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Abstract

Background: Our approach to the BioCreative IV challenge of recognition and classification of drug names
(CHEMDNER task) aimed at achieving high levels of precision by applying semantic similarity validation techniques
to Chemical Entities of Biological Interest (ChEBI) mappings. Our assumption is that the chemical entities
mentioned in the same fragment of text should share some semantic relation. This validation method was further
improved by adapting the semantic similarity measure to take into account the h-index of each ancestor. We
applied this method in two measures, simUl and simGIC, and validated the results obtained for the competition,
comparing each adapted measure to its original version.

Results: For the competition, we trained a Random Forest classifier that uses various scores provided by our
system, including semantic similarity, which improved the F-measure obtained with the Conditional Random Fields
classifiers by 4.6%. Using a notion of concept relevance based on the h-index measure, we were able to enhance
our validation process so that for a fixed recall, we increased precision by excluding from the results a higher
amount of false positives. We plotted precision and recall values for a range of validation thresholds using different
similarity measures, obtaining higher precision values for the same recall with the measures based on the h-index.

Conclusions: The semantic similarity measure we introduced was more efficient at validating text mining results
from machine learning classifiers than other measures. We improved the results we obtained for the CHEMDNER

task by maintaining high precision values while improving the recall and F-measure.

Background
Named entity recognition (NER) is the text mining task of
automatically identifying the entities mentioned in scienti-
fic articles, patents, and other text documents. The Bio-
Creative challenge is a community effort to evaluate text
mining and information extraction systems applied to the
biological domain. One of the tasks proposed for the
fourth edition of this competition was the chemical com-
pound and drug named entity recognition (CHEMDNER)
task. It was essentially a NER task for detecting chemical
compounds and drugs in MEDLINE documents, in parti-
cular those that can be linked to a chemical structure [1].
The task organizers provided a training corpus composed
of 10,000 MEDLINE titles and abstracts that were manu-
ally annotated by domain experts.

Measuring the semantic similarity between the chemical
entities mentioned in a given fragment of text has been
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shown to provide an effective validation method to achieve
high precision values [2]. Our assumption is that entities
mentioned in the same fragment of text share some
semantics between them, thus entities with low semantic
similarity are considered to be errors. To each recognized
term, we associate a chemical entity in Chemical Entities
of Biological Interest (ChEBI) ontology [3], and calculate a
validation score based on its similarity to other terms. The
purpose of this method is to filter out false positives incor-
rectly classified as relevant chemical entities by the
machine learning classifiers.

Many Semantic Similarity Measures (SSM) rely on the
notion of Information Content (IC) of a concept to
account for its specificity [4,5]. IC measures can be extrin-
sic (relying on an external corpus to quantify the specifi-
city of a concept) as in [4] but the need for the external
corpus has been shown to be a disadvantage. In fact,
recent studies have shown that intrinsic IC measures,
which depend only on the structure of the ontology, are
comparable to extrinsic measures [6)].

© 2015 Lamurias et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


mailto:alamurias@lasige.di.fc.ul.pt
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lamurias et al. Journal of Cheminformatics 2015, 7(Suppl 1):513
http://www.jcheminf.com/content/7/51/513

In this manuscript we present the approach we used
for the CHEMDNER task and its recent improvements.
Our system was built on the ICE framework [7] and we
applied semantic similarity for validating the results and
therefore achieve high levels of precision. This validation
process was improved by using a SSM that takes into
account only the most relevant ancestors of a concept.
We used the h-index to measure its concept relevance
in the ontology, adapting from the definition proposed
by Hirsch [8] to measure the impact of the research
work of a scientist.

The rest of this paper is organized as follows: Results
and discussion presents the results we obtained with our
original system, and with the improvements we imple-
mented post-challenge, using cross-validation; Conclu-
sions summarizes the main conclusions from this work;
Methods describes the approach we used for the compe-
tition and how we improved it since then using an
h-index based semantic similarity measure.

Results and discussion

Task description

CHEMDNER corpus

The CHEMDNER corpus consists of 10,000 MEDLINE
titles and abstracts and was originally partitioned ran-
domly in three sets: training, development and test [9].
The chosen articles were sampled from a list of articles
published in 2013 by the top 100 journals of a list of
categories related to the chemistry field. These articles
were manually annotated by a team of curators with
background in chemistry. Each annotation consisted of
the article identifier, type of text (title or abstract), start
and end indices, the text string and the type of chemical
entity, which could be one of the following: trivial, for-
mula, systematic, abbreviation, family and multiple.
There was no limit for the number of words that could
refer to a CEM but due to the annotation format, the
sequence of words had to be continuous. There were a
total of 59,004 annotations on the training and develop-
ment sets, which consisted of 7,000 documents.

