
de Jong et al. Journal of Cheminformatics 2013, 5:25
http://www.jcheminf.com/content/5/1/25
RESEARCH ARTICLE Open Access
From data to analysis: linking NWChem and
Avogadro with the syntax and semantics of
Chemical Markup Language
Wibe A de Jong1*†, Andrew M Walker2† and Marcus D Hanwell3†
Abstract

Background: Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained
from a range of complex experiments and computer simulations. Integrating data requires semantically rich
information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated
utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem
computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis
and visualization.

Results: The NWChem computational chemistry software has been modified and coupled to the FoX library to
write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular
orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals
within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display
molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can
create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and
analyse the CML output produced. The developments outlined in this paper will be made available in future
releases of NWChem, FoX, and Avogadro.

Conclusions: The production of CML compliant XML files for computational chemistry software such as NWChem
can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed
reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further
develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a
researcher to run simple “Google-style” searches of chemistry and physics and have the results of computational
calculations returned in a comprehensible form alongside articles from the published literature.

Keywords: Chemical Markup Language, FoX, NWChem, Avogadro, Computational chemistry
Background
In chemistry, the key to successful multi-disciplinary in-
tegrated research is often the ability to couple the di-
verse sets of data obtained from a range of complex
experiments and computer simulations to solve scientific
problems that are intractable when only one technique
is employed. In an ideal world any researcher in any dis-
cipline should be able to easily access, find and
* Correspondence: bert.dejong@pnnl.gov
†Equal contributors
1EMSL, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA
99352, USA
Full list of author information is available at the end of the article

© 2013 de Jong et al.; licensee Chemistry Cen
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
synthesise all the scientific data pertaining to the scien-
tific question, molecular system or material being stud-
ied [1]. With this data the researcher has a knowledge
base that has the potential to deliver new unexpected in-
sights when all the information is brought together. Ac-
cess to all scientific data relevant to the study at hand
can also avoid repetition of previous experiments or sim-
ulations, and can serve as a starting point for generating
new ideas for the design of alternative new approaches
or molecular/materials systems, or can provide a frame-
work for validation [2]. Increasing quantities of detailed
data is gradually being made available to scientific users
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:bert.dejong@pnnl.gov
http://creativecommons.org/licenses/by/2.0

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 2 of 12
http://www.jcheminf.com/content/5/1/25
in the scientific literature [3], and more widely in data
repositories and other systems [4].
Raw data (for example the recorded NMR signal or

calculated molecular orbitals) is only a subset of all the
scientific data generated from an experiment or com-
puter simulation. This acquired data gets processed and
analyzed with a barrage of tools to extract the important
observables, i.e. derived data, and help create the scien-
tific interpretation. This derived data is most likely
stored in the researcher’s notebooks and sometimes
forms part of scientific publications and presentations,
but it rarely gets used to annotate the raw data. Observ-
ables are the common language at which computational
chemistry and experimental communities interact, and
these should be accessible as part of the scientific dia-
logue to make available data useful to the scientific com-
munity at large.
A key challenge is the need to remove technical bar-

riers to access scientific data, and common data formats
play a key role in this respect. In the experimental com-
munity raw data is often stored in a standardized format
once it has been acquired (e.g. NeXus [5] or Scientific
Data Exchange [6] using HDF5 [7]), lightly annotated
with details of the experiment itself. While the experi-
mental community has been working to develop and
deploy data standards, this is less true in the computa-
tional chemistry community.
Historically, complete data sets from computer simula-

tions, including input and all generated ASCII and bin-
ary output data files, have not been made widely
available. These files are not generally stored in access-
ible data repositories or included as supplements with
publications. Within computational chemistry and mate-
rials science there are multiple efforts to make a limited
set of calculated observables available to the broader
community. Examples include the Materials Project at
MIT [8], CatApp at Stanford [9] the Computational Re-
sults Database at Washington State University [10] and
the Computational Chemistry Comparison and Bench-
mark Database at the National Institute of Standards
and Technology (NIST) [11]. The latter also links the in-
formation to the available experimental data available at
NIST. Each of these efforts provides easy access to com-
monly used observables using diverse and non-standard
data formats, but often with incomplete scientific data
sets or lacking the important meta-data.
The key to effective integration, mining, reuse, and

visualization of diverse data sources is to work within
standardized and semantically rich data formats. The
myriad of simulation data also stifles advances in the de-
velopment of open-source data mining/search tools and
visualization tools (such as Avogadro [12]) due to the
significant efforts to develop and maintain translation in-
frastructures for all the data formats. A good example of
standardization is the Crystallographic Information
Framework, which includes the widely used Crystallo-
graphic Information File (CIF) [13] maintained by the
International Union of Crystallography (IUCr). Natu-
rally, many of the more recent efforts to develop
standardised data formats have made use of the exten-
sible markup language (XML) to define the format. The
various XML standards provide a widely implemented
framework for defining the basic syntax of data files,
mechanisms for specifying the permitted structure and
content of such files and common approaches to rea-
ding, writing, manipulating, normalising and validating
standardised documents. These standards and tools
enormously simplify the task of designing and deploying
sharable data formats. Some relevant examples include
the work of Gygi and co-workers, who developed a rudi-
mentary XML-based standard for the interchange of
simulation data [14] that is used in their framework for
the validation and verification of electronic structure
codes, called ESTEST [15]. Researchers at NIST led an
effort to develop an XML standard for the interchange
of materials information (MatML) [16].
Perhaps the most successful attempt to standardize

the development of common language for chemistry is
the Chemical Markup Language (CML), developed by
Murray-Rust and Rzepa since 1995 [17-21]. CML pro-
vides the vocabulary needed to express a very wide range
of chemical (and related physical) concepts in an XML
document. This vocabulary is specified in an XML
Schema definition (XSD) document that is deliberately
permissive: it must be as the use of valid CML docu-
ments is extremely varied [22,23]. CML documents can
act as interactive scholarly manuscripts [21], as supple-
mentary data to support more traditional publication
[3], as the primary data format for a range of experimen-
tal and computational studies [2,24], or as a means of
data exchange within automated workflows [25-28]. For
some of these applications it can be useful if the docu-
ment structure and content is further restricted with
additional constraints beyond those enforced by requir-
ing validity as defined by the CML XSD specification.
These additional constraints, termed CML Conventions,
provide discipline-specific meaning to CML documents
and reduce the development burden for document con-
sumers and producers [29]. CML dictionaries provide
additional fine-grained semantics with specific concepts
identified by terms referenced from elements within
CML documents [29]. Furthermore, these mechanisms
impose additional good practice on document produces
by requiring the inclusion of defined metadata to pre-
serve provenance, and by insisting that all numerical
data carries a machine readable specification of its units.
It is the ability to impose strict syntax and defined se-
mantics, and to validate these using well-understood

