contain:

Water subclassOf (hasAtom exactly 3 owl : Thing )(6)

Figure 3 Logical models of the benzene structure. The chemical structure of benzene is illustrated together with the logical models of the
class in the OWL language.
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Nevertheless, Water subClassOf Inorganic is still not
inferred as there are models of water that contain
exactly three atoms (two hydrogens and one oxygen),
but one of the three atoms is also classified as a carbon
atom. One may overcome this difficulty by requiring the
chemical elements to be disjoint:

Hydrogen and Carbon subclassOf owl : Nothing (7)

Oxygen and Carbon subclassOf owl : Nothing (8)

The axioms (4)-(8) do entail that Water subClassOf
Inorganic. However, this is specific to this small and
constrained knowledge base, and eliminating undesirable
models by gradually adding axioms in this fashion is
clearly a solution of little practical use, as it is domain-
specific and tedious.
In contrast to OWL, logic programming is equipped

with closed-world semantics; in the chemical domain
context, this means that a molecule whose chemical
graph is fully defined is presumed not to consist of any
additional structure. DGLP [24] consequently has
closed-world semantics and therefore allows the concise
description of categories of molecules such as hydrocar-
bons or inorganic molecules. DGLP has been tested in
practice for automatic classification of chemical mole-
cules on classes such as hydrocarbons, inorganic mole-
cules, molecules with a four-membered ring and
molecules with exactly two carbons, with fair perfor-
mance (for an ontology with 70 molecules, no test took
more than a few minutes), which is expected to further
improve with optimisation.
A category of molecules that is particularly challen-

ging to represent with logic is the one defined by a
parameterised molecular formula, such as alkenes which
are described by the formula CnH2n. Constraints on
number of atoms of particular sorts can be expressed
using OWL cardinality restrictions, but this facility does
not allow the relationship between the number of car-
bons and the number of hydrogens to be expressed.
The description of macromolecules such as polyethy-

lene which consist of repeating units is also challenging.
While the above formalisms can be used to describe the
repeated units, the fact that the units are arranged in a
chain is not easily described, and the fact that the num-
ber of repeated units is variable and not known before-
hand cannot be straightforwardly encoded.

Discussion
Historically, logic-based approaches to automated classi-
fication and cheminformatics approaches have devel-
oped largely independently. Our purpose here is to
evaluate them side by side and compare and contrast
their strengths and weaknesses.

The strength of algorithmic approaches used in che-
minformatics is that they are able to be optimised and
tweaked for the chemical domain and specific chemi-
cally relevant applications. However, there are neverthe-
less several key benefits to adoption of the logic-based
ontology-driven approach in the chemistry domain,
namely:

• Taxonomical knowledge represented in an ontol-
ogy is explicit and accessible to domain experts,
while algorithms which perform hierarchical classifi-
cation often act as black boxes, and amending the
classification methodology requires adapting the
underlying software or re-training a complex statisti-
cal model.
• Using an ontology for classification allows for
explanations (justifications) [55], both for computed
subclass relations and for detected inconsistencies.
This can be contrasted to black-box approaches
such as neural networks where no explanation ser-
vices are available.
• Representation of chemical knowledge in an ontol-
ogy allows it to be harnessed in a generic fashion
from within diverse ontology-based applications
which also utilise knowledge from other domains (a
core requirement for whole-scale systems biology),
while to make use of cheminformatics algorithms
and toolkits requires custom software, differing from
the software used in other domains.
• There are several features needed for chemical
class definition that are not adequately catered for in
algorithmic approaches, but which can be formalised
in logical expressions (although not always in
straightforward OWL), such as the absence of atoms
of a particular type, or features of regularity in the
overall structure.

