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Abstract 

Background:  Small molecules are information carriers that make cells aware of external changes and couple internal 
metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artifi-
cial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve 
expected biological and physiological output. Millions of years of evolution have optimized biological processes and 
pathways and now the endocrine and immune system cannot work properly without some key small molecules. In 
the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error 
experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, 
researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corre-
sponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary 
for the effects of drugs, which challenge the paradigm, ‘one drug, one target, one disease’. Nowadays, cheminformat-
ics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation 
promiscuous drugs and drug combination therapies.

Results:  234,591 protein–ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 
ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-
based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, 
exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug 
adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available 
at http://www.megabionet.org/eplatton.

Conclusions:  Although there were some disagreements between the LCBN and SBN, communities in both networks 
were largely the same with normalized mutual information at 0.9. The study of target and ligand cluster promiscuity 
underlying the LCBN showed that light ligand clusters were more promiscuous than the heavy one and that highly 
connected nodes tended to be protein kinases and involved in phosphorylation. ePlatton considerably reduced the 
redundancy of the ligand set of targets and made it easy to deduce the possible relationship between compounds 
and targets, pathways and side effects. ePlatton behaved reliably in validation experiments and also fast in virtual 
screening and information retrieval.
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Background
The physicochemical properties, sequence informa-
tion and crystal structures have been used to study the 

protein function and the relationship between proteins 
[1–3]. With the protein-based information accumulat-
ing, millions of ligand–protein interaction records have 
been deposited in the open ligand databases for the past 
decade. These interaction data enable us to explore the 
properties of proteins from the perspective of ligand. The 
hypothesis that similar molecules should exhibit similar 
biological activities is generally valid and wildly used in 
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the field of drug design [4]. At the same time, the pro-
tein network can illustrate biological information in a 
more powerful and effective view, which could not be 
easily achieved by multiple alignments and large trees 
[5]. So ligand-based protein network could be a stimu-
lating way for finding drug-like compounds and protein 
classification.

As far as we know, there are generally two kinds of meth-
ods to build the ligand-based protein network. The first is 
represented by drug-target binary association [6], this helps 
us find not only that one target may interact with multi-
ple drugs and one drug may interact with multiple targets 
but also that proteins from different gene families may 
link each other at the ligand level. The second is by means 
of similarity between ligand sets that functionally regulate 
their targets [7]. According to the ligand-related e-value of 
different proteins, proteins can be grouped and related at 
the ligand level. A conceptionally similar but technically 
different approach is based on Shannon Entropy Descrip-
tors (SHED) derived from distributions of atom-centred 
feature pairs extracted from the topology of molecules 
[8]. However, the ligand set recognized by a certain target 
can be composed of different molecular types. For exam-
ple, Fentanyl, Naltrexone, Alvimopan and Dezocine, four 
FDA-approved drugs [9], all target Mu opioid receptor 
(OPRM1), but they share few similarities in the 2D struc-
ture, although both Naltrexone and Alvimopan are antago-
nists [data source: ChEMBL_19]. Perphenazine, Pimozide 
and Risperidone, three antagonists of D2-like dopamine 
receptor (DRD2), also differentiate each other in 2D struc-
ture. We believe that it should be more rational to distin-
guish proteins by the 2D-structure clusters of ligands.

Here, we introduce a method to quantitatively distin-
guish and relate proteins by ligand clusters. For numerous 
ligands, we can cluster them by the similarities of their 2D 
structures. We presume that if two proteins share more 
ligand clusters, they are more similar at the ligand and 
ligand cluster level. Therefore, proteins can be annotated 
by the ligand clusters they recognize. The similarity of two 
annotated proteins can be represented by Jaccard index 
[10]. Then, we display the ligand cluster- and sequence-
based protein similarity in LCBN and SBN and compare 
and cluster both networks. Our results underscore the 
biological and chemical meanings of protein modules in 
the LCBN and the ePlatton, a web platform with inte-
grated information, provides a way to take advantage of 
the ‘good’ polypharmacology and get rid of the ‘bad’ one.