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 3 of 12
http://www.jcheminf.com/content/5/1/25
tools, that means XML in general and CML in particular
is still the tool of choice for the storage and exchange of
scientific data. While we imagine that alternative data
representations, such as the JavaScript Object Notation
(JSON), may be used in this context for efficient data ex-
change we do not foresee the development tools for
powerful validation and semantic transformation that
motivate the use of XML, as discussed below.
To enable different computational chemistry codes to

interoperate it is key that all essential data is stored in a
common format. Within the computational chemistry
community various simulation codes, for example,
MOLPRO, VASP, and Quantum-Espresso [30-33], have
been adapted to produce a code specific XML output.
Other projects have utilized components of CML as an
enabling tool for data exchange, storage and processing.
The Quixote project seeks to build a collection of tools
to allow data from computational chemistry calculations
to be stored, shared, organised and queried [25]. Key to
this effort is the creation of a CML document for each
calculation. This is then ingested into, and processed by,
an instance of the Chempound database system. By con-
trast, the eMinerals [34] and Materials Grid [35] projects
sought to develop automated scientific workflows for
high-throughput computation in atomic-scale mineral-
ogy and materials science. These workflows combined
distributed grid computing [26,27] with tools to generate
input files, extract and analyse output data, and create
and store key items of metadata [28]. An important as-
pect of this work was the generation of a representation
of the key data in a CML document. The approach taken
to allow these documents to be easily produced on the
myriad of systems that formed the distributed comput-
ing environment utilised by these projects was to dir-
ectly generate CML as the computational chemistry
application was executed. As the majority of such appli-
cations are written predominantly in Fortran, and the in-
stalled software on the computational resources was so
varied, this involved the creation of a pure Fortran XML
library called FoX [36,37], described below and in more
detail by Murray-Rust and co-workers in another article
in this special issue [38].
An alternative approach would be to utilize Python or

a similar high level language to wrap the Fortran code
and use features of the high level language to generate
the CML. However the integration of Python and For-
tran codes requires quite intrusive changes to the For-
tran application including the development of interface
routines for each piece of functionality in the code that
needs to store output data in the CML document, a re-
design of the existing build and test system, and poten-
tially a change in the skills needed by members of the
developer community. While we consider that this may
be a viable approach if integration into a high-level
programming environment was being undertaken for
other reasons, we avoided this change merely for the
purpose of generating an XML document. As new con-
cepts, conventions, and dictionaries are defined within
CML, new common interfaces can be developed in the
FoX library and used by the computational chemistry
codes. FoX and its interfaces were used to allow solid-
state simulation codes such as SIESTA [39] and GULP
[40] to directly output CML without introducing add-
itional dependencies into the applications’ compilation
process. Very recently, developers of the TURBOMOLE
package reported the use of CML and the interfaces in
the FoX library to store a subset of their output data
needed to develop a database for computational data
[41].
In this paper the further development of a FoX based

infrastructure to produce semantically rich CML docu-
ments with the NWChem computational chemistry soft-
ware [42] will be described. NWChem is one of US
Department of Energy’s open-source computational
chemistry software packages, developed at the Environ-
mental Molecular Sciences Laboratory (EMSL) National
User Facility located at Pacific Northwest National La-
boratory. In addition, some developments of the CML
language for computational chemistry will be discussed
in some detail. Furthermore, the reading, ingestion and
visualization of the CML documents generated by
NWChem will be demonstrated in Avogadro, an open-
source, cross-platform molecular editor and analysis tool
written mainly in C++ [13].

Methods
Generating semantically rich data with NWChem
The NWChem software like many other computational
chemistry software applications produces various data
files during a simulation. These data include a human
readable descriptive output file and binary files poten-
tially containing from tens of megabytes to multiple
gigabytes of additional data (such as molecular orbitals
and molecular dynamics trajectories). One approach to
the creation of a CML document to describe an
NWChem calculation is to post-process the existing out-
put data files and convert these into CML. This is the
path taken by the Quixote project where Java Universal
Molecular Browser for Objects (JUMBO) converters are
used to transform the human readable output files to
CML documents that can be digested by tools such as
Chempound [25]. The major disadvantage of the use of
converters is that they need to be continuously modified
and maintained because the output files they read have a
tendency to change, for example when new functionality
is added to NWChem. The NWChem developer modify-
ing the codebase in this way has no way of knowing if
the change causes external tools to fail and, probably,

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 4 of 12
http://www.jcheminf.com/content/5/1/25
has no reason to care. In addition, the content extracted
from the simulation is limited to what is contained in
these text based output files. Additional information
held within associated large binary files, for example mo-
lecular orbitals or time evolution data, is lost unless this
data also gets post-processed. Both of these issues are
addressed by our approach as described below.
In addition to the text and binary files, NWChem has

a built-in infrastructure to produce an additional ASCII
file that contains key-value pairs. This file serves as input
for the EMSL developed Extensible Computational
Chemistry Environment (ECCE) graphical user interface
and visualizer [43]. Ironically, ECCE reads this file and
translates it into an application specific XML format that
is used internally. This means that both the JUMBO
converters and ECCE use multiple steps to obtain a
similar final XML product.
As part of the current work, a prototype CML writer

