
Gao et al. J Cheminform  (2016) 8:38 
DOI 10.1186/s13321-016-0149-z

RESEARCH ARTICLE 

bSiteFinder, an improved  
protein-binding sites prediction server  
based on structural alignment: more  
accurate and less time-consuming
Jun Gao1,2†, Qingchen Zhang1†, Min Liu2, Lixin Zhu3,4,5, Dingfeng Wu1, Zhiwei Cao1 and Ruixin Zhu1*

Abstract 

Motivation: Protein-binding sites prediction lays a foundation for functional annotation of protein and structure-
based drug design. As the number of available protein structures increases, structural alignment based algorithm 
becomes the dominant approach for protein-binding sites prediction. However, the present algorithms underutilize 
the ever increasing numbers of three-dimensional protein–ligand complex structures (bound protein), and it could be 
improved on the process of alignment, selection of templates and clustering of template. Herein, we built so far the 
largest database of bound templates with stringent quality control. And on this basis, bSiteFinder as a protein-binding 
sites prediction server was developed.

Results: By introducing Homology Indexing, Chain Length Indexing, Stability of Complex and Optimized Multiple-
Templates Clustering into our algorithm, the efficiency of our server has been significantly improved. Further, the 
accuracy was approximately 2–10 % higher than that of other algorithms for the test with either bound dataset or 
unbound dataset. For 210 bound dataset, bSiteFinder achieved high accuracies up to 94.8 % (MCC 0.95). For another 
48 bound/unbound dataset, bSiteFinder achieved high accuracies up to 93.8 % for bound proteins (MCC 0.95) and 
85.4 % for unbound proteins (MCC 0.72). Our bSiteFinder server is freely available at http://binfo.shmtu.edu.cn/bsite-
finder/, and the source code is provided at the methods page.

Conclusion: An online bSiteFinder server is freely available at http://binfo.shmtu.edu.cn/bsitefinder/. Our work lays 
a foundation for functional annotation of protein and structure-based drug design. With ever increasing numbers of 
three-dimensional protein–ligand complex structures, our server should be more accurate and less time-consuming.
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Background
Most biological processes involve the interaction of 
ligands with proteins. Functional characterization of 
ligand-binding sites of proteins is a key issue in under-
standing those biological processes [1–4]. In addition, 
identifying the location of protein-binding sites is a vital 
first step in structure-based drug design [5–8]. However, 

functional characterization of proteins through experi-
mental method is a labor intensive and time-consuming 
process. A computational tool to predict the functional 
binding sites in a protein is therefore of practical 
importance.

To date, a variety of computational methods have been 
developed for protein-binding sites prediction, which can 
be divided into four categories: geometry based meth-
ods [9–14], energy based methods [15, 16], alignment 
based methods [17–20] and other miscellaneous meth-
ods [21–23]. Alignment based methods can be further 
divided into sequence alignment based and structural 
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alignment based methods. Recently, increasing structural 
genomics projects have led to the exponential growth of 
the number of available protein structures. As a conse-
quence, structural alignment based methods exceeded 
other methods due to its more efficient and more accu-
rate performance.

In 1996, Lichtarge et al. [17] developed the first struc-
tural alignment based algorithm for protein-binding 
sites prediction, entitled evolutionary trace method (ET 
method). It is based on the extraction of functionally 
important residues from sequence conservation pat-
terns in homologous proteins, and on their mapping 
onto the protein surface to generate clusters identifying 
functional interfaces. In 2007, Brylinski and Skolnick 
developed a popular structural alignment method called 
FINDSITE [18]. For a given target sequence, FINDSITE 
identifies ligand-bound template structures from a set of 
distantly homologous proteins recognized by the PROS-
PECTOR_3 threading approach and superposes them 
onto the target’s structure using the TM-align structural 
alignment algorithm. Binding pockets are identified by 
the spatial clustering of the center of mass of template-
bound ligands that are subsequently ranked by the num-
ber of binding ligands. In 2009, Oh et al. [24] developed 
LEE, a two-stage template-based ligand binding site pre-
diction method, where templates are used first for pro-
tein 3D modeling and then for binding site prediction by 
structural clustering of ligand-containing templates to 
the predicted 3D model. Later in 2010, Wass et  al. [25] 
described a new method called 3DligandSite. Struc-
tures similar to the query are identified by using MAM-
MOTH [26] against a library of protein structures with 
bound ligands. The structural based alignment of the 
similar structures and the query superposes ligands onto 
the query structures. After filtering, the top 25 ligands 
are retained for analysis and further clustering. In 2012, 
another comparative approach called COFACTOR was 
proposed by Zhang group [19]. COFACTOR recognizes 
functional sites of protein–ligand interactions using low-
resolution protein structural models, based on a global-
to-local sequence and structural comparison algorithm. 
The major advantage of COFACTOR over the existing 
methods is the optimal combination of global and local 
structural comparisons for identifying protein-binding 
sites. But, the global comparison can be distracted by 
structural variations in the regions far away from the 
binding pockets; meanwhile the local comparison has 
a high false positive rate since the number of residues 
involved is too small. Later in 2013, Zhang group pub-
lished another structural alignment based algorithm, 
TM-SITE [20]. Different from COFACTOR, TM-SITE 
compares the structures of a subsequence from the first 
binding residue to the last binding residue (called SSFL) 

