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Abstract

Background: A growing popularity of machine learning methods application in virtual screening, in both
classification and regression tasks, can be observed in the past few years. However, their effectiveness is strongly
dependent on many different factors.

Results: In this study, the influence of the way of forming the set of inactives on the classification process was
examined: random and diverse selection from the ZINC database, MDDR database and libraries generated
according to the DUD methodology. All learning methods were tested in two modes: using one test set, the same
for each method of inactive molecules generation and using test sets with inactives prepared in an analogous way
as for training. The experiments were carried out for 5 different protein targets, 3 fingerprints for molecules
representation and 7 classification algorithms with varying parameters. It appeared that the process of inactive set
formation had a substantial impact on the machine learning methods performance.

Conclusions: The level of chemical space limitation determined the ability of tested classifiers to select potentially
active molecules in virtual screening tasks, as for example DUDs (widely applied in docking experiments) did not
provide proper selection of active molecules from databases with diverse structures. The study clearly showed that
inactive compounds forming training set should be representative to the highest possible extent for libraries that
undergo screening.
Background
Machine learning methods are among the most popular
tools used in cheminformatic tasks [1-3]. So far, many as-
pects of their application in experiments connected with
the classification of chemical compounds have been exten-
sively examined: the type of molecules representation [4],
number of compounds from particular class in the dataset
[5], parameters of learning algorithms [6], the type of ma-
chine learning method [7], etc. Interestingly, the influence
of differences in dataset composition resulting from vari-
ous ways of selection of molecules forming a set of inac-
tives has never been thoroughly investigated.
Databases of compounds with reported activity towards

particular target usually contain only a few molecules
which are proved to be inactive. Therefore, during the
preparation for machine learning experiments, the need of
generating sets of compounds assumed as inactive arises.
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Various approaches to this task have already been pro-
posed. Selection from databases of known ligands [8,9],
where compounds with unconfirmed activity towards con-
sidered receptor (active towards proteins other than the
target of the interest) were assumed as inactive, generation
of putative inactives [10], random selection out of large
databases [7] are just some the most common examples.
Only in very few cases, number of inactive compounds is
sufficient enough to perform ML experiments [11].
In this study, six most frequently used ways of selecting

assumed inactives were tested: random and diverse selec-
tion from: the ZINC database [12], the MDDR database
[13] and libraries generated according to the DUD meth-
odology [14] in terms of their impact on the machine
learning methods performance.
As the common sense suggest, such effect should be ob-

served, but to determine if it is noticeable and repeatable
(and thus dependent on the experimental conditions) all
tests were performed for 5 different protein targets, with
the use of 3 different fingerprints for molecules
al Ltd. This is an Open Access article distributed under the terms of the Creative
commons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Table 1 Machine learning methods used in the
experiments with the optional abbreviations used in
further work

Classifier Classification
scheme

Parameters

Naïve Bayes (NB) bayes -

Sequential Minimal
Optimization
(SMO)

functions

The complexity parameter was set
at 1, the epsilon for a round-off
error was 1.0 E-12, and an option
of normalizing training data was
chosen.

Kernels:

1) The normalized polynomial
kernel,

2) The polynomial kernel

3) The RBF kernel

Instance-Based
Learning (Ibk)

lazy

The brute force search algorithm
for nearest neighbour search with
Euclidean distance function.

The number of neighbours used:

1) 1

2) 5

3) 10

4) 20

Decorate meta

One artificial example used during
training, number of member
classifiers in the Decorate
ensemble: 10, the maximum
number of iterations: 10.

Base classifiers:

1) NaïveBayes

2) J48

Hyperpipes misc -

J48 trees
1) With reduced-error pruning

2) With C.4.5 pruning

Random Forest
(RF)

trees

Trees with unlimited depth, seed
number: 1.

Number of generated trees:

1) 5

2) 10

3) 50

4) 100

Bolded parameters correspond with the one providing the best results for
particular machine learning method (see Results section & Additional file 1:
Figure S1).
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representation and 7 machine learning algorithms with
varying parameters.