capability in NWChem has been developed that writes a
CML file during the simulation run. To minimise intru-
sive modifications to the code base, the implementation
builds upon the infrastructure in NWChem for writing
key-value pairs into the ECCE ASCII file. This infra-
structure inherently already opens a data file at start up,
writes data to the file, and closes the file when the simu-
lation ends. Instead of writing a standard ASCII text file,
NWChem’s ECCE infrastructure has been modified to
make use the FoX library to create the CML document.
This makes more data available to the CML writing ma-
chinery than is written to the output file designed for
human consumption. We have benchmarked the per-
formance impact of writing CML files on a larger (6 mi-
nute runtime) version of the example case used in this
paper and find the run time to be increased by less than
0.5% (the impact falls below 0.1% for even larger calcula-
tions). The CML writing capability is being integrated
into the main NWChem development tree and will be-
come a standard output format in a future release.
As discussed elsewhere in this issue [38], the FoX li-

brary permits the reading, writing and manipulation of
arbitrary XML documents in a Fortran-only environ-
ment. As expected, FoX will not permit the creation of
an XML document that is not well-formed. As well as
the general-purpose interfaces, FoX_wcml provides a
specialised mechanism for generating CML output tai-
lored to computational chemistry applications. This
interface, which was used for the majority of the CML
generation from NWChem, does not attempt to allow
the creation of any arbitrary CML document but instead
focuses only on the needs of the majority of expected
use cases in computational chemistry and to a large ex-
tent imposes adherence to the relevant conventions. For
example, users of FoX_wcml are not able to add atoms
to a molecule without specifying both position and
element name, avoid declaring (and using) the relevant
namespace for CML, or introduce numerical quantities
without specifying units. Data passed into the FoX_wcml
interface is accepted in a format expected to be present
inside of computational chemistry applications but some
data conversion is still sometimes needed. Figure 1
shows an example of a fragment of the CML document
that can be generated from NWChem with this imple-
mentation. In Additional file 1 we provide a full example
of a CML document produced by our current imple-
mentation. We note that this passes the tests
implemented by the CML validation service [44].
A side effect of the constrained interface is that new

ideas for the representation of output data cannot easily
be generated with FoX_wcml. However, the generic
FoX_wxml interface can be used in concert with
FoX_wcml to produce additional output in an already
open CML document. We made use of this feature to
expand the FoX_wcml interface to include an ability to
write molecular orbitals to the CML document. Molecu-
lar orbitals are currently not well defined in the CML
language. Appendix 1 outlines a draft CML computa-
tional chemistry dictionary for molecular orbitals, and
shows a formatted example that can be used as a tem-
plate to develop a molecular orbital convention in the
future. We also enabled the ability to include a repre-
sentation of the main NWChem ASCII file input pa-
rameters within the output document. Such ‘echoing’
back of the exact code input in the output stream is
very common in computational chemistry and is essen-
tial to preserve data provenance (for example, if the
input files are inadvertently lost or modified). An ex-
ample of the data inside a CML document produced
by NWChem is provided in Figure 1 and a more for-
mal definition of the proposed CML format echoing
computational input is included in Appendix 2 (where
we assume only ASCII data will be stored: arbitrary
binary files with, for example, wave functions are out
of scope). This new functionality in the FoX library is
publically available in the development source control
system and will be included in the next formal release
of the software.

Visualisation and analysis of semantically rich NWChem
data with Avogadro
In order to read in the CML produced by NWChem or
any other computational chemistry code, a new reader
was developed for Avogadro in the OpenQube library.
As discussed briefly in another publication in this jour-
nal issue [12], OpenQube was developed to address the
requirements of normalization of data produced by
codes employing Gaussian type orbitals for calculations.
It was already able to recognize the data available in out-
put from several other quantum codes, with the new

Figure 1 First section of CML validated XML data, generated with NWChem using the FoX library.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 5 of 12
http://www.jcheminf.com/content/5/1/25
computational chemistry CML reader being one of the
fastest to develop using the compact PugiXML library as
a lightweight XML parsing engine. The example
NWChem CML data in this paper was read into Avoga-
dro using the new reader, and from that point on be-
haved as other data files.
An experimental branch is available for Avogadro that

can read in important electronic structure information
from NWChem, display it to the user and even produce
further input for NWChem based on geometries from
previous calculation results. This allows Avogadro to le-
verage the semantic information stored in the CML
document with minimal code changes. Figure 2 shows
an integrated visualization of the molecular orbital
isosurface and the nuclear magnetic resonance (NMR)
shielding tensors calculated by Avogadro using the data
read in by this new reader, successfully demonstrating
an end-to-end semantically enriched workflow. The
visualization of both properties in more complex mole-
cules can provide new insights into molecular bonding.
The new reader was written using the PugiXML C++
XML parser library, and took the approach of using an
efficient Document Object Model (DOM) to represent
the CML document, and specific functions to read in
and process XML nodes of interest. One of the major
advantages of this approach over other readers was the
minimal amount of parsing code as it was possible to
rely upon the standard XML parsing routines to find the
nodes that contained data that needed to be read in.
More work will be required to generalize the approach
taken as a single CML document can contain a rich
computational experiment with multiple steps. Add-
itional interfaces must be developed in Avogadro to go
beyond a simple view of an output file containing one
result to that of a rich document that can contain mul-
tiple steps with links.
A major advantage of the CML reader is that of exten-

sibility; where the CML document can contain elements
that this version of the reader does not necessarily
understand. Most other readers are somewhat fragile,

Figure 2 Visualization of molecular orbital isosurface calculated by Avogadro using the NWChem CML data, with NMR tensor
projections and magnitudes represented as arrows.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 6 of 12
http://www.jcheminf.com/content/5/1/25
and require updates when the computational code adds
extra elements to its output. This reader is able to scan
the CML document for the tags and attributes it under-
stands, if more tags/attributes are added in the future
the reader will still be capable of understanding the
document, with updates to the reader adding support
for the new elements. This allows for the development
of a much more robust approach to reading and
transforming the data in the Avogadro application that
was simply not possible in the other readers developed.

