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Abstract 

Background:  The enriched biological activity information of compounds in large and freely-accessible chemical 
databases like the PubChem Bioassay Database has become a powerful research resource for the scientific research 
community. Currently, 2D fingerprint based conventional similarity search (CSS) is the most common widely used 
approach for database screening, but it does not typically incorporate the relative importance of fingerprint bits to 
biological activity.

Results:  In this study, a large-scale similarity search investigation has been carried out on 208 well-defined com-
pound activity classes extracted from PubChem Bioassay Database. An analysis was performed to compare the search 
performance of three types of 2D similarity search approaches: 2D fingerprint based conventional similarity search 
approach (CSS), iterative similarity search approach with multiple active compounds as references (ISS), and finger-
print based iterative similarity search with classification (ISC), which can be regarded as the combination of iterative 
similarity search with active references and a reversed iterative similarity search with inactive references. Compared 
to the search results returned by CSS, ISS improves recall but not precision. Although ISC causes the false rejection 
of active hits, it improves the precision with statistical significance, and outperforms both ISS and CSS. In a second 
part of this study, we introduce the profile concept into the three types of searches. We find that the profile based 
non-iterative search can significantly improve the search performance by increasing the recall rate. We also find that 
profile based ISS (PBISS) and profile based ISC (PBISC) significantly decreases ISS search time without sacrificing search 
performance.

Conclusions:  On the basis of our large-scale investigation directed against a wide spectrum of pharmaceutical 
targets, we conclude that ISC and ISS searches perform better than 2D fingerprint similarity searching and that profile 
based versions of these algorithms do nearly as well in less time. We also suggest that the profile version of the itera-
tive similarity searches are both better performing and potentially quicker than the standard algorithm.

Keywords:  2D similarity search, Iterative similarity search, Nearest neighbor, Iterative similarity search with 
classification, Profile

© 2015 Yu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Large scale virtual screening methods have been an 
attractive approach for prescreening millions of com-
pounds in commercial or public chemical databases 
to find compounds specifically active against a specific 

target, especially in early stages of modern drug devel-
opment pipelines. Among the search methods avail-
able, 2D fingerprint based conventional similarity search 
(CSS) is a well-established virtual screening tool [1, 2], 
in which the similarities between database compounds 
and the query compound are measured and ranked, 
and hits are selected from the top of the ranked list. The 
central principle underlying virtual screening methods 
is the molecular similarity principle, which states that 
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structurally similar small molecules tend to express simi-
lar biological activities [2–4]. A molecular 2D fingerprint 
is usually defined as a fixed-length bit string where each 
bit represents a specific molecular substructure feature 
or structure property. As a ligand based virtual screen-
ing method, the generation of molecular 2D fingerprint 
only requires the molecular graph as input. The similarity 
between the input and compound being searched is usu-
ally measured by the Tanimoto coefficient [5], one of the 
most common approaches for database searching due to 
its simplicity [6–8], fast speed, easy implementation and 
results in drug discovery [8–10].

Despite the development of more sophisticated 3D 
similarity approaches [11, 12] and machine learning 
methods such as random forests, naïve Bayesian classi-
fiers, and support vector machines, 2D similarity search 
continues to be the focus of virtual screening research 
to better retrieve compounds of desired bioactivities or 
physical properties [13–17]. In part, this is due to the 
relative computational efficiency, which is important 
for large online chemical databases such as PubChem 
to answer user queries in a reasonable amount of time. 
These advanced 2D similarity search strategies generally 
can be summarized into three categories. The first cat-
egory is data fusion of similarity coefficients, in which 
several types of similarity coefficients take into account 
different characteristics of compounds that are combined 
together to optimize the measure of compound similar-
ity [16, 17]. The second category of search strategies is 
non-iterative single reference searches that are often that 
based on one-against-one similarity measures, i.e., bit-
weighting [18, 19] and bit-truncation [20] approaches. 
The third category is the iterative similarity search with 
multiple references, which is also known as nearest 
neighbor (NN) search or turbo search [10, 14, 21–24]. 
ISS is an iterative similarity search approach in which 
the similarity of a database compound is determined 
by comparing the query compound to multiple refer-
ences with the same biological activity. The basic theory 
behind ISS is that the neighbor list of references map out 
a hypervolume in the multidimensional sampling space 
for the bioactivity of interest, and consequently the top-
ranked structures in the search result are more likely 
to be compounds with similar biological activity. Peter 
Willett et  al. compared ISS with CSS and bit-weighting 
approaches, and they found an overwhelming advantage 
of ISS in retrieving active hits [10]. Furthermore, accu-
mulative simulations have also demonstrated that ISS 
with the MAX fusing rule (maximum of all of similarity 
pairs) usually gets better search results than ISS with the 
SUM fusing rule [10, 22, 25]. Overall, by using multiple 
compounds as “baits” to fish out more active compounds 
against a given target from a database of decoys, this 

simple but efficient approach for target enhanced similar-
ity search is promising for chemical database screening.