Results
All experiments were performed for wide spectrum of pa-
rameters of machine learning methods. The presented re-
sults are related only to those settings that provided the
highest classification efficiency in the most of cases (bol-
ded in Table 1); an exemplary panel of graphs with full re-
sults for every machine learning algorithm is available in
Additional file 1: Figure S1.
Similarly to already reported findings, the number of

trees grown when Random Forest is run equal to 100 led
to the highest classification efficiency [6], as well as setting
the number of neighbours to 1 when k-NN is applied [5].
Some authors also pointed out, that RBF kernel is an opti-
mal choice for SVM experiments [6], whereas in our tests,
the normalized polykernel showed the best values of
evaluating parameters for the majority of cases. Naïve
Bayes appeared to be more effective base classifier than
J48, and C.4.5 pruning won over the reduced-error prun-
ing (Table 1, Additional File 1: Figure S1).
Due to a great number of results, the heat maps

(Figure 1) were employed to qualitatively represent values
of the evaluating parameters (all numerical values together
with their standard deviations are available in Additional
file 2: Tables S1–S3). In case where subsets of inactives
were selected randomly, the presented results are the aver-
aged outcomes from 10 iterations (standard deviation of
evaluating parameters values did not exceeded 0.05,
confirming the consistency of the shown data).

Common-test set mode
The influence of the way of inactive molecules selection
on machine learning methods performance was similar for
different algorithms (Figure 1a). All classifiers were able to
correctly indicate active molecules, regardless of the
changes in the inactives set composition, which is shown
by the dark-red maps referring to this evaluating param-
eter. On the other hand, precision was very sensitive to
variations in the way of subsets of inactives generation –
heat maps related to this parameter are definitely more
complex comparing to those presenting recall values.
Changes in precision values also had a major contribution
to variations in MCC – they were even more visible due
to the range of MCC from −1 to 1. For this reason, both
of these parameters are discussed together.
For all classifiers, the highest effectiveness of classifica-

tion occurred for ZINC_random sets (first columns in
each part of heat maps referring to particular fingerprint).
Although in this case, the test set was generated in the
analogous way as for training, which makes it a little bit
privileged, this type of test set is a very good illustration of
the virtual screening experiment, where large libraries of
chemical structures are evaluated. Therefore, this part of
study can be regarded as a reference point for the rest of
results. For the experiments with COX-2 inhibitors, the
MCC and precision values were similar to those obtained
for ZINC_random also for both sets of inactives selected
out of the MDDR database when MACCSFP and ExtFP
were used. Applying KlekFP led to situation where those
parameters remained on similar level for all classifiers but
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 A set of heat maps visualizing the values of evaluating parameters obtained in a) common-test set mode experiments and in
b) various-test set mode experiments. Figure 1 presents recall, precision and MCC values obtained in the experiments. Columns of maps are
referring to particular evaluating parameter, rows to particular target. Rows in maps correspond with different machine learning methods,
whereas columns in maps refer to different training sets and use of various fingerprints for molecules representation.
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Hyperpipes (lower by ~0.3 for precision and ~0.5 for
MCC comparing to ZINC_random). For the rest of tar-
gets, changes in precision and MCC (being a consequence
of varying conditions of inactives selection) were very
similar. Their highest values (very close to ZINC_random)
were provided by random selection of compounds from
the MDDR database and the lowest by DUD sets, which
caused the reduction of classification effectiveness even by
~0.5 or ~0.8 for precision and MCC respectively). In
addition, similarly to COX-2, the lowest precision and
MCC changes for different sets of inactives occurred when
molecules were represented by KlekFP. All of the per-
formed experiments indicated that random selection of in-
actives provided better results than the diverse approach.
This dependence was the most clearly indicated in case of
“ZINC sets” of inactives - up to ~0.8 variation in MCC
values, for inactives from the MDDR database this differ-
ence was around 0.2, whereas for “DUD sets” those two
methods of selecting inactive molecules led to comparable
results, although they were significantly less efficient than
those obtained with the “inactives” selected from the two
previous databases.

Various-test sets mode
As regards to the results obtained in the various-test sets
mode (Figure 1b), differences between particular experi-
ments were suppressed. It is hard to identify the set provid-
ing the best recall or the one that led to significant fall in
its values. Even though, for some methods (such as NB,
Decorate and J48) a slight drop was observed for
ZINC_random and MDDR_random sets indicated by
shifting in colours of boxes corresponding to experiments
with its use from dark to light red.
In this part of research, the rate of false positives was sig-

nificantly lower, which is illustrated by the dark red preci-
sion maps in Figure 1b) versus the light red-yellow ones
corresponding to experiments with the common-test set
mode (Figure 1a), and this also had a consequence in
higher MCC values. An apparent fall in values of these pa-
rameters occurred for experiments with datasets con-
taining inactives picked diversely from the ZINC database
and represented by ExtFP, as well as for application of
Hyperpipes as a classifier. The highest evaluating parame-
ters values were obtained for DUD sets as it is shown by
dark-red colour of two last columns in heat maps
generated for each fingerprint. In case of using KlekFP,
ZINC_diverse sets also led to high values of evaluating
parameters, regardless of the machine learning algorithm
applied for the classification task.