In contrast to the algorithmic hierarchy construction,
chemical ontologies allow the specification of a hierarchy
from the top down, in the sense that the features of che-
mical classes can be specified by experts, and the assign-
ment of their members is based on these features, rather
than being restricted by what algorithms for detecting
similarity or substructures are able to detect. Creating
such a hierarchy allows for the explicit representation of
domain knowledge, which corresponds to the content of
textbook chemistry and at the same time can be inter-
linked with research reports in the literature as well as
large-scale databases of chemical compounds. Targeted
development of novel compounds with desirable proper-
ties for therapeutics and other applications relies on
extensive domain knowledge, currently to a great extent
only human-accessible via textual scientific literature or
verbal communication from mentor to student.
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The explicit representation of knowledge in this fash-
ion allows for the classification of edge cases (unusual
classes) and cases which cannot be treated within the
constraints of the available algorithmic tools. Statistical
(machine-learning) approaches rely on the underlying
quantification of features in the molecules - and features
that are not common are less likely to be represented in
resulting trained models. Similarity comparisons are vul-
nerable to the specification of features to be used in the
quantification of similarity. Also, many of the features
used are path-based, that is, they traverse combinato-
rially exhaustive paths through the molecule up to a cer-
tain length. It is difficult to capture overall features of
the molecule with path-based approaches. However,
some overall features of molecules, such as count of
rings, are often added in to the features used in such
classifications. Substructure detection is similarly unable
to account for overall features of molecules. Ontology-
based classification using logical definitions gives a flex-
ibility in defining features, even very large ones, or ones
that span over a small number of examples but are
nevertheless important and would otherwise be lost in
the long tail. An important thing is that the eventual
classification (howsoever arrived at) is provably correct,
i.e. includes no false statements.
Examples of edge classes which appear difficult to deal

with in the cheminformatics approaches are:

1. organometallic compound, because the underlying
physics of their bonding is not susceptible to the
valence-bond approach
2. cyclic peptide, because the cycle in question is not
an arbitrary attached ring, but a cycle of chained
peptide links and hence not obviously detectable
3. fullerene, just because they contain a vast number
of rings which can cause ring-detection algorithms
to time out

Chemists regularly assign names to mid-level class of
chemical entities for use in scientific communication
and education, which machine-learned groupings may
not be able to discover. This leads to the situation
where it is not possible, for example, to group together
all the literature describing that category of chemicals,
despite the fact that chemists think and communicate
regularly in terms of such categories. This can be com-
pared to the scenario in chemistry education, where
relevant groupings of chemical entities are often taught
in chapter-specific units. Of key relevance is linking
classes of chemicals to the reactions that can be used to
synthesize them, such as those described in the Name
Reaction Ontology (http://rxno.googlecode.com/).
Due to the heterogeneous nature of ontology classes

(i.e. not restricted to chemical structures), ontology-

based representation also allows the description of func-
tional classes of chemical entities, as is done in the
ChEBI role ontology, and the linking of those to rele-
vant structural classes. This can be applied to retrieval
of all structures for a given functional class, e.g. all
odorant molecules, in order to do primary research in a
particular domain, e.g. smell perception. Here, the pri-
mary purpose of the research might not be chemical in
nature but rather into perception, thus making the
implementation of a targeted chemical database a costly
overhead; therefore having this sort of functional group-
ing available in broader chemical knowledge bases such
as ChEBI is a large benefit.
Such functional groupings of structures are essential

inputs to many cheminformatics approaches. If it is pos-
sible to group together all molecules which act against
the same receptor, it is then possible to train predictive
models based on this information. Research in the
sciences often examines groupings of chemical entities
which exhibit shared behaviour in order to understand
more about the mechanisms underlying that behaviour.
Having to extract the grouping that one is interested in
manually from the database by doing a literature analy-
sis in every case is a labour-intensive task, and it is one
that should be centralised so as to free up the resources
of researchers for focusing on their primary research.
Importantly, this sort of information needs to be hier-
archically organised, so that it is not repetitively
described, and so that it can be grouped and clustered
at different levels of aggregation depending on the needs
of the individual researcher. For instance, for some
research purposes one may be interested in the classifi-
cation of all molecules which are odorants; for other
purposes, one may be interested in only those which
smell sweet or smell bitter.
For these reasons, ontology-based chemical taxo-

nomies have a valid place alongside the other methods
for chemical classification. On the other hand, there are
several benefits to adopting cheminformatics tools
within the ontology engineering process in the domain
of chemistry, such as to benefit from the well-developed
and rapid algorithms for detecting parthood between
chemicals and for computing properties. This presents a
challenge for tooling and for algorithm research, in that
the logic-based ontology tools and algorithms need to
work alongside and be integrated with cheminformatics
tools and algorithms. While substructure detection can
be efficiently done outside of the ontology framework,
crude assertion of all detected substructure relationships
between molecules in an ontology leads quickly to a
combinatorial explosion of asserted parts and relation-
ships [56]. Yet, logical methods for substructure detec-
tion are bound to be less efficient than dedicated
algorithms. There is a need for future work to showcase
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hybrid approaches taking into consideration the
strengths and weaknesses of both methodologies, with
the balance between the different approaches being
empirically determined to maximise the efficiency and
applicability of the overall system.
In summary, we can consider the desiderata for a

structure-based classification system that we have identi-
fied in the Introduction and compare to the approaches
which we have evaluated above.