Results and discussion
Our experience of the use of FoX for introducing CML
output into NWChem has reinforced our understanding
of various best-practice guidelines for the integration of
FoX to large-scale computational chemistry simulation
codes. By modifying NWChem to directly generate CML
we avoid some of the potential difficulty with external
converters discussed above. Any NWChem developer
modifying the codebase will see, directly in the code be-
ing modified, the subroutine calls that generate the CML
document. This, in itself, alerts the developer of the po-
tential for their changes to break the generation of CML
(or, at least, for the potential to break some unknown
feature of the code). This cue is absent in the case of ex-
ternal converters that parse an output file only designed
for human consumption. If this hint to developers is in-
sufficient the use of FoX provides a second line of
defence against breakage of the CML output: such dam-
age will result in the NWChem code failing to compile
or run simple test cases. The developer will thus be mo-
tivated to correct the output immediately, hopefully be-
fore checking the change into their version control
system. Again, this opportunity is absent in the case of
the use of external file converters.
For comparatively simple applications the FoX_wcml

interface should be sufficiently clear to allow calls to be
made directly from the main body of the simulation
code. However, as the simulation code becomes larger it
becomes important to isolate the calls to the FoX library
within a ‘glue’ layer (often a single Fortran 90 module)
within the application. This technique was adopted in
NWChem. As is typical, the layer brings together groups
of calls to FoX routines within a higher-level interface
adapted for the data structures used by the application
and isolates the necessary (and often simple but tedious)
data conversion tasks from the important numerical
computation. This isolation helps minimise the possibi-
lity that an unrelated change to the main numerical
parts of the code would cause the CML output to fail
(for example, by attempting to generate an ill-formed
document resulting in FoX terminating execution). This
can be particularly important if the code is developed by
a large team as it is possible that only a few developers
understand the constraints of the FoX API and XML
more generally. Placing the FoX calls in an isolated

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 7 of 12
http://www.jcheminf.com/content/5/1/25
module also makes it comparatively easy to make the
generation of CML output a runtime or compile time
option allowing, for example, some of the more egre-
gious compiler bugs to be avoided when deploying on
systems with a limited choice of Fortran compiler.
Once a computational chemistry code like NWChem

produces CML data, tools are required to read in and
analyse this data. One such tool is Avogadro, which was
extended to read in the CML data files produced by
NWChem and to display the molecular orbitals using
the same library functionality written for other output
formats. The major advantage of this approach over
those previously taken is in the clear definition of what
each term means, and how it should be used. The file
reader can also be much simpler as it makes use of
standard C++ libraries to read in and scan the XML
document for the expected tags, allowing for a reader
that is likely to continue working as expected even as
new output types are added to the XML document.
There are of course other options for data storage,

with formats such as JSON being used in an increasing
number of projects for data exchange. The form and
syntax of JSON is much simpler than XML, allowing for
smaller and simpler parsers but there are also several
drawbacks, which make XML a better choice for data
exchange between loosely coupled components. JSON
schemas are in their infancy, with no support for
namespaces and nascent validation tools, all of which
can be very helpful when composing complex docu-
ments incorporating elements from several sources. This
leads to software that must generally be more tightly
coupled to the data representation chosen in a particular
implementation. This allows for XML based documents,
such as CML, to compose multiple concepts such as scien-
tific units defined by the wider community in a dedicated
namespace composed with chemistry specific terms in the
CML namespace, such as atomic positions and the ground
state energy of the system. Due to the similarities in base
representation, round-tripping between CML and JSON
representations is not very difficult, and simple mapping
schemes can be developed for applications where JSON is
preferred as the underlying storage mechanism or light-
weight data exchange container in more tightly coupled sys-
tems. XML documents retain a much richer semantic
structure, which is also more readily converted to Resource
Description Framework (RDF) for further and more gener-
alized consumption in semantic frameworks.
Not all important data produced by a computational

chemistry simulation is suitable to be stored and fully
expressed in an XML format. Examples include the gener-
ally large data files storing molecular orbitals, densities on a
grid, or time evolution files generated by molecular dynam-
ics simulations. Work is underway to develop a two-layer
data infrastructure through the integration of the eXtensible
Data Model and Format (XDMF) [45] with the CML. Using
XDMF allows semantically rich data, such as the common
observables discussed above, to be stored in a searchable
framework, while all the large data (such as orbitals, trajec-
tories, etc.) will be stored in the compact HDF5 format [7].

Chemical Markup Language for computational chemistry
Coupling diverse sets of data requires the development
of a common language to describe observables that
should span experimental and computational technolo-
gies. CML [18] provides a high level language for che-
mistry while the dictionaries and, to a lesser extent, the
conventions, offer a starting point for the development
of rich semantically enabled tools. Various fields, such as
computational chemistry and NMR, XPS, and other ex-
perimental capabilities, are developing conventions and
dictionaries using CML. We believe that these dictiona-
ries can begin to be linked to form a more unified ontol-
ogy [46,47] to start to formally define relationships
between terms in the different fields of chemistry. Such
an effort will provide the common semantically rich lan-
guage needed to integrate diverse sets of data. However,
the use of CML dictionaries is currently underdeveloped.
Most of the current technology only requires that dic-
tionary references are used and that they uniquely iden-
tify a particular concept. Increasingly these concepts are
defined by entries in actual dictionaries and this is an
important aspect of providing shared meaning but defi-
ning computationally accessible links between concepts
is also crucial. This requires both the links to be present
in the dictionaries and tools to exploit these links, pro-
bably via a transformation to RDF, to be developed.
Looking forward, one of the major challenges for the

community will be to define a unified convention and
dictionary for the electronic wave function. The current
CML computational chemistry convention and dictio-
nary for Gaussian basis sets and effective core potentials
is based on the XML format defined by the EMSL Basis
Set Exchange. [48] Some work on defining a standard
format for plane wave basis sets has been done by Gygi
et al. [15]. The EMSL Basis Set Exchange has the poten-
tial, especially when expanded to describe plane wave
basis sets, to serve as a reference database on its own.