Results
Quantifying the ligand cluster‑ and sequence‑based 
protein similarity
We extracted 234,591 relatively strong interactions 
between 156,151 distinct ligands and 1477 proteins from 

ChEMBL [11], an informative public database contain-
ing a wealth of drug-like bioactive compounds. Of these 
proteins, 231 gene families were covered, including 194 
G protein-coupled receptors, 44 solute carriers and 34 
nuclear hormone receptors. On average each protein tar-
get had 159 ligands, with a median of 24.

Firstly, each ligand was converted from its 2D structure 
to the CDK [12] (Chemistry Development Kit) 2048-bit 
fingerprint. The similarity between each fingerprint could 
indicate the similarity of the 2D structure of each ligand. 
Then, we use affinity propagation method [13] to cluster 
the ligands by the similarities of each pair of fingerprints. 
As a result, we gained 13,769 clusters, each of which 
included from 113 to 2 2D-structure similar ligands or a 
single ligand that could not find a cluster mate. Finally, we 
distinguished proteins by the mutual recognition pattern 
of proteins and ligand clusters. We presume that if two 
proteins share more ligand clusters, they are more simi-
lar at the ligand cluster and ligand level. By this means, 
we quantified the relationship between each pair of pro-
teins by ligand-cluster level Jaccard similarity coefficient 
[10], i.e. at the level of ligand. The protein sequence simi-
larity was converted from the global sequence distance 
obtained by ClustalO [14].

Next, we compared the two kinds of similarities and 
found that there was no correlation between them even at 
the high similarity level and that points whose both simi-
larities were below 0.2 consisted of 99 % of the all (Fig. 1).

Construction and topological analysis of the chemical 
and biological protein networks
The ligand cluster-based network illustrated both intra-
connections between proteins in the same gene family 

Fig. 1  The comparison of ligand cluster-based similarity and global 
sequence similarity
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and inter-connections between members from different 
gene families (Fig. 2). This meant that identical or similar 
ligands were not shared only in an individual gene family 
but also between different gene families. Of a total of 828 
proteins in this network, 549 had over one link to other 
proteins and 240 proteins formed a giant component, 
suggesting that the commonality between proteins at 
the level of ligand should result from the chemical cross-
talk between them. The number of ligand clusters that 
interacted with an individual protein varied differently. 
Although two ion channel proteins (i.e. KCNH2 and 
CACNA1H) and MCL1 ranked at the top three in the 
1477-protein list, sorted by the number of ligand clus-
ters in descending order, none of them were included in 
the network because of the displaying criterion that pro-
tein similarities should be over 0.25. Furthermore, there 
was no correlation between the number of interacting 
ligand clusters and the degree of each protein (Spearman 

correlation coefficient was 0.06) [see Additional file  1], 
indicating that the number of interacting ligand clus-
ters was not a determinant for ligand-based similarities 
between proteins. For example, however, DRD2, CNR2 
and CNR1 interacted with 409, 403 and 392 ligand clus-
ters, their degrees in the network were respectively 2, 1 
and 1. The degree distribution of the network showed 
that most proteins only linked a few proteins [see Addi-
tional file  2], whereas a small quantity of proteins such 
as three proteins from the family of mitogen-activated 
protein kinase cascade (i.e. MAP4K3, MAP4K1 and 
MAP4K5), one serine/threonine kinase (i.e. STK25) 
linked to more than eighty proteins.

The meaning of sequence-based network was more 
explicit (Fig.  3). Two proteins were linked when their 
global sequence similarity was above a threshold. Of 
a total of 1025 proteins in the network, 786 had more 
than one link to other proteins and 165 proteins formed 

Fig. 2  The ligand cluster-based network. Edges represent the ligand cluster-based similarity. This network only display the similarities above 0.25. 
Detailed box a and b are shown with gene names. Different colours represent different HGNC gene families
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a giant component. Although the numbers of connected 
components in both networks were similar, that was 191 
for ligand cluster-based network and 199 for sequence-
based network, the detailed size and members of each 
component were not that similar. Next, we would com-
pare and cluster both networks.