PubChem experiments
As inactives selected from PubChem database much more
resembles the second part of the study (various-test sets
mode) – the chemical space of inactive molecules is much
more limited comparing to ZINC database or any other
commercially available library of compounds, results
obtained for this external validation sets coincide with
those obtained in the various-test set mode. Heat maps
and numerical values of evaluating parameters corre-
sponding to them are available in Additional file 3: Figure
S2, Additional file 4: Table S4.

Influence of the inactives subset composition on
particular machine learning method performance
Although, in general the results are comparable and con-
sistent between learning algorithms, there are such ones
that are more sensitive to the inactive set composition. To
simplify the results interpretation, the influence of inactives
selection on machine learning methods was expressed by
standard deviation (SD) of evaluating parameters values for
experiments with inactive subsets generated in different
ways (Figure 2).
In general, changes in recall, precision and MCC were

the most significant when the machine learning methods
were combined with ExtFP (standard deviation of MCC
was even close to 0.4 as it is shown by red spots on heat
maps). On the other hand, the most stable results were
provided by KlekFP – SD of MCC values was more than
0.2 lower compared to already mentioned tests.
Except the classification of M1 agonists, recall values were

not much influenced by changes in dataset composition. It
remained on the similar level for all experiments with SD
usually below 0.1, which is expressed by corresponding
dark blue squares on heat maps (Figure 2). Changes in pre-
cision values contributed the most to MCC fluctuations
and the tendencies in variations of these two parameters
were very similar. Even in case of experiments with COX-2
inhibitors, when all values of evaluating parameters were
on high level, the MCC changes (resulting from different
ways of set of inactives composition) were clearly visible
and reached the maximum value of 0.36 for SMO.
SMO algorithm was the most dependent on the way of

the inactives set construction (indicated by red spots on
the heat maps corresponding to SD of MCC values from
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~0.3–0.4). Two methods least affected by inactives set for-
mation were Hyperpipes (SD < 0.1), and Ibk (SD equal 0.2
at most), yet the first one was at the same time the worst
classifier in terms of MCC (MCC of 0.1 using ExtFP for
molecules representation).

Discussion
As it appears from the obtained results the size and prop-
erties of the chemical space, that is used for the experi-
ments has undoubtedly a great impact on the performance
of machine learning methods. All tested classifiers faced
the problem of correct classification of compounds picked
up from the ZINC database when they were trained on sets
with inactives selected according to different approaches
(from MDDR database or DUD libraries). Although the a-
bility of machine learning methods to select active mole-
cules was on a very similar level (recall values were not
varying a lot when moving to different sets), the high rate
of false positives indicates errors in assigning a proper class
label to inactive compounds. Strong limitation of chemical
space (as it happen in DUD libraries) led to variation of
precision values at the level of 0.5–0.7. The larger the data-
base from which the compounds were selected, the more
significant the improvement of the results. What is also
worth noting, the evaluating parameters values were much
higher when molecules for inactives set formation were
picked up randomly, rather than with the assurance of the
maximum diversity of the selected compounds. The values
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Figure 2 A set of heat maps visualizing the values of standard deviat
with variously generated inactive compounds. Figure 2 presents standa
experiments. Columns of maps refer to particular target, rows to common-
with different machine learning methods, whereas columns in maps refer t
of MCC indicate that definitely the best results were
obtained for sets with inactives randomly selected out of
the ZINC database.
The case is different when inactives for test sets forma-

tion were selected in an analogous way as compounds
chosen for training. In those experiments, the dependen-
cies are reverse comparing to the common-test set mode.
In this case, the best results were provided by sets with
compounds selected from libraries containing smaller
number of molecules (the MCC values exceeding even 0.9
for “DUD sets”). In contrast to the outcomes from the
common-test set mode, better results were also obtained
when compounds were selected in a diverse way rather
than random, however the scale of change was varying a
lot for different targets.
These results showed that when chemical libraries with

compounds covering chemical space to quite high extent
undergo virtual screening procedure, structures selected
for training should also cover this space as much as pos-
sible. The other way, it seems to be the source of difficul-
ties for machine learning methods to correctly identify
potentially active ligands.