on the query and template proteins, which solve the 
problems of global-to-local structural comparison algo-
rithm. These methods provide us valuable choices to pre-
dict the binding sites. However, their performance needs 
to be improved for lack of accuracy or time-efficiency or 
both since the structural information of protein–ligand 
complexes (bound protein) are underutilized.

Herein, we built so far the largest database of bound 
templates with stringent quality control. And on this 
basis, Stability of Complex as a new criterion and Opti-
mized Multiple-Templates Clustering algorithm are 
introduced to improve the accuracy. Meanwhile, Homol-
ogy Indexing and Chain Length Indexing are used to 
accelerate the efficiency of the structural alignment. 
Finally, we presented a user friendly protein-binding 
sites prediction web server (bSiteFinder), at http://binfo.
shmtu.edu.cn/bsitefinder/.

Methods
Definitions of operations
Rules of five
The protein data in PDB database are filtered through the 
rules below:

1. The macromolecule type is protein, no DNA and 
RNA.

2. Experiment method is set to X-ray.
3. X-ray resolution is between 0 and 3.0.
4. Has free ligands = yes.
5. Sequence length is over 20.

Number of ligand atoms
In the process of building databases, which database a 
protein finally falls into depends on whether it contains 
ligands and whether these ligands have enough atoms. For 
this reason, ligands identification, which is judged by the 
rules mentioned below, plays a key role. Every HETATM 
residue is recognized through HET records from the 
header of PDB files. Notably, some of the residues are 
modified on normal chains, which are not counted as true 
ligands because of their present in the MODRES records. 
Hence, the selected ligands only come from HET records 
excluding MODRES ones. Water molecule is included 
in HETATM but not regarded as a ligand. Analyzing the 
data, we define that a ligand should possess 6 or more 
atoms as a basic rule to identify a ligand.

Stability of Complex
The binding site check criterion is using as the standard 
of judging the bound structure’s stability. Only if any one 
of atoms of the ligand has a distance within 4 Å from the 
geometry center of the calculated binding site, the struc-
ture of complex is considered to be stable.

http://binfo.shmtu.edu.cn/bsitefinder/
http://binfo.shmtu.edu.cn/bsitefinder/
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Homology Indexing
Homology Indexing is implemented by using SCOPe, 
version 2.03 [27]. First, a four-digit classification num-
ber is searched based on PDB ID and CHAIN ID of the 
query chain. After that, all the protein chains with the 
same classification number are obtained and used to con-
stitute the template database for subsequent structural 
alignment.

Chain Length Indexing
Only the chains, which have length difference with query 
chain less than 30  %, are used as candidates for subse-
quent structural alignment.

Structural alignment
The structural alignment between query and templates 
in bSiteFinder is implemented by using Combinatorial 
Extension (CE) algorithm, which is provided by Biojava 
[28]. Different from traditional dynamic programming 
algorithm and Monte Carlo algorithm, CE algorithm 
defines continuous residues in the sequence as aligned 
fragment pairs (AFPs), which is used in local alignment 
between query and template. Finally, the optimized align-
ment results are obtained by expanding or abandoning 
the local AFPs.

Optimized Multiple‑Templates Clustering
After structural alignment, template will be mapped 
to query. Then, the templates which meet the require-
ment of Stability of Complex are ranked according to 
the similarity with query chain, and ligands of the top 20 

templates at most will be picked out. After 20 times of 
structural alignments, all the ligands in templates will be 
mapped to the query. Further, these ligands are clustered 
into different clusters. The number of ligand geometric 
centers, which have a distance less than 3 Å from the cer-
tain ligand geometric center, is counted for each ligand. 
After that, the ligand with the largest number is defined 
as the center of the Top1 binding site (Fig. 1). Then, this 
ligand and all the other ligands within 3 Å are removed 
for searching the centers of the Top2 and Top3 binding 
site in the same way.