Comparing the ligand cluster‑ and sequence‑based 
networks
In the sequence-based network, most proteins linked to 
and clustered with the same gene family members with 
expectations. Obviously, G protein-coupled receptor 
family, whose seven-transmembrane domain made itself 
different from most other gene families, formed 18 nearly 
exclusive subnetworks, including 15 Class A subnets, 2 

Class B subnets and 1 Class C subnet. All members in 
GPCR giant subnet belonged to GPCR/Class A although 
HGNC did not annotate UTS2R as GPCR, and in the 
giant subnet, all chemokine receptors, neuropeptide 
receptors and opioid receptors clustered together (Fig. 3). 
Meanwhile, all cyclin-dependent kinases, dozens of 
mitogen-activated protein kinases and several pleckstrin 
homology (PH) domain containing proteins consisted 
of almost thirty percent of the giant component of the 
whole network and the other seventy percent belonging 
to HGNC undefined family were protein kinases, sug-
gesting that proteins involved in the signal transduction 
bore some structural or domain resemblance (Fig. 3).

Compared with the sequence-based network, large 
components in the sequence-based network were split 

Fig. 3  The sequence-based network. Edges represent the global sequence similarity. This network only display the similarities above 0.25. Colour 
coding is the same as Fig. 2
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into smaller ones in the ligand cluster-based network. 
For example, the neuropeptide receptors, opioid recep-
tors and somatostatin receptors, most members of which 
clustered in a single community in the SBN, separated 
from each other and formed several tiny clusters in 
LCBN. If we zoomed in for a close-up of some subnets, 
we could find some unusual associations. For instance, 
sub-cluster a (Fig.  2a) consisted of LDHB, P2RY11, 
RNASE2, ENPP1, ADCY10, GPR17, CNGA2 and ASNS 
which were highly intra-connected although these eight 
proteins belonged to distinct families and the maxi-
mum of global sequence similarities between them was 
0.22 (i.e. P2RY11 and GPR17). CHIA, DLG4 and QRFPR 
formed a cluster in LCBN sub-cluster b (Fig. 2b) although 
the maximum of their global sequence similarities was 
0.11 and none of them met the display criterion for SBN.

Although communities in both networks were formed 
independently from any knowledge of known gene fami-
lies, the generated major subnetworks visibly clustered as 
gene families. By affinity propagation method, 263 and 
305 clusters emerged from LCBN and SBN. Then we used 
normalized mutual information to compare the clus-
ters among both networks and the HGNC classification. 
Interestingly, two parallel construction process resulted 
in being around 72 % similar to the HGNC classification 
and around 91 % similar to each other [for detailed clus-
ter information and comparison of cluster methods, see 
Additional file  3]. Next, from the perspective of ligand 
cluster, we dissected the target promiscuity, ligand clus-
ter promiscuity and explained the high intra-connection 
of the LCBN giant component.

The promiscuity of ligand clusters and targets underlying 
the LCBN
First, the histogram of the ligand cluster size showed 
that after the ligand cluster size of 5, the number of 
ligand clusters at certain ligand cluster size decreased as 
the ligand cluster size increased (Fig.  4a). Interestingly, 
the obviously high number of ligand clusters appeared 
around the size of 10, 19 and 28. Next comparing the 
promiscuity of ligands and ligand clusters, after counting 
the number of targets that each ligand and ligand cluster 
interacted with (Fig. 4b), we found that both promiscuity 
had the same trend and most ligands or ligand clusters 
had less than 50 targets. In the same way, from the per-
spective of ligands and ligand clusters, the plot of target 
promiscuity (Fig.  4c) showed that ligand clusters could 
considerably reduce the redundancy of ligands and make 
it easy to find out the ligands with similar structures 
that interacted with different targets. Last, we showed 
the relationship between the promiscuity and average 
molecular weight (AMW) of the ligand clusters (Fig. 4d). 
The AMW of most ligand clusters was around 400. The 

degree of promiscuity of light ligand clusters whose 
AMW ranged from 200 to 500 tended to be greater than 
the heavy ones and in this molecular mass range, there 
were several ligand clusters that interacted with more 
than 50 different targets. We also showed the relation-
ship between the HGNC gene family and the number of 
ligand clusters, in which the nuclear hormone receptors, 
potassium channels and 5-HT receptors interacted with 
the most ligand clusters (Fig. 5).