1. Accessibility to domain experts. While OWL and
other logical formalisms are not easily comprehensi-
ble to non-logicians, they do at least contain human-
legible definitions for classes which can be inspected,
unlike ‘black box’ approaches.
2. Support for compositionality to define classes based
on combinations of elementary features. Logical
approaches provide explicit support for composition-
ality via fundamental logical operations such as
AND and OR. However, cheminformatics automatic
classification via fingerprints and substructures also
provide implicit support for compositionality of the
features used in the classification algorithm. But
these approaches, with the exception of SMARTS,
do not customarily provide support for explicit defi-
nition of classes.
3. Automatic arrangement of classes into hierarchies
based on their definitions. Of the cheminformatics
approaches, SMARTS gives the most explicit support
for definition of classes. However, the weakness of
SMARTS is that it does not allow for automatic
arrangement of classes into hierarchies based on the
definitions. Other cheminformatic approaches such
as MCS do allow construction of hierarchies, but
not definition of classes. Logic-based formalisms
such as OWL provide explicit support for the auto-
mated arrangement of definitions into hierarchies
using reasoners.
4. Semantic, named mid-level groupings. One of the
weaknesses of cheminformatic hierarchy construc-
tion approaches is that the mid-level groupings
which they provide in their hierarchies are not
explictly named and often do not have meaning out-
side of the particular hierarchy, i.e., they are not
associated with any semantics. Logic-based
approaches, with their explicit focus on logical defi-
nitions at all levels, do meet this requirement.
5. Structure-based automatic classification of com-
pounds into classes. This is, of course, the primary
strength of cheminformatics structure-based hierar-
chy construction methods. However, it is also possi-
ble with logic-based methods, as long as the features
encoded in the chemical structures are made accessi-
ble to the logical reasoner. This can be achieved

either by encoding the chemical structure within the
logical formalism (where this is supported by the
expressivity of the formalism) or by using chemin-
formatics approaches to extract the features as a pre-
cursor to the logical reasoning.

Conclusions
We have presented an analysis of the requirements and
the current functionality of available implementations
for structure-based chemical classification and chemical
ontologies. It is our hope that this work will contribute
to the future development of synergies between chemin-
formaticians and computer scientists interested in classi-
fication of complex structures. Future work will be to
create a benchmark for the performance evaluation of
the approaches we have described in this contribution,
including the evaluation of the time vs. space complexity
of algorithms against a standard set of definitions and a
standardised compound collection.
Structure-based classification is essential to many

applications of chemistry in modern science, driven by
the need to manage large-scale data and to stay ahead
of newly generated knowledge across many different
research areas amid exploding quantities of primary lit-
erature. Such literature reports are often phrased in
terms of classes of chemical entities rather than indivi-
dual fully specified molecules. Furthermore, biological
knowledge such as the actions of enzymes in biological
pathways is often described in terms of whole classes
rather than individual molecules. While cheminformatics
methods are highly optimised for operating on chemical
structures, logic-based ontology technology allows for
explicit knowledge representation in a more targeted
fashion. There is a need for the development of hybrid
systems that interface between domain-independent
ontology technology and chemistry-specific cheminfor-
matics methods.
Aside from the integration of logic-based and chemin-

formatic methods, an additional open research area is in
the representation and reasoning with those of the features
which are used in structure-based classification that are
not covered by any of the available technologies here sur-
veyed, including the mechanical connectivity and shape of
molecules, the relative arrangement of parts, interactions
between cycles, and the specification of repeating units
arranged in a particular way such as in polymers. There is
also a need for the development of tools in the area of
visual editing of chemical class definitions.

Methods
Defining features used in structure-based chemical class
definitions
The list of features (Table 1 - Features used to define
structure-based classes) was extracted from a manual
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inspection of (i) the textual definitions and (ii) the mem-
bers associated with classes in the ‘chemical entity’
branch of the ChEBI ontology. The initial inspection
was carried out by three of the authors and the resulting
list of features was discussed among all of the authors.
Higher-level classes were identified as those members

of the chemical entity ontology that (i) were not them-
selves defined by an InChI (the IUPAC canonical repre-
sentation of the chemical structure designed for
identification and disambiguation of chemical entities,
[57]), since InChI can only be generated for fully speci-
fied structures, (ii) had descendants in the ontology, and
(iii) had a textual definition. Some of these were

discarded on inspection as being out of scope for this
study, as discussed in the Introduction.
A sample list of the textual class definitions, together

with their class IDs and names, that formed the input to
this analysis, is included in Table 3. The full list of tex-
tual class definitions is accessible via the ChEBI database
and web services, and can also be obtained from the
authors on request.