Choosing the best machine learning method
The application of machine learning methods in virtual
screening experiments is connected with the desire to cor-
rectly select potentially active compounds, also with struc-
tures that are different from the already known ligands.
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Table 2 Number of decoys selected for each target

Target Number of input ligands Number of decoys

COX-2 1126 39508

M1 1155 32511

HIV PR 1135 11113

Metalloproteinase 788 19868

5-HT1A 1101 38477
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Commercially available databases that are evaluated in vir-
tual screening procedure contain compounds with various
structures and properties. Therefore, it is desirable that
machine learning methods are able to correctly classify
compounds that are different from those present in the
training set.
Ibk was the method that was characterized by the

highest efficiency in classification of compounds from the
ZINC database, when trained on highly limited DUD sets
and the ExtFP and MACCSFP were used as fingerprints
(MCC ~0.2–0.3 for the former fingerprint and ~0.55–0.7
for the latter one). The SMO was the most effective, when
molecules were represented by KlekFP with Ibk, Decorate
and Random Forest only little worse comparing to them
(MCC ~0.8–0.9). The last combination of learning al-
gorithm-fingerprint enables the correct classification of
molecules significantly different from those present in the
training set.
Although the DUD sets are useful for docking studies,

applying it for virtual screening experiments with the use
of machine learning is not as effective. The high limitation
of chemical space is a source of difficulties for learning al-
gorithms to proper discriminate actives from inactives,
when large libraries containing a great variety of chemical
structures are evaluated. However, when they are limited
to some extent (for example by other filters), forming
training sets from more narrow databases may lead to im-
provement in classification effectiveness.

Conclusions
Various ways of selection of compounds, that are assumed
to be inactive are applied in computational experiments.
However, this step of training set formation may have a sig-
nificant impact on the effectiveness of classification
performed by machine learning methods. Although, the
DUD sets are widely applied in docking experiments with
a high-level results [15], they are not necessarily appropri-
ate for application in virtual screening experiments with
the use of machine learning. As libraries of commercially
available compounds contain a big variety of structures,
machine learning algorithms are unable to select correctly
potentially active compounds, when they are trained on in-
active molecules covering a chemical space only to a small
extent as it is in case with DUD. Because of that, inactive
compounds chosen for training set should be as represen-
tative as possible for the libraries that undergo screening. It
is also worth noting that in the majority of studies
connected with examining the machine learning methods
performance, compounds covering training and test sets
are selected in an analogous way. Results of such re-
searches will not necessarily coincide with real experiment
(DUD sets also provided the best results when tested on
similarly generated compounds, however they did not led
to effective classification of various compounds from large
database, as ZINC). What is more, out of the group of
tested fingerprints, KlekFP should be applied for molecules
representation, as it provided the highest efficiency of clas-
sification of molecules different from those used for train-
ing a classifier. The same goes for Ibk and SMO when
particular learning methods are taken into consideration.

Methods
The protein targets chosen for the experiments were:
cyclooxygenase-2 (COX-2), muscarinic receptor M1, prote-
ase HIV-1 (HIV PR), matrix metalloproteinase and recep-
tor 5-HT1A. They were selected after analysing a set of
papers concerning different aspects of machine learning
methods tests [16-19]. We chose such targets that were
appearing most frequently in this kind of comparative
studies and for which a sufficient number of known ligands
exist. All compounds showing activity towards them were
extracted from the MDDR database [13] – they formed a
class of positive learning examples. Sets of compounds as-
sumed as inactive were selected out of the three already
mentioned databases: ZINC, MDDR and libraries that
were generated in the way similar to DUD.