We next asked why the LCBN’s giant component were 
highly intra-connected and what biological and chemi-
cal property could emerge from the central hairball 
and the whole LBCN (Fig. 2). In the LCBN’s giant com-
ponent, there were 240 nodes and 3245 edges, which 
accounted for 83 % of the total edges of LCBN. Top ten 
proteins with the highest degrees in the whole network 
which ranged from 100 to 72 were also in this giant com-
ponent and from different kinase families (e.g. Mitogen-
activated protein kinase cascade and Cyclin-dependent 
kinase). This consisted with the fact that protein kinases 
were intensively studied as drug targets and many com-
pounds were designed for the ATP binding sites of these 
proteins [15]. GO enrichment analysis [16] of the genes 
showed that many of them significantly associated with 
phosphorus metabolic process and phosphorylation. In 
KEGG pathway study [17], 8 out of the top 10 significant 
pathways were involved in signal transduction, which 
could be explained by these kinases participating in these 
pathways [the top 10 GO and KEGG items can be found 
in Additional file  4]. For the ligands and ligand clusters 
underlying LCBN, the ligand cluster with the highest 
protein-interacting number (157) was an 18-ligand clus-
ter represented by Sunitinib [CHEMBL535], an FDA-
approved multi-target receptor tyrosine kinase inhibitor. 
For the full top 10 ligand clusters see Additional file 5.

ePlatton, a multi‑target ligand finder
We integrated the relationship of targets and ligand clus-
ters into our web platform, ePlatton, to help us explore 
their corresponding promiscuity. We fulfilled three 
main functions in ePlatton: (1) library design facility, (2) 
OMIM disease [18], KEGG pathway [17] and SIDER drug 
adverse reaction [19] conditional search and (3) global 
protein sequence and ligand cluster similarity search.

First, from our prior ligand cluster range of targets, 
users can build their own compound libraries guided by 
the ligand clusters of targets or target sets that they inter-
est. The AP cluster method chose an exemplary ligand 
from each ligand cluster and the exemplars can be used 
as prototypes for chemical library design. Second, we 
related the targets and ligand clusters with the informa-
tion of diseases, pathways and drug adverse reactions 
to facilitate the query of ligand clusters associated with 
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certain disease, pathway and drug adverse reaction. By 
advanced search, users can combine several pathways 
and/or proteins and exclude other pathways and/or pro-
teins to find the ligands and ligand clusters that bind-
ing proteins in the pathways and/or proteins that satisfy 
the condition. The advanced search strategy also apply 
to the library design, for example, designing a series of 
compounds that bind to some proteins but don’t bind 
to the other proteins. Third, users can submit chemical 
structure, e.g. SMILES strings, to our platform to search 
for the similar ligand clusters that their interested com-
pounds belong to. Then, they can deduce the possible 
relationship between their compounds and the targets, 
pathways, diseases and side effects.

Besides these main functions, users can exam the 
target range and 2D structure of every ligand in each 
ligand cluster. In this way, we considerably reduced the 
redundancy of the ligand set of targets and established 
a method to explore the ligand cluster promiscuity. We 

also included the FANTOM5 gene expression data [20], 
which could help users to exam their targets across 14 
normal tissues and 10 cancer cell lines. For large-scale 
analyses, the information of targets and ligand clusters 
can be downloaded from the ePlatton website.

Retrospective validation and prospective prediction power 
of ePlatton
Several methods of virtual screening based on ligand 
set have been proposed, such as similarity ensemble 
approach (SEA) [7], pair-wise similarity (MPS) [21] and 
other different data fusion [22] rules (e.g. MAX, KNN). 
We used the directory of useful decoys (DUD) [23] data-
set to retrospectively compare ePlatton and data fusion 
methods. As shown in Table  1 and Fig.  6, MAX, 3NN 
and EXEMPLAR (i.e. ePlatton) were better than MPS in 
average AUC and showed no significant differences in 
post hoc Friedman’s Test [24, 25], which meant ePlatton 
retained the predictive power of traditional data fusion 

Fig. 4  The promiscuity of ligand clusters and targets underlying the LCBN. a The histogram of ligand cluster size, b the target distribution of ligands 
and ligand clusters, c the ligand (cluster) distribution of targets, d the relationship between the average molecular weight of ligand clusters and the 
ligand cluster promiscuity, nodes are coloured by the number of the nearby nodes, i.e. node density
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methods while reducing the time of virtual screen and 
information retrieval (Fig. 7).