Conclusions
We have developed an end-to-end use of semantically
rich data in computational chemistry within the Che-
mical Markup Language (CML) framework. NWChem
was relatively easily modified to use the FoX library to
produce well-formed and valid CML documents that
conform to recent conventions and are semantically rich.
Draft dictionary entries as well as a proposed CML
CompChem format for describing molecular orbitals
were developed and included in the FoX library. The

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 8 of 12
http://www.jcheminf.com/content/5/1/25
FoX library was expanded to provide semantics that en-
able the scientific application to represent the raw ASCII in-
put file(s). A new CML reader developed for Avogadro was
used to read and visualize the NWChem computational
chemistry CML data. We briefly discussed the need for a
community-based development of a unified computational
chemistry convention and dictionary, and outlined some of
the challenges to its development.
The long-term goal is the development of a common

language and data infrastructure for the chemistry com-
munity that will enable machines to easily process data
generated by computational chemistry tools. By clearly
embedding the semantics of the document with the raw
data we hope to limit or eliminate ambiguity when data
documents are indexed, searched or otherwise processed
and enable scientific discovery through simple and ro-
bust interfaces. We envisage a situation where a re-
searcher, prior to embarking on a calculation, enters key
parameters in a search tool, perhaps resembling the Goo-
gle interface, and that this would return rendered and
understandable representations of the output of previous
calculations along with links to the published literature. By
embedding the semantics inside the data document from
their creation we remove the need for excessive inference
of the semantics by the indexing system. A useful side ef-
fect of this effort, demonstrated in this contribution, is the
ease that the technology can be used to link existing simu-
lation and visualisation tools in the computational chemis-
try domain. At present efforts are underway to integrate
both experimental and NWChem’s computational data at
the EMSL, a national user facility of the U.S. Department
of Energy’s Office of Biological and Environmental Re-
search. Eventually, all CML data from the facility’s com-
puting capabilities will be available in a searchable data
archive and researchers will be able to gain new scientific
insight through access and visualization of complex sets of
simulation and experimental data.
Appendix 1: Molecular orbitals dictionary entries
As discussed in the main text, in the process of adding
CML output to NWChem we developed a draft of dic-
tionary entries with descriptions and a proposed CML
CompChem format for describing molecular orbitals.
These dictionary entries and descriptions will be inte-
grated in the CML CompChem dictionary to a reference
to the semantic meaning of the concepts in CML docu-
ments that include the specification of molecular orbitals.
This dictionary is already used in a range of applications
that require this information internally (e.g., for unit valid-
ation) or to provide human readable descriptions of the
terms (e.g. to provide help text in documents transformed
into HTML). By being included in the dictionary, the new
terms will also become available on the web.
Dictionary entries
Molecular Orbitals (dictRef: molecularOrbitals)

Definition: CML list container for all information
related to one set of molecular orbitals.
Description: A set of wavefunctions describing all
electrons in a system of atoms.
Data Type: molecularOrbitals is of data type cml:list
Unit Type: molecularOrbitals has unit type unitType:
none

Atomic Basis Descriptions (dictRef: atomicBasis
Descriptions)

Definition: A cml array containing the descriptions of
atomic basis functions.
Description: Atomic basis functions constructed from
linear combinations of Gaussian functions that
describe atomic orbitals and form the basis for the
molecular orbital in the format < atom number: atom
name, shell type>, and of the type xsd:string. Shell
type refers to the angular momentum of the basis
function (s, px, py, pz, dxx, dxy, dxz, dyy, dyz, dzz, etc.
for cartesian basis functions and s, px, py, pz, d −2,
d −1, d 0, d 1, d 2, etc. for spherical basis functions).
Data Type: atomicBasisDescriptions is of data type
cml:array
Unit Type: atomicBasisDescriptions has unit type
unitType:none

Molecular Orbital (dictRef: molecularOrbital)

Definition: A cml list container for one molecular orbital.
Description: Mathematical representation of the
wavefunction of an electron in a system of atoms
described by a linear combination of atomic basis
functions or atomic orbitals.
Data Type: molecularOrbital is of data type cml:list
Unit Type: molecularOrbital has unit type unitType:none

Orbital Energy (dictRef: orbitalEnergy)

Definition: Total energy of the molecular orbital.
Description: Energy of the electron described by the
molecular orbital in Hartrees.
Data Type: orbitalEnergy is of data type xsd:double
Unit Type: orbitalEnergy has unit type unitType:energy

Orbital Symmetry (dictRef: orbitalSymmetry)

Definition: Point group symmetry of the molecular
orbital.
Description: Symmetry character of the molecular orbital
within the point group symmetry of the molecule.

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 9 of 12
http://www.jcheminf.com/content/5/1/25
Data Type: orbitalSymmetry is of data type xsd:string
Unit Type: orbitalSymmetry has unit type unitType:none

Orbital Spin (dictRef: orbitalSpin)

Definition: Spin of the orbital.
Description: Spin symmetry of the molecular orbital as
either “alpha” or “beta”.
Data Type: orbitalSpin is of data type xsd:string
Unit Type: orbitalSpin has unit type unitType:none

Orbital Occupancy (dictRef: orbitalOccupancy)

Definition: Occupancy of molecular orbital.
Description: Number of electrons occupying the
molecular orbital. The value will range from 0.0 to 2.0
electrons. When the orbital spin is defined as either
alpha or beta, the maximum occupation can be 1.0.
Data Type: orbitalOccupancy is of data type xsd:double
Unit Type: orbitalOccupancy has unit type unitType:
none

Atomic Basis Function Composition of Molecular Or-
bital (dictRef: aoVector)

Definition: The cml array containing atomic basis
function coefficients.
Description: A cml array of xsd:double containing the
coefficients of the linear combination of atomic basis
functions that describe the molecular orbital.
Data Type: aoVector is of data type cml:array
Unit Type: aoVector has unit type unitType:none
Table 1 Namespaces and namespace prefixes used in the
representation of input file data