One of the objectives in 2D similarity searches is to 
improve the recall performance. This is based on a gen-
eral assumption that if more active hits are included in 
the hit list, then the there is a higher probability that the 
remaining hits in the hit list may share the same bio-
logical activity. Nevertheless, constrained by the quality 
of the data [26], the number and nature of compounds 
in the data set [26], and more importantly the underly-
ing limitation of molecular representations [27, 28], it 
is unavoidable to include inactive compounds in data-
base screening based solely on the chemical similarity 
principle. Mounting evidence suggests that the previous 
assumption does not always work especially if “activ-
ity cliffs” widely exist in a given chemical space [29, 30]. 
Currently many chemical databases like PubChem Bio-
assay and ChEMBL preserve both active and inactive 
target-ligand information in each deposited assay [31]. 
Enriched active and inactive end-points enable us to not 
only re-evaluate the search performance of the ISS and 
the CSS by counting the numbers of annotated active and 
inactive hits in the hit lists, but also to utilize the struc-
ture information of these inactive compounds to reshape 
the chemical sampling space of the similarity search. If 
ISS has high specificity in retrieving active compounds, 
the reverse version of ISS by replacing active references 
in the neighbor list with inactive references should also 
retain the ability to identify inactive compounds. Ideally, 
the combination of ISS and the reversed ISS, which we 
call it as iterative search with classification or ISC in this 
study, may help to both retrieve active compounds and to 
purify the results from database screening.

The purpose of this study is to develop and compare 
target enhanced similarity search approaches. ChEMBL 
bioassay data [32] and PubChem confirmatory bioas-
say data [31] with explicit EC50, IC50 or Ki value were 
retrieved from PubChem Database, and the data was 
combined into 208 activity classes for our test. Each 
activity class corresponded to a protein target. In an 
effort to expand the sampling space and alleviate the 
computational burden of iterative searches, we also intro-
duced the profile concept into target enhanced similar-
ity search. In this case, the binary 2D fingerprints in the 
CSS, ISS and ISC were replaced by representative average 
profiles (AVEs). In total, 6 search approaches including 
2 non-iterative approaches (2D fingerprint base d con-
ventional similarity search or CSS, and average profile 
search or PBSS), 2 iterative ISS approaches with multi-
ple active references (fingerprint based ISS, and average 
profile based ISS or PBISS search), and finally 2 iterative 
searches with classification (fingerprint based ISC, and 
average profile based ISC or PBISC) were systematically 
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tested on 208 activity classes. The arithmetic mean of 
recall rates tested on the selected activity class (ARR), 
the arithmetic precision rate (APR), and area under the 
ROC curve (AUC) of each of 208 activity classes were 
compared to comprehensively evaluate the search perfor-
mance of all 6 search approaches. The detailed data set 
preparation, description of search approaches and results 
of the search simulations are reported herein.

Results and discussion
Our study attempts to address three questions: Can 
chemical similarity searches be improved by (1) using 
iterative searches, (2) classifying search results by using 
bioactivity data, and (3) by using fingerprint profiles? 
Furthermore, what is a reasonable metric for determin-
ing the answer to these questions—should we only meas-
ure recall, as has been typically done in other studies, or 
measure both recall and precision at the same time?

For these purposes, the recall, precision and compre-
hensive search performance (AUC) determined by cal-
culating ARRs and APRs on 208 activity classes using 6 
search approaches are compared and described below. 
The specific AUC, ARR and APR values of each activity 
class returned by six search approach can be found in 
three heatmaps in Additional file 1: Figure S4. It should 
be noted that since explicitly annotated inactives were 
added in each activity class, the precision rate calcula-
tion of each similarity search follows a new definition 
described in the method part below.

Profiling of conventional similarity search on 208 activity 
classes
2D Fingerprint based similarity search has been very 
popular in various applications and it is often used as a 
standard search algorithm for benchmarking new algo-
rithms. Therefore, we first characterized the search per-
formance of the CSS search on 208 well-curated activity 
classes.