To evaluate the prediction ability of ePlatton, we 
extracted 13456 new strong interactions (Ki, Kd, EC50 
or IC50  <  10  μM) from the latest ChEMBL (v20) [11], 
used these compounds as queries to search the ePlat-
ton for similar ligand clusters and checked whether their 
interacted proteins appeared in the accumulated protein 
ranges of the 10 most similar ligand clusters. The number 
of hit interactions increased from top 1 to 10 (Fig. 8). The 
half (54 %) of total new interactions from ChEMBL (v20) 

were correctly predicted in the top 1 search result and 
correct ligand protein pairs from top 10 similarity rank 
accounted for 71  % of all the new interactions, which 
showed that the molecular similarity still dominated the 
way of designing new compound entities. The similar-
ity distribution of each rank was showed in the box plot 
(Fig. 9) and the median similarity of the top 1 was greater 
than other ranks. The median decreased from 1 to 10 and 
the range of similarity became broader.

Here we show two cases in the successful predic-
tions. The first example [26] designed and synthesized 
a series of 4-phenoxyquinoline derivatives containing 
pyridazinone moiety; six compounds that further exam-
ined showed the c-Met kinase activity in the single-digit 
μM range. The ePlatton search results included all the 
compound-MET interactions in the first two most simi-
lar ligand clusters and other possible interacted pro-
teins were KIT, KDR and FLT3 [for the detailed list, see 
Additional file 6]. These proteins play an essential role in 
cell survival and proliferation [from Function section of 
their UniProt annotations], which may contribute to the 
fact that the cytotoxicity of this series of compounds was 
against A549 cells [26].

Fig. 5  The ligand cluster number of HGNC gene family. The bar graph of non-redundant ligand clusters of members in each HGNC gene family, fifty 
families in descending order of the ligand cluster size

Table 1  Average AUC of  four methods and  the P value 
of post hoc Friedman’s Test

MAX 3NN MPS EXEMPLAR

Average AUC 0.938913333 0.936745381 0.915506762 0.937318571

P value MAX 3NN MPS EXEMPLAR

MAX

3NN 6.30E−001

MPS 7.52E−008 5.94E−005

EXEMPLAR 1.76E−001 8.37E−001 1.83E−003
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In the second example [27], all designed molecules 
interacted with EGFR, FGFR1 and ABL1 except one 
selectively targeted tubulin. All the non-selective inter-
actions were predicted by the most similar exemplar of 
CHEMBL56802 [for the detailed list, see Additional 
file 7]. This ligand cluster was also annotated by 114 drug 

adverse reactions, such as acute respiratory distress syn-
drome, flatulence and myalgia, which could be useful if 
these molecules were further used for drug development. 
The ePlatton also integrated the gene expression data, 
which could be helpful to deduce the degree of different 
tissues affected by the molecules that users interested.

Discussion
According to the nature of the object we are looking at 
there are three possible approaches to mine and dissect 
the protein–ligand interaction. The study can be focused 
on targets, bioactive ligands or target-ligand complexes. 
Recent progress in the ligand-based pharmacology 
opens new door for virtual screening of high-throughput 
screening data and predicting polypharmacology and 
adverse drug reactions [28]. Our method relied on ligand 
clusters, whose members possessed similar 2D struc-
tures, rather than the exact target-ligand binary relation-
ship [6] or similarity of functional ligand sets [7]. A key 
observation from our study was that although the topol-
ogy of LCBN and SBN differed, three independent meth-
ods partitioned proteins in both networks into nearly the 
same communities [for detailed list, see Additional file 3]. 
Actually, the threshold of the similarity for network 
drawing only affected the found communities a little. We 
clustered and compared the threshold LCBN and SBN to 
their corresponding integrate network; we found that the 
average normalized mutual information was 0.97.

We took targets, pathways, diseases, drug adverse 
reactions and ligand cluster range of each target into 
consideration in our website, ePlatton, which could offer 

Fig. 6  The box plot of AUC of four methods for ePlatton validation 
and comparison

Fig. 7  The percentage of search time reduced versus ligand set size from small to big
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the possibility to discern polypharmacology and negative 
drug reactions. The ePlatton could also be used to pre-
dict the target range of the compounds that users inter-
est as used in the validation section. Like some of the 
most common weaknesses in the ligand-based study and 
unlike the sequence-based method, the LCBN approach 
cannot include the protein which does not have relatively 
high-affinity ligands although its sequence is known.