Prefix Namespace URI Description

cml http://www.xml-cml.org/schema Chemical Markup
Language elements

convention http://www.xml-cml.org/
convention/

Standard Chemical
Markup Language
convention namespace

compchem http://www.xml-cml.org/
dictionary/compchem/

CompChem Dictionary
namespace
Example of molecular orbitals
Below an example of the molecular orbitals CML for-
mat. Shown is the header and first two orbitals of the
H2 molecule:
Appendix 2: Representing input data
In the process of adding CML output to NWChem we
found that it is important to include a direct representa-
tion of the NWChem input parameters within the CML
output for provenance. Although the CML Schema has
sufficient flexibility to allow this none of the existing
conventions contain a suitably defined mechanism for
this task. In this appendix we outline a suitable
microformat for the representation of Fortran input files
in computational chemistry. The intention is that this
representation forms part of the CML CompChem con-
vention but is sufficiently flexible to be reused in other
contexts. We note that a textural representation of input
files does not offer the same degree of semantic inter-
operability as including input data in a fully marked-up
format (i.e. as CML parameters with dictionary refer-
ences and explicit units). However, the task of recreating
input files from such data is a non-trivial problem that
has, thus far, received little attention. The microformat
defined here can be viewed as an essential intermediate
step to allow a complete representation of the input data
to be stored in the meantime. Applications making use
of the microformat should additionally report input data
semantically, as CML parameters.
The microformat is designed to allow easy storage and

retrieval of the content of one or more files, or of data
read from another file-like source (e.g. from standard in-
put). The aim is to make it possible to reconstruct the
input using a simple streaming parser without the need
to build an in-memory representation of the CML docu-
ment (in order to handle cases of very large files) even if
the XML document has been modified (e.g. if the docu-
ment has been subject to Canonicalization [49]). The ap-
proach is also designed to make data recovery using an
XSL transform straightforward. File metadata such as
the original filename is also accessible. We assume that
only ASCII data must be stored, arbitrary binary files are
out of scope as are XML documents and non-ASCII
textural data.

Format for the representation of input data
This specification uses the namespaces and prefixes to
indicate those namespaces as outlined in Table 1.

http://www.xml-cml.org/schema
http://www.xml-cml.org/convention/
http://www.xml-cml.org/convention/
http://www.xml-cml.org/dictionary/compchem/
http://www.xml-cml.org/dictionary/compchem/

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 10 of 12
http://www.jcheminf.com/content/5/1/25
Element names, and where necessary, attribute values,
are given as QNames (i.e. in the form prefix:localName)
and the prefix must be in scope and bound to the appro-
priate namespace URI. The data format is defined as
follows:

(a)The cml:module element may be used as a
container for one or more input files. If used this
outer module must have a dictRef attribute with the
value ‘compchem:inputFileList’. There may be a title
attribute giving this information in brief human
readable form. Rationale: It is important to be able
to easily locate input file data in large documents.
By enclosing all such data in a single parent element
with a uniquely defined dictionary reference a low-
memory streaming parser can extract the data without
the need for complex document manipulation.

(b)Data for each input file must be contained in its own
cml:module element. Each such element must have a
dictRef attribute with the value “compchem:inputFile”
and may have a title attribute. It should be possible to
convert the contents of each such module to a single
ASCII file used as input to an atomistic simulation
application without reference the rest of the XML
document. Rationale: Some applications read input
data from multiple input files. It must be possible to
reconstruct each of these files.

(c)Each module element described in (b) should contain
a single cml:metadataList element with zero or more
number of cml:metadata child elements. These
elements are intended to contain metadata that can
be used help the (re)creation of the calculation’s input
data. It is intended that a wider range of information
could be conveyed in this way but we pay particular
attention here to the file name of the input data file
represented by the parent module. The file name
should be stored as the content attribute of a
metadata element with the name attribute being
compchem:inputFileName. Rationale: Associated with
each file are various items of metadata. While not all
file-like objects will have a name where it is present
the file name can be used to recreate the input data
needed by the application (which, sometimes, must be
contained in files with a fixed name).

(d)Each module element described in (b) should
contain one or more cml:scalar child elements.
These should have the attribute ‘dataType’ with the
value ‘xsd:string’. Text content of these elements
should each correspond to a single (XML encoded)
line of the input file. All white space should be
preserved but line-ending characters should be
removed. The order of the lines in the input file must
correspond to the document order of the cml:scalar
elements as defined in section 5 of the XPath
specification [50]. Empty lines should be represented
by empty cml:scalar elements. Whitespace, including
tabulation characters, multiple spaces and spaces at
the start and end of lines should be preserved
unaltered unless it is known that the application
generating the CML document is insensitive to such
changes. Rationale: This approach allows the location
of each line of input via an XPath expression without
the risk of modification due to normalisation of the
document. Whitespace characters must be retained
unaltered as, for some Fortran applications, the exact
amount, form and location of such characters can be
significant.

The CML file shown in Figure 1 and included in the
Additional file 1 illustrates the use of this microformat.

Reading and writing file data
A small number of new subroutines have been added to
the FoX_wcml module to permit Fortran applications to
easily create representations of their input files in an
output CML document using the format outlined above.
Two methods are provided with the most appropriate
being dependent on the design of the application. In the
first approach a single subroutine, cmlDumpInputDeck,
is called with an array of file names as input arguments.
In turn each file is opened, its contents are written to the
CML document in the appropriate form, before the file is
closed. The convoluted nature of file handling in Fortran
combined with the way that some applications read their in-
put data means that this approach is not always available
(for example, if the input file is held open for the duration
of the calculation, or if data is read from standard input) so
an alternative interface with five subroutines (cmlStartInput
DeckList, cmlStartInputDeckFile, cmlAddInputDeckLine,
cmlEndInputDeckFile and cmlEndInputDeckList) is pro-
vided. The FoX documentation provides full details of how
to use these two interfaces [51].
Finally, we provide a trivial example script to show

one way of recreating input files given a CML document.
This uses XPath [50] and python and is provided in
Additional file 1.