CEM and CDI subtasks

There were two types of predictions the participants
could submit for the CHEMDNER task: a ranked list of
unique chemical entities described on each document,
for the Chemical Document Indexing (CDI) subtask,
and the start and end indices of each chemical entity
mentioned on each document for the Chemical Entity
Mention (CEM) subtask. Using the CEM predictions, it
was possible to generate results for the CDI subtask, by
excluding multiple mentions of the same entity in each
document. A gold standard for both subtasks was
included with the corpus, which could be used to calcu-
late precision and recall of the results, with the evalua-
tion script released by the organization. Each team was
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allowed to submit up to five different runs for each
subtask.

Submission for the CHEMDNER task

Using different combinations of the developed methods,
five runs were submitted for each subtask by our team.
Each run used different corpora and different validation
methods. We used the CHEMDNER corpus and two
external corpora for run 3, while only the CHEMDNER
corpus was used for run 3*. These two runs provide the
maximum recall we can achieve, since no validation pro-
cess was employed. Run 3* was not submitted to the
competition since the recall obtained with run 3 was
higher. Run 2 uses only the CHEMDNER corpus and a
high validation threshold based on the CRF confidence,
ChEBI mapping score and semantic similarity to other
entities in the same document. These three values were
also used to train a Random Forest classifier to validate
the CREF results, which corresponds to run 1. Run 4 uses
only the CHEMDNER corpus, like run 3*, but each result
is validated with semantic similarity, while run 5 uses the
same training corpora as run 3, but also with the seman-
tic similarity validation. Each run is described with more
detail in the Methods section.

With the results from each run, we were able to gen-
erate predictions for the CEM subtask, using every
entity recognized, and for the CDI subtask, considering
only unique entities for each document. The metrics for
each set of predictions were calculated using the official
evaluation script on the results of 3-fold cross-validation
for the CHEMDNER training and development dataset
(Table 1). The official evaluation results are presented in
Table 2. We can observe that generally, the results for
the test set are better than using cross-validation.

The results of runs 3 and 3* show the performance of
our system using no validation process. The values
obtained are comparable with other applications of Mal-
let to this same task, for example, [10]. Since run 3 uses
external corpora, the precision is much lower than run
3*, which uses only the CHEMDNER corpus. With each

Table 1 Precision (P), Recall (R) and F-measure (F)
estimates for each method used, using cross-validation,
for the Chemical Documents Indexing task (CDI) and
Chemical Entity Mention task (CEM)

Run col CEM
P R F P R F

1 841%  726%  779%  873%  702%  778%

2 950%  65%  122%  950%  59% 11.1%
521%  804%  633%  571%  766%  654%

3% 767%  757%  762%  802%  728%  763%

4 879%  227%  361%  897%  212%  343%

5 878%  227%  361%  799%  226%  353%
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Table 2 Precision (P), Recall (R) and F-measure (F) obtained
with the test set, for the Chemical Documents Indexing
task (CDI) and Chemical Entity Mention task (CEM)

Run I CEM
P R F P R F

1 853%  689%  762%  878%  652%  748%

2 968%  806%  149%  967%  7.11%  133%

3 577%  815%  67.5%  639%  779%  702%

4 919%  244%  386%  92.9%  227%  364%

5 771%  273%  403%  797%  250%  38.1%

validation process, corresponding to the other four runs,
we were able to improve precision, while run 1 also
improved the F-measure of the CEM task by 4.6% on
the test set. Every validation process also lowered signifi-
cantly our recall, between 12%-60%. For this reason, we
focused our work on improving the validation process
so that the effect on recall is reduced.

Comparing with the results from other teams, we
achieved high precision values, especially on run 2 (96.8%
for the CDI task), which was the second highest of all
teams. However, the recall obtained with that run was also
one of the lowest of the competition. These results should
be viewed as an extreme case for our validation process,
since too many true positives were wrongly filtered out
from the final result. Using semantic similarity (run 4), we
also achieved high precision, without lowering the recall as
much as run 2. The validation methods used should be
improved so that we can still obtain high precision values
with minimal effect on the recall.