Libraries generation according to DUD approach
Libraries of compounds with physicochemical properties
similar to active ligands, and at the same time with dissimi-
lar topology were created as follows. For each active ligand
and for each structure from the ZINC database the set
of descriptors was calculated using tools provided by
ChemAxon [20]: logP, molecular weight (MW), number of
hydrogen bond acceptors (HBA), number of hydrogen
bond donors (HBD) and number of rotatable bonds (rotB).
Using an in-house script, for each active ligand, structures
with the same number of HBA, HBD and rotB as well as
with the logP and MW values differing by no more than
10% were selected out of the ZINC database (for HIV pro-
tease inhibitors those settings were more flexible due to
small number of decoys selected: HBA, HBD and
rotB +−2, MW and logP values +−20%). Then, the
Daylight-type fingerprints were calculated by means of
the RDKit software [21], and the set of compounds was
restricted only to those with Tanimoto coefficient less
than 0.7 to particular ligand. For each one, 36 decoys
(with the lowest values of Tanimoto coefficient) were
picked up and formed the described library (Table 2).



Table 3 Composition of training and test sets used in the experiments

Protein target ligands
MDDR
activity
index

Number of actives/number of inactives

Train set Test set

COX-2 inhibitors 78454 242/316 884/950

M1 agonists 09249 281/315 874/950

HIV PR inhibitors 71523 203/350 932/1100

Metalloproteinase inhibitors 78432 144/280 644/800

5-HT1A agonists 06235 198/340 903/1050

R ¼ TP
TP þ FN

ð1Þ
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Formation of the set of inactives
From each of the three considered libraries of compounds,
structures forming the set of inactives were selected in two
different ways: random selection and selection providing
maximum diversity of chosen molecules (the module Li-
brary Design from Discovery Studio 2.5 [22]). Number of
selected compounds as well as the number of actives
forming each training/test set are presented in Table 3.
All experiments were performed in two modes:

� With the use of one common test set, the same for
each method of inactive molecules generation,
where inactives were randomly selected out of the
ZINC database – common-test set mode,

� With the use of test sets with inactives prepared in
the analogous way as for training – various-test
sets mode.

For each part of the study that used randomization, the
procedure of inactive molecules selection was repeated 10
times (during both train and test set generation). There
was only 1 iteration of experiments selected in a diverse
way, as (due to the way an algorithm of diverse selection
works) the same set of compounds from particular data-
base is always picked up.
Although selecting inactives for common-test set mode

favours the ZINC random training set, this type of experi-
ment resembles to the greatest extent virtual screening
tasks, where libraries that undergo the procedure contain
very diverse compounds. However, in order to provide an
independent validation, an external validation test set was
provided with inactives selected from PubChem database
[23]. However, not for all the targets, true inactives were
available in sufficient number and therefore the experi-
ments in such mode were performed only for M1

(AID: 628; 61476 cmds), metalloproteinase (AID: 618;
86197 cmds) and 5-HT1A (AID: 567; 64559 cmds)
preserving 10 times randomization.

Molecules representation
For each structure in the dataset, three different types of
fingerprints were generated with the use of the PaDEL-
Descriptor software [24]: Extended Fingerprint (ExtFP,
1024 bits) [25], MACCS Fingerprint (MACCSFP, 166
bits) [26] and Klekota & Roth Fingerprint (KlekFP, 4860
bits) [27].
Machine learning experiments
Seven machine learning methods were selected for the
experiments: Naïve Bayes classifier [2], Sequential Minimal
Optimization [28], Instance-Based Learning [16], Deco-
rate [29,30], Hyperpipes [31], J48 [2] and Random Forest
[32,33]. For some methods, a series of tests were performed
with varying settings for different classifiers (Table 1). Algo-
rithms’ implementations present in the WEKA package
(version 3.6) [34] were used. All calculations were per-
formed on Intel Core i7 CPU 3.00 GHz computer system
with 24 GB RAM running a 64-bit Linux operating system.
The evaluation of machine learning methods
For machine learning methods evaluation three parame-
ters were used: recall – R (1), precision – P (2), and the
Matthews Correlation Coefficient – MCC (3):
P ¼ TP
TP þ FP

ð2Þ

MCC ¼ TP:TN � FP:FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ: TP þ FNð Þ: TN þ FPð Þ: TN þ FNð Þp ð3Þ

Recall measures the fraction of correctly labelled posi-
tive examples, precision describes the correctness of
positive instances prediction, whereas MCC is a bal-
anced measure of binary classification effectiveness, ran-
ging from −1 to 1, where 1 corresponds to error-free
class labelling and −1 to reverse classification [7,35].
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Additional file 4: Tables S4. Numerical values of evaluating parameters
obtained in experiments with inactives from PubChem database.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
All authors designed the experiments. SS and RK performed the experiments.
All authors analyzed the data and draw conclusions and read and approved
the final manuscript.