Additional file

Additional file 1: The following additional data are available with
the online version of this paper. Additional data file prop_h2o.cml is a
full example of a validated CML file produced by the modified NWChem
version discussed in this paper, running the input file entitled prop_h2o.
nw. The full output file prop_h2o.output is also provided. Additional data
file input_files_example.xml is a simple example of the proposed input
data format described in Appendix 2 and produced with new features of
the FoX_wcml library. Additional data file extract_input_files.py is a
straightforward python script that can be used to reproduce input data
files stored in a CML document following the format described in
Appendix 2.

http://www.biomedcentral.com/content/supplementary/1758-2946-5-25-S1.zip

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 11 of 12
http://www.jcheminf.com/content/5/1/25
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WAJ and AMW carried out the work on the implementation of FoX in
NWChem, while MDH carried out the work on Avogadro. All authors drafted,
read and approved the final manuscript.

Acknowledgements
A portion of the research was supported by EMSL, a national scientific user
facility sponsored by the U.S. Department of Energy’s (DOE) Office of Biological
and Environmental Research and located at Pacific Northwest National
Laboratory (PNNL). PNNL is operated for the DOE by the Battelle Memorial
Institute under contract DE-AC06-76RLO-1830. This work has also received
funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement number
240473 “CoMITAC”. MDH would like to thank the US Army Engineer Research
and Development Center for funding under contract W912HZ-12-C-0005.

Author details
1EMSL, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA
99352, USA. 2School of Earth Sciences, University of Bristol, Wills Memorial
Building, Queen’s Road, Bristol BS8 1RJ, UK. 3Department of Scientific
Computing, Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA.

Received: 4 January 2013 Accepted: 17 April 2013
Published: 24 May 2013

References
1. Murray-Rust P: Chemistry for everyone. Nature 2008, 451:648–651.
2. Downing J, Murray-Rust P, Tonge AP, Morgan P, Rzepa HS, Cotterill C, Day N,

Harvey MJ: SPECTRa: The deposition and validation of primary chemistry
research data in digital repositories. J Chem Inf Model 2008, 48:1571–1581.

3. Rzepa HS: The past, present and future of scientific discourse. J Cheminfo
2011, 3:46.

4. Marcial LH, Hemminger BM: Scientific data repositories on the Web:
An initial survey. J Am Soc Inf Sci 2010, 61:2029–2048.

5. Maddison DR, Swofford DL, Maddison WP: Nexus: an extensible file format
for systematic information. Syst Biol 1997, 46:590–621.

6. Scientific Data Exchange. http://www.aps.anl.gov/DataExchange/.
7. HDF Group: Hierarchical data format version 5, 2000–2010. http://www.

hdfgroup.org/HDF5.
8. Jain A, Hautier G, Moore C, Ong SP, Fischer C, Mueller T, Persson KA, Ceder G:

A high-throughput infrastructure for density functional theory
calculations. Comp Mat Sci 2011, 50:2295–2310.

9. Hummelshoj F, Abild-Pedersen F, Studt F, Bligaard T, Norskov J: CatApp:
A Web application for surface chemistry and heterogeneous catalysis.
Angew Chem Int Ed 2012, 51:272–274.

10. Feller D: The role of databases in support of computational chemistry
calculations. J Comp Chem 1996, 17:1571–1586.

11. Johnson RD III: NIST Computational Chemistry Comparison and Benchmark
Database, NIST Standard Reference Database Number 101, Release 15b. 2011.
http://cccbdb.nist.gov.

12. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR:
Avogadro: An advanced semantic chemical editor, visualization, and
analysis platform. J Cheminfo 2012, 4:17.

13. McMahon B: Applied and implied semantics in crystallographic
publishing. J Cheminfo 2012, 4:19.

14. XML standards for simulation data. http://www.quantum-simulation.org.
15. Yuan G, Gygi F: ESTEST: a framework for the validation and verification of

electronic structure codes. Comput Sci Disc 2011, 3:015004.
16. MatML Standard. http://www.matml.org.
17. Murray-Rust P, Townsend JA, Adams SE, Phadungsukanan W, Thomas J:

The semantics of Chemical Markup Language (CML): dictionaries and
conventions. J Cheminfo 2011, 3:43.

18. Murray-Rust P, Rzepa HS, Wright M: Development of Chemical Markup
Language (CML) as a system for handling complex chemical content.
New J Chem 2001, 25:618–634.

19. Murray-Rust P, Rzepa HS: Chemical markup, XML, and the Worldwide
Web. 1. Basic principles. J Chem Inf Comp Sci 1999, 39:928–942.
20. Murray-Rust P, Rzepa HS, Wright M, Zara S: A universal approach to web-
based chemistry using XML and CML. Chem Comm 2000:1471–1472.
doi:10.1039/B002483J.

21. Murray-Rust P, Rzepa HS: CML: Evolution and design. J Cheminf 2011, 3:44.
22. Townsend J, Murray-Rust P: CMLLite: a design philosophy for CML.

J Cheminf 2011, 3:39.
23. Murray-Rust P, Rzepa HS: Chemical markup, XML, and the World Wide

Web. 4. CML schema.
J Chem Inf Comp Sci 2003, 43:757–772.

24. Wakelin J, Murray-Rust P, Tyrrell S, Zhang Y, Rzepa HS, García A: CML tools
and information flow in atomic scale simulations. Mol Sim 2007,
31:315–322.

25. Adams S, de Castro P, Echenique P, Estrada J, Hanwell MD, Murray-Rust P,
Sherwood P, Thomas J, Townsend J: The Quixote project: Collaborative
and Open Quantum Chemistry data management in the Internet age.
J Cheminfo 2011, 3:38.

26. Bruin RP, White TOH, Walker AM, Austen KF, Dove MT, Tyer RP, Couch PA,
Todorov IT, Blanchard MO: Job submission to grid computing
environments. Concurrency Computat: Pract Exper 2008, 20:1329–1340.

27. Walker AM, Bruin RP, Dove MT, White TOH, Kleese-van Dam K, Tyer RP:
Integrating computing, data and collaboration grids: the RMCS tool.
Phil Trans R Soc A 2009, 367:1047–1050.

28. Kleese-van Dam K, James M, Walker AM: Integrating data management
and collaborative sharing with computational science processes.
In Handbook of Research on Computational Science and Engineering:
Theory and Practice Volume 1. Edited by Leng J, Sharrok W. Hershey,
Pennsylvania: IGI Global; 2011:506–538.