Figure 1a shows the ARRs of 208 activity classes against 
the structural diversity index of these activity classes, 
including 178 activity classes with their ARRs  <0.3. 
Although the recall performance of a query is highly 
dependent on the enrichment of similar active com-
pounds in the test set, it is likely that the higher structural 
diversity of active compounds of an activity class makes 
it more difficult to efficiently retrieve active hits when 
the number of hits is limited. Calculations of the average 
ARRs of CSS at different similarity cutoffs were carried 
out and the average ARR curve in Additional file 1: Figure 
S2 suggests that the CSS approach generally reached the 
maximal recall limitation in the top 1 % of hits. Although 
enrichment using similarity search (19.53  ±  14.2) is 
observed in our study (Table 1), CSS search searches on 

178 of 208 activity classes return ARRs lower than 0.3, 
and only five activity classes (Class 45, 54, 61, 74, and 153) 
return ARRs greater than 0.5. This low recall rate means 
that the majority of hits in the hit list are compounds 
with undetermined bioactivity or with inactive bioactiv-
ity. On the other hand, the average precision rates (APRs) 
of 208 activity classes against the portion of actives in 
the test set is plotted in Fig.  1b, and most of points are 
above the diagonal of the figure, which confirms that the 
molecular similarity principle generally works in similar-
ity search when retrieving compounds of similar bioac-
tivity. However, the distribution of the points in Fig.  1b 
also indicates that the larger number of explicitly tested 
inactives in the test set, the higher probability of hit-
ting an explicitly tested inactive compound. In the case 
of searching on activity classes such as class 19, 28, and 
32, which each has more than 100,000 annotated inactive 

Fig. 1  a Plot of average recall rates (ARRs) returned by CSS against 
I-index for 208 activity classes. b Plot of average precision rates (APRs) 
returned by CSS against the portion of active compounds in the test 
set
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compounds in the test set, the APRs are all below 0.01. It 
means that even if the recall rate of the query is relatively 
acceptable, the inactive hits in the final hit list may over-
whelm the active hits. In this situation, it is not likely that 
the compounds with uncertain bioactivity in the hit list 
share the desired bioactivity of the query compound. This 
result indicates that a high recall rate may not necessarily 
led to a high quality search similarity. We suggest that a 
good similarity search approaches should improve both 
recall and precision performance.

Compare iterative similarity search and iterative similarity 
search with classification to conventional similarity search
Because there is no obvious relationship between recall 
rate and precision rate observed in our analysis and a 
high portion of annotated inactive hits in the hit list 
are not our expected result, we regard recall and preci-
sion of equal importance in evaluating similarity search 
performance.

6 ROC plots averaged from area under receiver oper-
ating characteristic curves (AUCs) of 208 activity classes 
(Fig. 2) help us see the overall search performance under 
different false positive rates (FPRs). Solid lines in black, 
red and yellow colors are ROC plots for CSS, ISS and ISC 
respectively. ISC performs better than ISS and CSS in the 
whole graph whereas CSS approaches the diagonal of the 
ROC after FPR of 0.8. Although the ISC search approach 
uses about twice the computational resources of ISS on 
average, this approach does provides better search per-
formance. On the other hand, ISC and ISS have limita-
tions. For example, if there is no enriched bioactivity data 
available and active compounds belonging to the same 
activity classes are not structurally diverse, it is not pos-
sible to perform the ISC search and also we do not expect 
the search performance of ISC and ISS to be significantly 
better than CSS.

The AUCs of CSS, ISS and ISC approaches on 208 
activity classes are summarized in the Table  1, and 

Table 1  Summary of average enrichments (AEFs), ARRs, APRs and AUCs of 208 activity classes

CSS PBSS ISS PBISS ISC PBISC

AEF Mean 19.532 23.124 23.124 23.609 20.319 20.989

Std 14.161 15.309 14.75 15.176 12.407 12.933

ARR Mean 0.198 0.234 0.234 0.239 0.205 0.212

Std 0.143 0.154 0.148 0.153 0.124 0.13

APR Mean 0.594 0.591 0.593 0.593 0.626 0.625

Std 0.321 0.324 0.323 0.322 0.333 0.33

AUC Mean 0.568 0.638 0.666 0.666 0.703 0.708

Std 0.101 0.115 0.119 0.118 0.12 0.118

Fig. 2  a ROC curves averaged from 208 activity classes returned by 
CSS, ISS, and ISC approaches. b Comparison of ROC curves of PBSS, 
PBISS, and PBISC to the corresponding Morgan fingerprint based CSS, 
ISS and ISC approaches
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the AUC values of 208 activity classes for three search 
approaches have been plotted in AUC heatmap in Addi-
tional file 1: Figure S4a. The AUC value of ISC is greater 
than the values of ISS and CSS, which is consistent with 
the boxplot of ∆AUCs between ISS and CSS and between 
ISC and CSS shown in Fig. 3. Among 208 activity classes, 
178 ISS AUCs and 176 ISC AUCs are better than the cor-
responding CSS AUCs. Meanwhile, we also observe that 
there are 48 CSS AUCs smaller than 0.5, but the number 
is only 15 for ISS and 10 for ISC. Based on these results, 
we conclude that the comprehensive search performance 
of the algorithms is ISC > ISS > CSS.