Acknowledgements
The study was partly supported by a project UDA-POIG.01.03.01-12-100/08-00
co-financed by the European Union from the European Fund of Regional
Development (EFRD); http://www.prokog.pl and by a grant PRELUDIUM 2011/03/
N/NZ2/02478 financed by the National Science Centre (www.ncn.gov.pl)

Author details
1Department of Medicinal Chemistry, Institute of Pharmacology, Polish
Academy of Sciences, Smętna 12, 31-343 Kraków, Poland. 2Faculty of
Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland.

Received: 10 January 2013 Accepted: 25 March 2013
Published: 5 April 2013

References
1. Geppert H, Vogt M, Bajorath J: Current trends in ligand-based virtual

screening: molecular representations, data mining methods, new
application areas, and performance evaluation. J Chem Inf Model 2010,
50:205–216.

2. Melville JL, Burke EK, Hirst JD: Machine learning in virtual screening. Comb
Chem High Throughput Screen 2009, 12:332–343.

3. Schwaighofer A, Schroeter T, Mika S, Blanchard G: How wrong can we get?
A review of machine learning approaches and error bars. Comb Chem
High Throughput Screen 2009, 12:453–468.

4. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A:
Comparison of topological descriptors for similarity-based virtual
screening using multiple bioactive reference structures. Org Biomol Chem
2004, 2:3256–3266.

5. Liu XH, Ma XH, Tan CY, Jiang YY, Go ML, Low BC, Chen YZ: Virtual
screening of Abl inhibitors from large compound libraries by support
vector machines. J Chem Inf Model 2009, 49:2101–2110.

6. Bruce CL, Melville JL, Pickett SD, Hirst JD: Contemporary QSAR classifiers
compared. J Chem Inf Model 2007, 47:219–227.

7. Plewczynski D, Spieser SAH, Koch U: Assessing different classification
methods for virtual screening. J Chem Inf Model 2006, 46:1098–1106.

8. Hammann F, Gutmann H, Baumann U, Helma C, Drewe J: Classification of
Cytochrome P 450 Activities Using Machine Learning Methods. Mol
Pharmaceutics 2009, 33:796–801.

9. Chen B, Harrison RF, Papadatos G, Willett P, Wood DJ, Lewell XQ, Greenidge
P, Stiefl N: Evaluation of machine-learning methods for ligand-based
virtual screening. J Comput Aided Mol Des 2007, 21:53–62.

10. Han LY, Ma XH, Lin HH, Jia J, Zhu F, Xue Y, Li ZR, Cao ZW, Ji ZL, Chen YZ: A
support vector machines approach for virtual screening of active
compounds of single and multiple mechanisms from large libraries at an
improved hit-rate and enrichment factor. J Mol Graph Model 2008,
26:1276–1286.
11. Li H, Ung CY, Yap CW, Xue Y, Li ZR, Chen YZ: Prediction of estrogen
receptor agonists and characterization of associated molecular
descriptors by statistical learning methods. J Mol Graph Model 2006,
25:313–323.

12. Irwin JJ, Shoichet BK ZINC: A Free Database of Commercially Available
Compounds for Virtual Screening. J Chem Inf Model 2005, 45:177–182.

13. MDDR licensed by Accelrys, Inc. USA. www.accelrys.com.
14. Huang N, Shoichet BK, Irwin JJ: Benchmarking sets for molecular docking.

J Med Chem 2006, 49:6789–6801.
15. Nicholls A: What do we know and when do we know it? J Comput Aided

Mol Des 2008, 22:239–255.
16. Ma XH, Jia J, Zhu F, Xue Y, Li ZR, Chen YZ: Comparative analysis of

machine learning methods in ligand-based virtual screening of large
compound libraries. Comb Chem High Throughput Screen 2009, 12:344–357.

17. Plewczynski D: Brainstorming: weighted voting prediction of inhibitors
for protein targets. J Mol Model 2011, 17:2133–2141.

18. Plewczynski D, von Grotthuss M, Spieser SAH, Rychlewski L, Wyrwicz LS,
Ginalski K, Koch U: Virtual high throughput screening using combined
random forest and flexible docking. Comb Chem High Throughput Screen
2007, 10:189–196.