Throughout the history, pharmaceutical and medical 
researchers have concentrated on a few target proteins 
sharing commonalities at the level of sequence and/or 
ligand. Nowadays, the progress of genomics and chemo-
informatics has made it possible to investigate the rela-
tionship and communication among large numbers of 
proteins in the sequence and ligand space. Our specific 
method could discern the ligand cluster-based organiza-
tion of targetable proteins in a panoramic view, which 
could not be easily achieved by studying only a few 
related ones. It could also provide valuable biological and 
chemical reference for the lead compound designing.

Methods
Protein sequence and ligand 2D structure
All the protein sequences and ligand 2D structures came 
from ChEMBL_19 data set. We filtered the data by the 

following conditions: (1) binding affinity value (Ki, Kd, EC50 
and IC50) was less than or equal to 10 μm. (2) the molecular 
weight of ligands was less than 800 Da, to exclude the pep-
tides and other huge molecules. (3) the length of the target 
protein sequence was more than 80, to avoid the short pro-
teins being highly similar to dozens of other proteins.

Protein similarity calculation
The sequence-based similarity was obtained by ClustalO 
(version 1.2.0) [14] with default parameters.

To calculate the ligand cluster-based similarity, we 
firstly converted the 2D structures of ligands to CDK [12] 
2048-bit fingerprints with the depth being 7. The Jac-
card similarity [10], which is the same as Tanimoto coef-
ficient (Tc) [29], of every pair of ligands was calculated by 
Numpy [30]. We used AP cluster (version 2009) [13] to 
analyse all ligand pairs, whose similarities were above 0.5, 
with the preference being 0. Then, we got 13,769 ligand 
clusters. We represented each protein by a bit vector 
whose length was the same as the number of the ligand 
clusters (13,769) and if a protein interacted with ligand(s) 
in ith ligand cluster, the ith bit in the vector would be 
1. In this way, we annotated the proteins by the ligand 
cluster(s) they interacted and the ligand cluster-based 
similarity of proteins was indicated by the Jaccard index.

Fig. 8  The number of accumulated hit interactions from top 1 to 10. The number of correctly predicted ligand–protein pairs increased from 7287 to 
9511. The total number of novel ChEMBL_20 interactions was 13456 as the dash line showed
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Networks
The node represented a protein and the edge represented 
the similarity of two proteins it linked. For the legibility 
of LCBN and SBN, we only displayed the edges whose 
similarities were above 0.25. The simplified networks dis-
cussed above were also called threshold networks. The 
perfused force directed algorithm was used for the layout 
of LCBN and SBN. The colour code indicated the HGNC 
gene family. The visualization of networks was achieved 
by Cytoscape [31] and gene family names were labelled 
by Inkscape.

Compare both networks
We used AP cluster [13], infoMap from igraph-python 
(version 0.7.0) [32] and MCL (version 12-068) [33] to find 
clusters in both integrate and threshold networks. We 
used the preference at 0 for AP cluster, default parame-
ters for infoMap and the inflation at 4.0 for MCL, other 
unmentioned parameters were the same as default. For 
different communities from each cluster method, we 
calculated the normalized mutual information among 
LCBN, SBN and HGNC gene family to compare the three 
methods.

ePlatton
We used Django and SQLite to set up ePlatton. The pro-
tein global sequence and ligand 2D structure search were 
supported by ClustalO and CDK. jQuery and Cytoscape.
js helped to achieve the frontend of ePlatton and the dis-
play of LCBN and SBN. Molecular pictures were gener-
ated by Open Babel [34].

ePlatton validation and predictive power
We used the open-source platform [35] to benchmark 
EXEMPLAR (i.e. ePlatton) and data fusion [22] methods 
(MAX, 3NN, MPS [21]) and 21 targets with more than 
30 actives from the directory of useful decoys (DUD) 
[23] were tested. For each target, 20 % random selected 
active ligands were used as training set and clustered 
with AP method as described above. The similarity 
of training ligands including exemplar ligands against 
remaining ligands were calculated. MAX, 3NN, MPS 
and EXEMPLAR similarity scores were calculated and 
ranked. Scikit-learn [36] and R [37] were used to calcu-
late AUC and P value of post hoc Friedman’s Test [24, 
25]. This simulated virtual screen was repeated 50 times 
per target.

Fig. 9  The box plot of query-exemplar similarity of each rank
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