To better understand the reason why iterative ISC 
and ISS search approaches outperform CSS, we com-
pare the average recall rates (ARRs) of 208 activity 
classes returned by CSS, ISS and ISC. Figure 4 plots the 
208 ∆ARR values between ISS and CSS, and the ∆ARRs 
between ISC and CSS one-by-one. ARRs of 183 activity 
classes returned by ISS are greater than those returned 
by CSS, among which ∆ARRs of 115 activity classes are 
statistically significant (p  <  0.05) by the Mann–Whit-
ney U test. Clearly, the ISS search approach has a much 
higher chance to retrieve active hits more than the CSS 
approach. On the other hand, ∆ARRs between ISC and 
CSS shows a different ∆ARR pattern in Fig. 4b, in which 
only 135 ISC ARRs are higher than CSS ARRs, of which 
85 ISC ARRs are statistically higher than those of CSS 
(p  <  0.05). Unlike the iterative ISS search approach, 
improvement of recall performance is not the major rea-
son for the better general performance of ISC compared 
to ISS and CSS. This is because ISC involves inactive 
references in iterative search, and therefore the false-
positive rejection occurs if the maximal similarity score 
of inactive references are higher that the maximal simi-
larity score of active references.  ~65  % of false-negative 

rejection happens after the similarity cutoff 0.3, which 
means that even when searching using the ISC search 
approach, a scaffold search using 2D fingerprints in a low 
similarity region is not suggested if the quality of search 
result is a priority.

Similar comparisons are performed on ∆APRs between 
ISS and CSS and between ISC and CSS search approaches 
(Fig. 5). Although there are 120 ISS APRs higher than the 
corresponding CSS APRs, including 85 pairs of ∆APRs 

Fig. 3  The boxplot of ∆AUC between ISS and CSS, ∆AUC between ISC 
and CSS, ∆AUC between PBSS and CSS, ∆AUC between PBISS and ISS, 
∆AUC between PBISS and PBSS, and ∆AUC between PBISC and ISC

Fig. 4  Distribution of a ∆ARRs of 208 activity classes between ISS and 
CSS, and b ∆APRs of 208 activity classes between ISC and CSS. The 
dashed line in red color shows the average value of 208 ∆APRs

Fig. 5  Distribution of a ∆APRs of 208 activity classes between ISS and 
CSS, and b ∆APRs of 208 activity classes between ISC and CSS. The 
dashed line in red color shows the average value of 208 ∆APRs
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that are statistically significant by U testing, the mean 
value of all ∆APRs (overlapped red line) and baseline of 
Fig.  5a suggests that ISS and CSS generally have com-
parable precision performance. On the other hand, ISC 
shows significant better precision performance than 
CSS. There are 164 APRs (94 with statistically significant 
p < 0.05) which are higher than those of CSS. Compared 
to 86 activity classes on which ISS returned lower APRs 
than CSS, ISC failed on 44 activity classes. As a result, the 
mean value of 208 ∆APRs between ISC and CSS is 0.03. 
Clearly, significant improvement of precision is the major 
reason that distinguishes ISC from ISS and CSS search 
approaches. Furthermore, it is also interesting to observe 
that the ISS search approach of an iterative search with 
active references only improves the recall performance 
but not the precision performance. APRs at different sim-
ilarity cutoffs (Additional file  1: Figure S3a) shows that 
ISS generally has slightly better precision performance 
than CSS in high similarity regions (i.e., Tc > 0.6 using the 
Morgan fingerprint) but perform worse than CSS when 
the search researches low similarity regions.

Benefit of profiling in 2D similarity searches
By screening the compound structures in the bioassays, 
we observed that many active compounds in the same 
bioassay have the same scaffold. Using intermediate que-
ries with high self-identity is one bottleneck in improv-
ing the search efficiency of iterative ISS or ISC searches. 
Inspired by the idea of profile searches found in sequence 
searches, the introduction of profiling into compound 
2D similarity comparison may benefit chemical similar-
ity searching. We chose the simple average profile (AVE) 
to replace the fingerprints in CSS, ISS and ISC search 
approaches.