19. Gardiner EJ, Gillet VJ, Haranczyk M, Hert J, Holliday JD, Malim N, Patel Y,
Willet P: Turbo Similarity Searching: Effect of Fingerprint and Dataset on
Virtual-Screening Performance. Stat Anal Data Min 2009, 2:103–114.

20. InstantJChem: ChemAxon. 2011. www.chemaxon.com.
21. RDKit: Open-source cheminformatics. www.rdkit.org.
22. Discovery Studio, provided by Accelrys, Inc USA. www.accelrys.com.
23. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K,

Dracheva S, Shoemaker BA, Bolton E, Gindulyte A, Bryant SH: PubChem's
BioAssay Database. Nucleic Acids Res 2012, 40:D400–412.

24. Yap CWEI: PaDEL-Descriptor: An Open Source Software to Calculate
Molecular Descriptors and Fingerprints. J Comput Chem 2010, 32:1466–1474.

25. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E: The
Chemistry Development Kit (CDK): an open-source Java library for
Chemo- and Bioinformatics. J Chem Inf Comput Sci 2003, 43:493–500.

26. Ewing T, Baber JC, Feher M: Novel 2D fingerprints for ligand-based virtual
screening. J Chem Inf Model 2006, 46:2423–2431.

27. Klekota J, Roth FP: Chemical substructures that enrich for biological
activity. Bioinformatics 2008, 24:2518–2525.

28. Platt JC: Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines. In Advances in Kernel Methods – Support Vector
Learning. Edited by Scholkopf B, Burges C, Smola AJ. Cambridge: MIT Press;
1999:185–208.

29. Melville P: Mooney RJ Constructing Diverse Classifier Ensembles using Artificial
Training Examples. Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence: Morgan Kaufmann Publishers Inc;
2003:505–510.

30. Stefanowski J, Pachocki M: Comparing Performance of Committee Based
Approaches to Active Learning. In Recent Advances in Intelligent
Information Systems. Edited by Klopotek M, Przepiorkowski A, Wierzchon S,
Trojanowski K. Warsaw: EXIT; 2009:457–470.

31. Deeb ZA, Devine T: Randomized Decimation HyperPipes. 2010. http://www.
csee.wvu.edu/~timm/tmp/r7.pdf.

32. Breiman L: Random Forests. Mach Learn 2001, 45:5–32.
33. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP: Random

forest: a classification and regression tool for compound classification
and QSAR modeling. J Chem Inf Comput Sci 2003, 43:1947–1958.

34. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH: The WEKA
data mining software: an update. SIGKDD Explorations 2009, 11:10–18.

35. Savojardo C, Fariselli P, Martelli PL, Shukla P, Casadio R: Prediction of the
Bonding State of Cysteine Residues in Proteins with Machine-Learning
Methods. In Computational Intelligence Methods for Bioinformatics and
Biostatistics 7th International Meeting. 6665th edition. Edited by Rizzo R,
Lisboa PJG. Berlin Heidelberg: Springer-Verlag; 2011:98–111.

doi:10.1186/1758-2946-5-17
Cite this article as: Smusz et al.: The influence of the inactives subset
generation on the performance of machine learning methods. Journal of
Cheminformatics 2013 5:17.

http://www.biomedcentral.com/content/supplementary/1758-2946-5-17-S1.pdf
http://www.biomedcentral.com/content/supplementary/1758-2946-5-17-S2.pdf
http://www.biomedcentral.com/content/supplementary/1758-2946-5-17-S3.pdf
http://www.biomedcentral.com/content/supplementary/1758-2946-5-17-S4.pdf
http://www.prokog.pl/
http://www.ncn.gov.pl/
http://www.accelrys.com
http://www.chemaxon.com
http://www.rdkit.org
http://www.accelrys.com
http://www.csee.wvu.edu/~timm/tmp/r7.pdf
http://www.csee.wvu.edu/~timm/tmp/r7.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Common-test set mode
	Various-test sets mode
	PubChem experiments
	Influence of the inactives subset composition on particular machine learning method performance

	Discussion
	Choosing the best machine learning method

	Conclusions
	Methods
	Libraries generation according to DUD approach
	Formation of the set of inactives
	Molecules representation
	Machine learning experiments
	The evaluation of machine learning methods

	Additional files
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