Results using h-index

We computed the h-index of each class in the ChEBI
ontology. Figure 1 shows the average percentage of
ancestors with an h-index above each threshold. We can
see that about 10% of ancestors have an h-index higher
than 7; based on this results, we decided to use our pro-
posed measure with h-index of 2, 3, 4, 5 and 6. This deci-
sion was further validated when the results in Table 3
were obtained. In fact, once we use an h-index threshold
of 6, precision values start to decrease, suggesting that
the SSM scores start to degrade because of the high
amount of concepts removed from the ancestry.

We tested each measure for different validation
thresholds, obtaining different precision and recall
values for each threshold and each SSM. As we increase
the validation threshold, ideally the precision should
increase without affecting the recall. Eventually, true
positives are also eliminated by this process, lowering
the recall as the validation threshold increases.

Figures 2, 3, 4, 5 and 6 compare the precision and
recall values obtained for different validation thresholds
between simUI and simGIC and our proposed measure
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Figure 1 Average percentage of ancestors discarded using

each h-index value.

with five different h-index values. We restricted the
recall values between 15% and 30%, since this is where
the most of the points lie. Using our proposed measures,
we obtained generally higher precision values for the
same recall. This indicates that using the h-index infor-
mation to measure semantic similarity results in a better
performance at filtering out false positives from machine
learning results. Furthermore, as the h-index increases,
the difference between the original and our proposed
measure increases. While on Figure 2, points are mostly
overlapping, this is less frequent on Figure 3, as the h-
index measure achieves higher precision values. Between
Figures 5 and 6, this difference is less noticeable, which
indicates that for higher h-index values, the filter
becomes less efficient.

To confirm that the new adapted measures performed
better at excluding fewer true positives, we compared
the precision value obtained for each measure, with a

Table 3 Precision values obtained with each SSM for a
fixed recall.

P R
simUl 92.97% 2031%
simUl, 93.14% 20.23%
simUl3 93.01% 19.73%
simUl, 93.10% 19.77%
simUls 93.35% 19.81%
simUlg 93.00% 20.16%
simGIC 92.95% 20.23%
simGIC, 93.14% 20.23%
SimGIG; 93.23% 19.85%
simGIC, 93.24% 20.09%
simGICs 93.19% 20.10%
simGICq 93.10% 19.79%
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Figure 2 Comparison of precision and recall values for
different thresholds between simUIl and simGIC and variants
with h-index > 2.
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Figure 4 Comparison of precision and recall values for

different thresholds between simUI and simGIC and variants

with h-index > 4.

fixed recall of 20%, on table 3. We selected the points
from Figures 2, 3, 4, 5 and 5 that were closest to a recall
of 20%. Between each measure, the precision correspon-
dent to similar recall values improves with the h-index
used for the measure.

Conclusions

In this paper we proposed a novel method to compute
the semantic similarity between chemical entities, to
improve the chemical entity identification in texts. This
method is based on the h-index, which we computed in
the ChEBI ontology. By using the h-index to improve
the simUI and simGIC measures, we were able to filter
out fewer true positives with our validation process, and
achieve higher precision values for the same recall.

Comparing the simGIC with the simUI measure, which
does not take into account the information content, the
former measure achieved better results. The improve-
ment is relatively small, but this may be because the
NER applied was already well tuned for precision. This
is an indication that the h-index provides a good esti-
mate for the relevance of a class for the computation of
the semantic similarity between two classes.

In the future we intend to study the effect of other
parameters in our system to achieve a better balance
between recall and precision, using the results obtained
with the testing runs as a starting point. The semantic
similarity measure used for filtering can be further
improved by incorporating the disjointness information
which has been shown to improve the accuracy of
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Figure 3 Comparison of precision and recall values for
different thresholds between simUI and simGIC and variants
with h-index = 3.
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semantic similarity values [11]. Furthermore, these
values can also be improved by matching the ChEBI
entities with other ontologies and incorporating the
semantic similarity values from those ontologies [12].
While the basic framework of our system is currently
available online http://www.lasige.di.fc.ul.pt/webtools/
ice/, we will update this web tool with the work
described in this paper, as well as with a module capable
of extracting interactions described between chemical
entities.

Methods

Systems description for the CHEMDNER task

Datasets used

In addition to the provided CHEMDNER dataset, for
training our classifiers, we used the DDI corpus dataset
provided for the SemEval 2013 challenge [13], and a
patent document corpus released publically by the ChEBI
team [14]. The DDI dataset contains two sub-datasets,
one that consists of MEDLINE abstracts, and the other of
DrugBank descriptions. All named chemical entities were
labeled with their type which could be one of the follow-
ing: Drug (generic drug names), Brand (brand names),
Group (mention of a group of drugs with a common
property) and Drug_n (substances not approved for
human use). Based on this label, we created four datasets
from the DDI corpus dataset, each containing only one
specific type of annotated entities. Considering the seven
types of chemical entities of the CHEMDNER corpus, we
also created seven datasets from this corpus.