AVE profile based non-iterative similarity search 
(PBSS) enhances the general search performance with 
statistical significance (p  <  0.001 in Mann–Whitney U 
test) in comparison to CSS. 176 of 208 activity classes 
have PBSS AUCs greater than the corresponding AUCs 
of CSS search. Because an AVE profile is calculated 
using the fingerprints of all active references of the query 
compound, PBSS can also be considered as a simple bit-
weighting search approach. As expected, comparisons of 
∆ARRs between PBSS and CSS in Fig.  6a suggests that 
the recall performance of PBSS is significantly strength-
ened, but the precision performance between PBSS and 
CSS is insignificant (Fig. 7a). To improve search perfor-
mance, average profiles can be implemented using vector 
integer instructions on modern CPUs.

On the other hand, introducing AVE profile into itera-
tive ISS and ISC only slightly improves their recall per-
formance (Fig.  6) but not their precision performance 
(Fig. 7), and as a result, the general search performance 

of PBISS and PISC does not further improve when 
compared to the fingerprint based ISS and ISC (Fig.  3; 
Table  1). The reason that profiles show limited ability 
to improve the recall performance in iterative searches 
is because fingerprints of references in the same cluster 
are usually of high self-identity, and therefore the newly 
formed profile of the cluster is still highly similar to the 
original fingerprint. Nevertheless, profiles do facilitate 
the iterative similarity search. We reviewed the cluster-
ing process of 33199 queries with the PBISC approach 
and we observed that the compression ratio of all que-
ries to single profiles on average is 6.58 (Fig. 8). It should 
be mentioned that the maximal compression ratio 
reached 160, even if we limited the number of inactive 

Fig. 6  Distribution of ∆ARRs of 208 activity classes between a PBSS 
and CSS, between b PBISS and PBSS, between c PBISS and ISS, and 
between d PBISC and ISC. The dashed line in red color shows the aver-
age value of 208 ∆APRs
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compounds in the reference set and controlled the ratio 
of active references and inactive references to above 1:5. 
This suggests that profiles effectively reduce the number 
of comparisons in iterative search and can save computa-
tion power. Since one of the purposes of this study is to 
explore the potential benefits of using profiles in target 
enhanced 2D similarity search, the clustering and profil-
ing procedures in our currently study were all processed 
on the fly. In the future, pre-clustering and pre-profiling 
can be performed on activity classes and the resulting 
profiles saved in database to facilitate profile based simi-
larity searches.

Finally, it is worth mentioning that there is a presup-
position of this study is that each query compound has at 
least one known binding target. However, in real world, 

this presupposition may be not necessary. In another 
word, even if the specific bioactivity of the query com-
pound has not been confirmed, we still can use PBSS, 
ISS, ISC, PBISS, and PBISC search approaches to retrieve 
compound hits of a desired bioactivity, since the role of 
query compound can be regarded as the bait to fish the 
real compounds of desired bioactivity to form neighbor 
lists for further database screening. Furthermore, accord-
ing to the curves of averaging 208 APRs at varied similar-
ity cutoffs shown Additional file  1: Figure S3, PBSS can 
return better precision rates at high similarity cutoffs 
(i.e., similarity ≥0.9). This means under the extreme situ-
ation that we don’t have any knowledge of the bioactivity 
of the query compound, instead of using CSS to simply 
retrieve compounds simply based on molecular structure 
similarity, we can use PBSS to create the biological tar-
get profile of the query compound with high confidence, 
and then perform our iterative methods or use biological 
profile based methods like HTS-FP similarity search [33], 
bioturbo similarity search [34], or connectivity map [35] 
for more thorough virtual screening.

Conclusion
In this paper, we introduce profiles and neighbor clas-
sification into target enhanced 2D molecular similarity 
searching. We have symmetrically compared the recall, 
precision and general search performance of two non-
iterative search approaches—fingerprint based conven-
tional similarity search (CSS) and average profile based 
similarity search (PBSS), two iterative search approaches 
with multiple active references—fingerprint based itera-
tive search (ISS) and average profile based nearest neigh-
bor search approaches (PBISS), two iterative search 
approaches with classification—fingerprint based itera-
tive search with classification (ISC) and average profile 
based iterative search with classification (PBISC), a total 
of 6 search approaches applied to 208 activity classes.