Generation of scaffold and MCS hierarchies
The ChEBI molecules classified beneath organic hetero-
cyclic compounds (CHEBI:24532) were processed using
Scaffold Tree [37] and ChemAxon’s LibraryMCS [36].

Table 3 A representative sample from the list of ChEBI classes used in the analysis

ChEBI ID Name Definition

CHEBI:50860 organic molecular
entity

A molecular entity that contains carbon.

CHEBI:50047 organic amino
compound

A compound formally derived from ammonia by replacing one, two or three hydrogen atoms by organyl
groups.

CHEBI:51690 enaminone A compound containing a conjugated system of an amine, an alkene and a ketone.

CHEBI:33567 catecholamine 4-(2-Aminoethyl)pyrocatechol [4-(2-aminoethyl)benzene-1,2-diol] and derivatives formed by substitution.

CHEBI:33860 aromatic amine An amine in which the amino group is linked directly to an aromatic system.

CHEBI:51349 polyamine
macromolecule

A macromolecule composed of units connected by imino (−NR-) linkages.

CHEBI:51402 phenylenediamine A benzene substituted with two amino groups.

CHEBI:59654 prolinols The class of all compounds which contain a prolinol skeleton.

CHEBI:33709 amino acid A carboxylic acid containing one or more amino groups.

CHEBI:60249 lead ion A lead atom having a net electric charge.

CHEBI:58941 cyclic tetrapyrrole
anion

An organic anion arising from deprotonation of a cyclic tetrapyrrole compound.

CHEBI:2580 unsaturated fatty acid
anion

Any fatty acid anion containing at least one C-C unsaturated bond; formed by deprotonation of the
carboxylic acid moiety.

CHEBI:58955 branched-chain fatty
acid anion

Any fatty acid anion with a carbon side-chain or isopropyl termination.

CHEBI:33598 carbocyclic compound A cyclic compound in which all of the ring members are carbon atoms.

CHEBI:33658 arene Any monocyclic or polycyclic aromatic hydrocarbon.

CHEBI:33847 monocyclic arene A monocyclic aromatic hydrocarbon.

CHEBI:38976 alkylbenzene Benzene substituted with one or more alkyl groups.

CHEBI:35302 helicene ortho-Fused polycyclic arenes in which all rings (minimum five) are angularly arranged so as to give helically
shaped molecules.

CHEBI:51198 calixarene A macrocycle composed of 1,3-phenylene groups linked by methylene groups. The number of 1,3-phenylene
units in the macrocycle is denoted by the n in calix[n]arene name.

CHEBI:33612 polyhedrane A polycyclic hydrocarbon of the (CH)n formula having a skeleton corresponding to the regular or semiregular
geometrical solid.

CHEBI:36786 tetralins Compounds containing a tetralin skeleton.

CHEBI:50961 rotaxane A system in which at least one macrocycle encloses another, rod-like molecule (shaft) having end groups too
large to pass through the ring opening, and thus holds the rod-like molecule in position without covalent
bonding.

CHEBI:51269 acenes Polycyclic aromatic hydrocarbons consisting of fused benzene rings in a rectilinear arrangement and their
substitution derivatives.

CHEBI:51586 benzoins Compounds containing a benzoin (2-hydroxy-1,2-diphenylethanone) skeleton.

CHEBI:51614 diarylmethane Any compound containing two aryl groups connected by a single C atom.
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The class contains 3397 entities with chemical struc-
tures, for each of which at least one ring system is pre-
sent. The structures are very diverse, from simple
structures like pyridines to complex natural product
structures like indole alkaloids.
LibraryMCS was executed via its GUI interface. Only

highly frequent scaffolds were selected manually for
visualization. In Figure 2, the number of structures con-
taining the MCS is annotated beside the structure. All
3397 structures have a MCS of ‘A’, which means any
atom. Other larger MCSs were displayed as leaf nodes
of root MCS ‘A’. Some interesting MCSs such as imida-
zolidine were found, but uninteresting MCSs such as
carbon chains also appeared. Even in the third layer,
there were still 851 structures in class ‘A’, which means
no interesting MCS was found for that group.
The lower part of Figure 2 illustrates the hierarchy

generated by Scaffold Tree. Scaffolds were organised
with respect to the number of rings. Scaffolds that
appeared frequently were also selected for visualization.
As scaffolds are generated on the basis of ring systems,
a better hierarchy was generated compared to the MCS
based method.
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