CRF entity recognition

For this competition, we used the implementation of
Conditional Random Fields (CRFs) on Mallet [15], with
the default values. In particular, we used only an order
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of 1 in the CRF algorithm. The following features were
extracted from the training data to train the classifiers:

Stem: Stem of the word token with the Porter stem-
ming algorithm

Prefix and Suffix size 3: The first and last three char-
acters of a word token.

Number: Boolean that indicates if the token contains
digits.

Furthermore, each token was given different label
depending on whether it was not a chemical entity, a
single word chemical entity, or the start, middle or end
of a chemical entity.

Since Mallet does not provide a confidence score for
each label, we had to adapt the source code based on
suggestions provided by the developers, so that for each
label, a probability value is also returned, according to
the features of that token. This information was useful
to adjust the precision of our predictions, and to rank
them according to how confident the system is about
the extracted mention being correct.

We used the provided CHEMDNER corpus, the DDI
corpus and the patents corpus for training multiple CRF
classifiers, based on the different types of entities con-
sidered on each dataset. Each title and abstract from the
test set was classified with each one of these classifiers.
In total, our system combined the results from fourteen
classifiers: eight trained with the CHEMDNER corpus (7
types + 1 with every type), five trained with the DDI
corpus (4 types + 1 with every type) and one trained
with the patents corpus.

After participating in the BioCreative IV challenge, we
implemented a more comprehensive feature set with the
purpose of detecting more chemical entities that would
be missed by a smaller feature set. These new features
are based on orthographic and morphological properties
of the words used to represent the entity, inspired by
other CRF-based chemical named entity recognition sys-
tems that had also participated in the challenge
[16-19,10]. We integrated the following features:

Prefix and Suffix sizes 1, 2 and 4: The first and last
n characters of a word token.

Greek symbol: Boolean that indicates if the token
contains Greek symbols. Case pattern: “Lower” if all
characters are lower case, “Upper” if all characters are
upper case, “Title” if only the first character is upper
case and “Mixed” if none of the others apply.

Word shape: Normalized form of the token by repla-
cing every number with ‘0’, every letter with ‘A’ or ‘a’
and every other character with x’.

Simple word shape: Simplified version of the word
shape feature where consecutive symbols of the same
kind are merged.

Periodic Table element: Boolean that indicates if the
token matches a periodic table symbols or name.
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Amino acid: Boolean that indicates if the token
matches a 3 letter code amino acids.

With these new features, we were able to achieve bet-
ter recall values while maintaining high precision. How-
ever, only the original list of features was used for the
BioCreative IV challenge.

ChEBI resolution

After having recognized the named chemical entities,
our method performs their resolution to the ChEBI
ontology. The resolution method takes as input the
string identified as being a chemical compound name
and returns the most relevant ChEBI identifier along
with a mapping score.

To perform the search for the most likely ChEBI
entity for a given entity we employed an adaptation of
FiGO, a lexical similarity method [20]. Our adaptation
compares the constituent words in the input string with
the constituent words of each ChEBI entity, to which
different weights have been assigned according to its fre-
quency in the ontology vocabulary. A mapping score
between 0 and 1 is provided with the mapping, which
corresponds to a maximum value in the case of a ChEBI
entity that has the exact name as the input string.

Our resolution method was applied to the named che-
mical entities on the CHEMDNER training and develop-
ment sets. We were able to find a ChEBI identifier for
69.2 % of these entities. The fraction of entities our
method was unable to resolve for each type is shown in
Table 4.

Filtering false positives with a Random Forest model

With the named chemical entities successfully mapped
to a ChEBI identifier, we were able to calculate Gentle-
man’s simUI [21] for each pair of entities on a fragment
of text. This measure is a structural approach, which
explores the directed acyclic graph (DAG) organization
of ChEBI [22]. We then used the maximum semantic
similarity value for each entity as a feature for filtering
and ranking.