Although the recall performance of 2D similarity 
search has been typically used to measure the search per-
formance, our study suggests both recall and precision 
should be measured in order to evaluate search perfor-
mance comprehensively. Both ISS and ISC significantly 
improve the recall performance but only the ISC search 
approach improves the precision. In addition, the intro-
duction of profiles into 2D similarity search has two 
benefits. Comparing to CSS, average profiles enhance 
search performance. Profiles also simplify the iterative 
ISS and ISC search approaches without losing search 
performance. In balancing the recall and precision, ISC 
and similarly profile based ISC search approaches are 
promising and efficient target enhanced similarity search 
approaches that can be implemented in chemical data-
bases containing bioactivity information.

Fig. 7  Distribution of ∆APRs of 208 activity classes between a PBSS 
and CSS, between b PBISS and PBSS, between c PBISS and ISS, and 
between d PBISC and ISC. The dashed line in red color shows the aver-
age value of 208 ∆APRs



Page 8 of 12Yu et al. J Cheminform  (2015) 7:55 

Methods
Preparation of data sets
The PubChem Bioassay database is a large public bioac-
tivity database, making it prudent to select data so that 
assay conditions should minimally bias the conclusions 
of this study. In our study, only bioassays containing both 
assay information of half-maximum inhibitory concen-
tration (IC50), half-maximum effective concentration 
(EC50) or Ki values, and the explicit target sequence (GI) 
were systematically extracted from PubChem Bioassay 
database. For end-points from ChEMBL, a compound 
was only considered to be active when the activity con-
centration was below 10  μM and was only considered 
as inactive when the activity concentration was above 
30  μM. For end-points from the PubChem confirma-
tory assays, the original annotations were used. Related 
assays were merged into an activity class if these assays 
had identical or similar target sequences (BLAST E 
value <10−3) and with identical screening purpose (inhib-
itor, antagonist, agonist et  al.). In total, 2900 activity 
classes were created. Later an assay filtering procedure 
was introduced to purify to activity classes and select 
the final data sets for this study: (1) discard noisy activity 
classes if over 5 % of the target-ligand end points in the 
newly merged activity class were in conflict; (2) remove 
the conflicted pairs of end points in all of the remaining 
activity classes; (3) select the activity classes if both of 
the number of actives and the number of inactives was 
greater than 70. By carrying out this procedure, a data-
base consisting of 208 activity classes including inhibitors 
and antagonists of designated enzymes, transporters, and 
receptors (Additional file  1: Table S1) was constructed. 
The database contained 494,199 unique compounds and 
8,084,694 end points in total (Additional file 1: Table S2). 
A summary of 208 data sets is presented in Table 2. The 
large number of activity classes by itself serves to limit 
the effect of assay conditions on subsequent analysis.

Considering that the implementation of drug design 
strategies usually returns a series of compounds with 
high self-similarity from a single bioassay test while 
compounds from different bioassays have high struc-
tural diversity, we carried out the compound clustering 
by applying Taylor-Butina algorithm [36, 37] to cluster 
the active compounds in each of 208 activity classes and 
calculated a structure diversity index (H) by adapting 

Shannon’s equation (Eq. 1) [38] to represent the potential 
difficulty of retrieving active compounds of that activity 
class by given a random query compound,

where k is the total number of clustering groups, ni is the 
number of bioactive compounds in the clustering group, 
and n is the total number of bioactive compounds in the 
activity class. The larger the diversity index of that activ-
ity class, the higher the structure diversity of the active 
compounds in that activity class. The diversity index of 
208 activity classes are listed in Additional file 1: Table S2 
and their values range between 2.43 (activity classes 183) 
and 11.08 (activity class 147).

In order to compare the search performance of our 
6 search approaches, the data set of each activity class 
was split into three subsets: a query set composed by 
annotated actives for intriguing the query procedure, a 
reference set for providing both active and inactive ref-
erences, and a test set for evaluating the search ability 
of the algorithm. To ensure the structure representa-
tion of active compounds in the query set, we directly 
extracted the center compounds of Taylor-Butina 
clustering results to form the query set of every activ-
ity classes. Then we randomly assigned the remaining 
active compounds into the reference set and the test 
set. Similarly, we separated those inactive compounds 
in the same activity class randomly into two groups, 
and added them into the reference set and test set of 
that activity class. For the original activity classes with 
the number of inactive compounds exceeding 20,000, 
the number of inactives in the reference set was limited 
to one-fourth of total inactive compounds (Additional 
file  1: Table S2). The average sizes of query set, refer-
ence set and test set of 208 activity classes are summa-
rized in Table 2. For each query from a selected activity 
class, all compounds in the query set and the reference 
set of the selected activity class were excluded from the 
database, and similarities measured between the query 
and all remaining compounds in the database to create 
the hit list for the query. All six algorithms in this study 
were tested with this set to ensure the validity of the 
comparison.