29. Murray-Rust P, Townsend J, Adams SE, Phadungsukanan W, Thomas J:
The semantics of Chemical Markup Language (CML): dictionaries and
conventions. J Cheminf 2011, 3:43.

30. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D,
Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de
Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M,
Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A,
Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A,
Umari P, Wentzcovitch RM: Quantum ESPRESSO: a modular and open-
source software project for quantum simulations of materials. J Phys
Condens Matter 2009, 21:395502.

31. Gordon MS, Schmidt MW: Advances in electronic structure theory:
GAMESS a decade later. In Theory and Applications of Computational
Chemistry, the first forty years. Edited by Dykstra CE, Frenking G, Kim KS,
Scuseria GE. Amsterdam: Elsevier; 2005:1167–1189.

32. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M: Molpro: a general-
purpose quantum chemistry program package. WIREs Comp Mol Sci 2012,
2:242–253.

33. Kresse G, Furthmüller J: Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comp Mat Sci
1996, 6:15–50.

34. Salje EKH, Artacho E, Austen KF, Bruin RP, Calleja M, Chappell HF, Chiang G-
T, Dove MT, Frame I, Goodwin AL, Kleese-van Dam K, Marmier A, Parker SC,
Pruneda JM, Todorov IT, Trachenko K, Tyer RP, Walker AM, White TOH:
eScience for molecular-scale simulations and the eMinerals project.
Phil Trans R Soc A 2009, 367:967–985.

35. Yang XY, Bruin RP, Dove MT: Developing an end-to-end scientific
workflow. A case study using a comprehensive workflow platform in
e-science. Comput Sci Eng 2010, 12:52–61.

36. White TOH, Bruin RP, Chiang G-T, Dove MT, Tyer RP, Walker AM: Lessons in
scientific data interoperability: XML and the eMinerals project. Phil Trans
2009, 367:1041–1046.

37. FoX library. http://www1.gly.bris.ac.uk/~walker/FoX/.
38. Murray-Rust P, Hanwell MD, Hutchison GR, Neylon C, Spjuth O, Townsend J,

Willighagen E, Walker AM: Building a CML code library. J Cheminfo 2012, 4:14.
39. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D:

The SIESTA method for ab initio order-N materials simulation. J Phys
Condens Matter 2002, 14:2745–2779.

40. Gale JD: GULP - a computer program for the symmetry adapted
simulation of solids. J Chem Soc Faraday Trans 1997, 93:629–637.

41. Glöß A, Brändle MP, Klopper W, Lüthi HP: The MP2 binding energy of the
ethene dimer and its dependence on the auxiliary basis sets: a
benchmark study using a newly developed infrastructure for the
processing of quantum chemical data. Mol Phys 2012, 110:2523–2534.

http://www.aps.anl.gov/DataExchange/
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://cccbdb.nist.gov/
http://www.quantum-simulation.org/
http://www.matml.org/
http://dx.doi.org/10.1039/B002483J
http://www1.gly.bris.ac.uk/~walker/FoX/

de Jong et al. Journal of Cheminformatics 2013, 5:25 Page 12 of 12
http://www.jcheminf.com/content/5/1/25
42. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HHJ,
Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA: NWChem:
a comprehensive and scalable open-source solution for large scale
molecular simulations. Comput Phys Commun 2011, 181:1477–1489.

43. Black GD, Schuchardt KL, Gracio DK, Palmer B: The Extensible
Computational Chemistry Environment: A Problem Solving Environment
for High Performance Theoretical Chemistry. In Computational Science -
ICCS 2003: June 2–4, 2003; Saint Petersburg Russian Federation and Melbourne,
Australia. Edited by Sloot PMA, Abramson D, Bogdanov AV, Dongarra J.
Heidelberg: Springer Verlag; 2003:122–131.

44. CML validator. http://validator.xml-cml.org/.
45. eXtensible Data Model and Format (XDMF). http://www.xdmf.org.
46. Adams N, Cannon E, Murray-Rust P: ChemAxiom – an ontological

framework for chemistry in science. Nature Proceedings 2009. doi:10.1038/
npre.2009.3714.1.

47. Guba R, Howard MT, Hutchinson GR, Murray-Rust P, Rzepa H, Steinbeck C,
Wegner J, Willighagen EL: The Blue Obelisk – interoperability in chemical
informatics. J Chem Inf Model 2006, 46:991–998.

48. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J,
Windus TL: Basis set exchange: a community database for computational
sciences. J Chem Inf Model 2007, 47:1045–1052.

49. Boyer J: Canonical XML Version 1.0 W3C recommendation. 2001. http://www.
w3.org/TR/xml-c14n.

50. Clark J, De Rose S: XML Path Language (XPath) Version 1.0, W3C
recommendation. 1999. http://www.w3.org/TR/xpath/.

51. FoX wcml documentation. http://www1.gly.bris.ac.uk/~walker/FoX/DoX/
FoX_wcml.html.

doi:10.1186/1758-2946-5-25
Cite this article as: de Jong et al.: From data to analysis: linking
NWChem and Avogadro with the syntax and semantics of Chemical
Markup Language. Journal of Cheminformatics 2013 5:25.
Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

http://validator.xml-cml.org/
http://www.xdmf.org/
http://dx.doi.org/10.1038/npre.2009.3714.1
http://dx.doi.org/10.1038/npre.2009.3714.1
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xpath/
http://www1.gly.bris.ac.uk/~walker/FoX/DoX/FoX_wcml.html
http://www1.gly.bris.ac.uk/~walker/FoX/DoX/FoX_wcml.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Generating semantically rich data with NWChem
	Visualisation and analysis of semantically rich NWChem data with Avogadro

	Results and discussion
	Chemical Markup Language for computational chemistry

	Conclusions
	Appendix 1: Molecular orbitals dictionary entries
	Dictionary entries
	Example of molecular orbitals

	Appendix 2: Representing input data
	Format for the representation of input data
	Reading and writing file data

	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