The output provided for each putative chemical named
entity found is the classifier’s confidence score, and the
most similar putative chemical named entity mentioned
on the same document through the maximum semantic
similarity score. Using this information, along with the
ChEBI mapping score, we were able to gather 29 features
for each prediction. When a chemical entity mention is
detected by at least one classifier, but not all, the confi-
dence score for the classifiers that did not detect this

Table 4 Number of chemical entities from the CHEMDNER
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mention was considered to be 0. These features were
used to train a classifier able to filter false positives from
our results, with minimal effect on the recall value. We
used our predictions obtained by cross-validation on the
training and development set to train different Weka [23]
classifiers, using the different methods implemented
by Weka. The method that returned better results was
Random Forest, and so we used that classifier on our test
set predictions.

Post-processing

Some simple rules were also implemented in an effort to
improve the quality of the annotations:

1 Exclude if one of the words is in a stop words list
2 Exclude text with no alphanumeric characters
3 Delete the last character if it is a dash (“-”)

A list of common English words was used as stop
words in post-processing. If a recognized chemical entity
was part of this list or one of the words on the list was
part of the chemical entity, then we assumed that it was
a recognition error and should be filtered out and not
be considered a chemical entity. This list was tuned
with the rules used on the annotations of the gold stan-
dard. The other rules were implemented after analyzing
common errors made by the CRF classifiers.

Testing Runs

We used different combinations of training corpora and
validation processes for each run (see Table 5), but the
basic pipeline was constant: (i) recognition of the chemi-
cal entities with CRF, and (ii) validation of each entity
by mapping to ChEBI and computing semantic
similarity.

Different runs use different corpora for the CRF step:
each uses (1) either the CHEMDNER corpus by itself or
(2) the CHEMDNER corpus along with the DDI and
patents (PAT) corpora. DDI and PAT were not anno-
tated with the same criteria used for the CHEMDNER
corpus, and do not contain the same type of texts. The
DDI corpus is focused on drug names and contains
drug interaction descriptions and PubMed abstracts,
while PAT contains only patents annotated with chemi-
cal named entities.

For the validation process, we used three different
methodologies: (1) The first methodology was to map
the recognized entities to ChEBI and then apply the
semantic similarity measure described previously to filter

corpus not mapped to ChEBI

Type Systematic Identifier Formula Trivial Abbreviation Family Multiple
Unmapped 3382 1156 3972 3622 4181 1690 91
(25.1%) (88.2%) (46.3%) (20.3%) (46.2%) (20.3%) (23.3%)
Total 13472 1311 8585 17802 9059 8313 390
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Table 5 Corpora and validation methods used for each
run

Corpora Validation
Run CHEMDNER DDI/PAT SSM COMBINED RF
1 X X X
2 X X
3 X X
3* X
4 X X
X X X

the entities based on a fixed threshold (SSM). (2) The sec-
ond approach was to combine the confidence scores
obtained with Mallet and ChEBI mapping score with the
SSM values for each entity, computing a new score which
was also used to filter the CRF results based on a thresh-
old (COMBINED). (3) Finally, we used the three scores
independently to produce a Random Forest to classify
each entity as a true positive or a false positive (RF).

Experimenting with cross-validation on the training
and development sets, we assembled different combina-
tions of these methods (see Table 5).

On run 1, we use the full set of corpora alongside a RT
validation. This was done after noticing that the Random
Forest classifiers provides a better balance between preci-
sion and recall than a simple approach based on a score
and threshold (approaches SSM and COMBINED).
Furthermore, using every corpus provided more features,
which is generally beneficial in CRF (Run 1).

For run 2, we used only the CHEMDNER corpus and
the COMBINED validation process, since the combined
score of each entity is more detailed than just one of
the values. We determined empirically the threshold of
0.8 for this run, which gave us our maximum precision
value.

Run 3 is equivalent to a baseline. In fact, this run uses
only the results obtained with a CRF classifier trained
with the full set of corpora, without a validation step.
To better understand the effect of the training corpus,
we also created a run 3* where the CRF was trained
with the CHEMDNER corpus only. The results of these
two runs (3 and 3*) establish in fact the maximum recall
value that can be expected with our approach, as they
result in a non-filtered list which the validation step
trims down. In fact, the perfect validation step should
be able to remove from the CRF results all the false
positive recognitions, but can never increase the number
of correctly recognized entities. Notice that run 3* was
not submitted for evaluation at the BioCreative contest,
as only 5 runs were allowed.

Runs 4 and 5 use the SSM validation step, along with
either the CHEMDNER corpus alone (run 4) or the full
set of corpora (run 5) This selection was done in order
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to evaluate the performance of the SSM validation
approach, since we had previously obtained good results
with this method on a different gold standard. The
threshold value applied (0.4) was based on [2].