(1)H = −

k
∑

i=1

(

ni

n

)

log2

(

ni

n

)

Table 2  Summary of the sizes of data sets of 208 activity classes, including known actives and inactives

Diversity index Query set Reference set Test set

Active Inactive Active Inactive

Average 6.74 144 182 200 7380 29,154

Std 1.67 202 268 278 17,984 72,132
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By selecting well characterized bioassay results, a 
large number of activity classes and compounds, ensur-
ing structural diversity, balancing the relative weight of 
activity classes, and using a single test set, we attempt to 
ensure that our test results and conclusions are less likely 
affected by the varied composition of the data sets.

Formation of average profile
Profiles have been successfully used in sequence simi-
larity search at NCBI for many years to expand the 
sampling space of sequence similarity searches and to 
alleviate the oversampling issue in the reference set [39, 
40]. In our preliminary study, we observed that some 
query compounds may find over 1000 neighbor com-
pounds with both similar structure and bioactivity. It 
is reasonable to apply the idea of profiles in compound 
similarity searching by using a floating vector of the 
same length of the 2D fingerprint to represent the finger-
prints of a group of structures or bioactivity related com-
pounds to achieve the purpose of alleviating the search 
burden without losing the search sensitivity. Herein, we 
introduce the simple average (AVE) profile into 2D simi-
larity search to examine whether profile based similarity 
searches have similar or better search performance than 
fingerprint based similarity searches. The general form 
of profile generation is.

where N represents the number of references to gen-
erate the profile, FP(i) is the fingerprint of ith reference 
compound.

Non‑iterative similarity searches
In our study, a non-iterative search is defined as only one 
fingerprint or one profile of the query compound partici-
pating in the similarity measurement between the query 
and database compound. There are two non-iterative 

(2)AVE =

∑

N
FP(i)

N
,

search approaches having been systemically studied. 
One is 2D fingerprint based conventional similarity 
search (CSS) and the other is AVE profile based conven-
tional similarity search (PBSS), which can be considered 
as replacing the binary fingerprint of the query com-
pound by the AVE profile. The compound fingerprints 
were calculated by RDKit (Release_2013.03.2, http://
redkit.org) while formation of AVE profile of the query 
compound required two extra steps shown by Fig. 9: (1) 
retrieve references with similarity score greater than 0.3 
from the reference set of the assigned activity class to 
build a neighbor list; (2) select all of active compounds 
in the neighbor list to form single AVE profile by follow-
ing Eq. (2). After database screening, the similarity scores 
of database compounds were ranked in descending order 
and the top 4941 hits (~1  % of database compounds) 
were selected as the search result of the query for further 
analysis.

Iterative similarity search
Except for CSS and PBSS, fingerprint based near-
est neighbor search (ISS), fingerprint based neighbor 
classification (ISC) and the corresponding profile ver-
sions (PBISS and PBISC) are named as iterative search 
approaches because at least two fingerprints/profiles par-
ticipate in the similarity calculation. A brief description 
of the four iterative search approaches is shown in Fig. 9. 
Before the iterative search, all iterative search approaches 
first search the reference set and create the same neigh-
bor list as the one used in the PBSS search. In iterative 
searches, the MAX fusion rule (max of [Tc1, Tc2, Tc3 …… 
Tcn_ref]) was applied in our study to assign the similarity 
score of database compounds. The same as in the analysis 
of non-iterative search results, the top 4941 hits of each 
query were collected for further analysis.

ISS and ISC search approaches
Instead of controlling the number of references in the itera-
tive search as done in previous ISS searches, here we chose 
to control the similarity of references rather than the size of 
neighbor list to ensure that all structure related references 
are sampled. In addition, the major difference between ISS 
and ISC is that when querying with the ISS search approach, 
only active references participate in the step of iterative 
database screening, while ISC can be considered as the 
combination of ISS search with all active references and ISS 
search with all inactive references. As shown in Fig. 10, dur-
ing the iterative database screening, if the maximal similar-
ity between the database compound and active references 
was greater than the maximal similarity between the data-
base compound and inactive references, we kept this data-
base compound in the hit list for further analysis, otherwise 
we regarded this compound of high inactive potency and 

Fig. 8  Distribution of the compression ratios of the number of refer-
ences against the number of clusters for total 36,079 queries with 
PBISC search approach

http://redkit.org
http://redkit.org
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rejected it from the hit list. A specific example is given in 
Additional file 1: Figure S1 to illustrate how neighbor clas-
sification help reject the hits of high inactive potency.