According to the corpora used, run 3 should be used
as a baseline for runs 1 and 5, while run 3* should be
used as a baseline for runs 2 and 4.

Semantic similarity using h-index
We used the maximum semantic similarity value of each
predicted chemical entity to the other entities identified
in the same fragment of text to filter entities incorrectly
predicted by the CRF classifiers.

The simUI measure [21] is an edge-based approach to
measure the semantic similarity between two classes.
Given two classes ¢; and ¢, and the set of their ances-
tors asc(c;) and asc(c,), this measure is equal to the
number of classes in the intersection between asc(c;)
and asc(cy) divided by the number of classes in the
union of the same two sets:

#{t|t € asc(cy) Nasc(cy)}

i UI I’ =
sS1m (Cl CZ) #{t)t € aSC(Cl) U aSC(CZ)}

A similar approach for measuring semantic similarity
is the simGIC measure [5]. In this case, each ancestor is
weighted by its information content (IC), which is a
measure of the specificity of a concept. The simGIC is
defined as the sum of the IC of the classes in the inter-
section between asc(c;) and asc(c,) divided by the sum
of the IC of the classes in the union of the same two
sets:

S {IC(1)|t € asc(c1) Nasc(c2)}
> {IC(¢)|t € asc(c1) U asc(cp)}

The hierarchical structure of the ontology can be used
to quantify the IC of each class. Seco et al. [24] pro-
posed an intrinsic IC as a function of the number of
subclasses and the maximum number of classes in the
ontology:

sim GIC(C], Cz) =

_ log(sub-classes(c) + 1)
log(C)

where sub-classes(c) is the number of sub-classes of ¢
and C is the total number of classes in the ontology.

Both simUI and simGIC consider every ancestor up to
the root. These measures could be improved by select-
ing only the ancestors that are more relevant in the
ontology. We estimated the relevance of a class by
adapting the h-index [8] to the ChEBI ontology, defining
it as follows: A term has index / if / of its N, children
have at least / children each and the other (N, - /) chil-
dren have < /4 children each. Figure 7 shows an example

IC(c) =1
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CHEBI:24346
phasphoglyceric
acid

CHEBI:25405
manoghosphaglyceric
acid

CHEBI:24344.
2-phosphoglyceric
acid

CHEBI:22902
bisphosphoglyceric
acid
CHEBI:28007
23
bisphosphoglyceric
acid

HEBI: 28508

CHEBI:61304
phosphaglycerate

CHEBE19324
23
bisphosphoglycerate.
‘CHEBI:17050
.phosphoglyceric
acid

Figure 7 Section of the ChEBI ontology showing a term
(CHEBI:24346) with a h-index of 2, since 2 of its child nodes
have at least 2 other child nodes, and the other child node has
no more than 2 child nodes.

GHEBI'16351
2-{-D-mannesyl)-3 -
hosphaglyceric acid,

GHEBI:24346
phosphoglyceric
acid

glyceric acid

3-ADP-glyceric
aci

of a ChEBI entity (CHEBI:24346) with an h-index of 2.
Classes that are leaf nodes or classes that have only leaf
nodes as sub-classes have an h-index of 0.

Then, we adapted the simUI and simGIC measures to
exclude ancestors with an h-index lower than a certain
threshold o. Only the ancestors with h-index higher or
equal to a are considered for asc(c;) and asc(cy).

. #{t|t € asc(c1) Nasc(c2) A h-index(t) > o}
In(c1,c2) = .

sim Ul (e1, c2) #{t|t € asc(c1) U asc(cz) A h-index(t) > «}

S {IC(t)|t € asc(c1) Nasc(cz) A h-index(t)a}

sImGICi(e1, ¢2) = S {IC(0)It € asc(c1) U asc(cy) A h-index(t) > o}

Using lower o values, fewer ancestors are excluded
and consequentially, the similarity values should be clo-
ser to the ones obtained with the original measures. As
we increase the threshold @, only the most relevant
classes are considered and the semantic similarity values
deviate more from the original.

We performed a similar recognition process to what
was used in the competition, but now using the simUI
and simGIC similarity measures, and adapted versions
which filter ancestors based on their relevance by
excluding those with h-index lower than a certain
threshold.

Our objective was to improve the overall recall while
maintaining high precision values, by better filtering out
false positives from the results obtained with our
machine learning method. Using our adapted versions
of the simUI and simGIC measures, we were able to
remove more false positives, for the same number of
true positives wrongly removed. In other words, for a
fixed recall, we were able to achieve higher precision
values.
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