PBISS and PBISC search approaches
In our preliminary study of ISS and ISC search 
approaches, we observed that many reference hits to a 
query are of high self-similarity. Including a large amount 
of similar references in structure decreases the search 
efficiency in iterative database screening. It is for this 
reason we introduce the use of profiles into ISS and ISC 
search approaches. For the PBISS search approach, we 
first applied the Taylor-Butina algorithm with a similarity 
cutoff of 0.4 to cluster all of the active references in the 
neighbor list and then created one average profile for each 
of the clusters. For the PBISC search approach, we clus-
tered all of references in the neighbor list of a query. If the 
cluster was composed of all active references or all inac-
tive references, we created a single profile to represent the 
structure feature of that set of compounds. Otherwise we 
separated active references from inactive references and 
created two profiles. By using this clustering and profiling 
strategy, the compression ratio from fingerprints to profile 
is 6.58 on average from 33,199 queries.

Fingerprint and similarity measurement
In our study, a 1024-bit hashed Morgan fingerprint, which 
is a circular fingerprint implemented in RDKit, was taken 
to characterize the structure feature of chemical com-
pounds. The Tanimoto coefficient (Tc) [4] was chosen 
to measure the similarity between two fingerprints or 
between fingerprint and profile, as Tc similarity has been 

found to work well in similarity search applications [6]. 
The conventional form of the Tanimoto coefficient for 
similarity search with a binary fingerprint is defined to be

where a and b are the number of bits set on in finger-
prints of molecule A and B respectively, and c is the com-
mon bits shared by molecule A and B. The continuous 
form of the Tanimoto coefficient can also be applied for 
similarity calculation between two profiles or between 
a profile and a binary fingerprint. When the Tanimoto 
coefficient between a profile and a fingerprint is meas-
ured, the bits of the fingerprint are converted to corre-
sponding integers “1” or “0”, and Tc can be calculated by 
continuous the Tanimoto Eq. 4

where ai and bi are variables at ith position of the profiles/
fingerprints of molecule A and B respectively, aibi is the 
product of ai and bi, and M is the length of fingerprint.

Evaluation of similarity search performance
In this study, the top 4941 hits (~top 1  % of the whole 
data sets) of each query on a selected activity class were 
analyzed, and the recall rate (RR), precision rate (PR) 
were also calculated. The calculation of RR follows a nor-
mal definition of recall rate (Eq. 5)

(3)Tc(A,B) =
c

a+ b− c
,

(4)Tc(A,B) =

M
∑

i=1

aibi

M
∑

i=1

(a2
i
+ b

2
i
− aibi)

,

Fig. 9  Procedures of conventional similarity search (CSS) and average profile based similarity search (PBSS), iterative nearest neighbor search (ISS) 
and average profile based ISS search (PBISS), and iterative search with neighbor classification (ISC) and average profile based ISC search (PBISC)
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where activehit is active reference in the retrieved hit 
list, and activetestset is active reference in the test set of 
a selected activity class. Since the numbers of active 
compounds in the test sets of 208 activity classes are all 
smaller than 4941 compounds, the expected number of 
active compounds in the hit list is equal to the number of 
active compounds in the test set of that activity classes. 
On the other hand, we also count the number of inactive 
reference in the retrieved hit list. Therefore the calcula-
tion of PR of each query follows Eq. 6

where inactivehit is inactive reference in the retrieved hit 
list. The specific number of active reference and the num-
ber of inactive reference of each of 208 active classes are 
listed in Additional file 1: Table S2. The ARR and APR of 
each activity class were calculated to represent the gen-
eral recall and precision performance of different search 
approaches on that activity class. Finally, areas under 
receiver operating characteristic curve (AUCs) [41] of 
queries on 208 activity classes were also computed.

(5)RR =
Count (activehit)

Count (activetestset)
,

(6)PR =
Count (activehit)

Count (activehit)+ Count (inactivehit)
,

Additional file

Additional file 1. The detailed information of 208 activity classes and 
additional figures. Table S1 shows the target information and assay type 
of 208 activity classes, and Table S2 shows the detailed compound com-
position of each activity classes. Figure S3 and Figure S4 summarize the 
overall APR and ARR performance of 6 similarity search approached we 
have studied, and Figure S6 includes the heatmap of AUCs, the heatmap 
of ARRs and the heatmap of APRs of 208 activity classes returned by 6 
similarity search approaches.
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