Detection of binding sites
On the condition that protein chains have ligands, we 
define all residues within the distance of 8 Å from ligands 
as the components of the binding site. On the condition 
that binding site is detected by doing structural align-
ment with templates, all residues within the distance of 
10 Å from mapped ligands are defined as the components 
of the binding site. It should be noted that if the bound 
proteins’ stabilities did not pass the evaluation of Stabil-
ity of Complex, the bound proteins would be treated as 
unbound proteins with original ligands removed.

Test and evaluation methods
For comparing with other binding site prediction algo-
rithms, two widespread adopted datasets from LIG-
SITEcsc [29] were used for testing our algorithm with 
the same criteria of evaluating the accuracy of binding 
site prediction. The first test set contained 210 proteins 
with ligands (bound dataset). At the suggestion of RCSB, 

Fig. 1 Workflow of Optimized Multiple-Templates Clustering. Template (b) is mapped to query (a) by structural alignment to form query-template 
complex (c). Then, the template chain will be removed, and the ligand will be retained (d). After 20 times of structural alignments, the ligands in 
templates will be mapped to the query (e). The number of ligand geometric centers, which have a distance less than 3 Å from the certain ligand 
geometric center, is counted for each ligand (f). The ligand with the largest number is defined as the center of the Top1 binding site (g)



Page 4 of 10Gao et al. J Cheminform  (2016) 8:38 

protein 1B6N was replaced by 1Z1H. The second test 
set contained 48 proteins with/without ligands (bound/
unbound dataset).

Here, the accuracy and Matthews Correlation Coef-
ficient (MCC) [30] were both used to evaluate our 
algorithm.

Accuracy
A widely accepted verification method [13] was used. For 
bound protein, if the protein–ligand’s stability has passed 
the evaluation of Stability of Complex, the accuracy is 
100  %. If the protein–ligand’s stability did not pass the 
evaluation of Stability of Complex, the original ligands of 
bound protein will be removed and in this situation, the 
bound protein will be regarded as unbound protein and 
may have a lower accuracy.

For unbound proteins, if the geometric center of a 
binding site has a distance within 4  Å from any one of 
the atoms of the predicted ligands, this binding site is 
regarded as a correctly predicted binding site. Otherwise, 
this binding site is regarded as an incorrectly predicted 
binding site.

MCC
Another evaluation index, MCC, was also used to eval-
uate the accuracy of binding site prediction. For each 
protein chain, all the residues were divided into four cate-
gories: TP: correctly predicted binding site residues; TN: 
correctly predicted nonbinding site residues; FP: incor-
rectly predicted as binding site residues; and FN: incor-
rectly predicted as nonbinding site residues. MCC scores 
are defined as:

For bound proteins that passed the evaluation of Stability 
of Complex, the MCC is 1. Otherwise, the bound proteins 
was regarded as unbound proteins and MCC would be 
lower than 1.

For unbound proteins, the structural alignment 
between query and template is implemented to map the 
ligands in bound proteins to the unbound proteins. Then, 
the mapped pseudo ligands were used to detect the bind-
ing site as describe in “Detection of Binding Sites”. To 
evaluate our methods, we divided the residues of query 
chains into residues of predicted binding site (Res-BS-
Pre) and residues of predicted non-binding site (Res-
NBS-Pre). At the same time, we also define residues of 
experimental binding site as Res-BS-Exp and residues of 
experimental non-binding site as Res-NBS-Exp accord-
ing to the original ligands of query chains. Therefore, 

(1)

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

in formula (1), TP is the intersection of Res-BS-Pre and 
Res-BS-Exp, and TN is the intersection of Res-NBS-Pre 
and Res-NBS-Exp, and FP is the intersection of Res-BS-
Pre and Res-NBS-Exp, and FN is the intersection of Res-
NBS-Pre and Res-BS-Exp.

Experimental
Create template database
Our algorithm will maximize the information of bound 
proteins. Herein, we built so far the largest database of 
bound templates from PDB database with stringent quality 
control. Figure 2 shows the workflow of creating template 
database, which include four steps as follow: (1) 97,591 
complex structures in PDB database (February 11, 2014) 
were filtered according to Rules of Five, and 62,487 com-
plex structures were obtained. (2) Proteins were divided 
into chains, and then the chains which are less than 20 
residues in length were removed. After that, 146,089 
chains were obtained. (3) Number of Ligand Atoms was 
employed to ensure that there is at least one ligand in the 
complex structures of each chain, and 117,823 chains were 
obtained. (4) Stability of Complex was employed to ensure 
that it forms a stable bound structure of each chain with its 
ligand. Finally, 101,315 chains were obtained for building 
the database of bound templates.

Workflow of binding sites detection
When a query protein is submitted by user for binding 
site prediction, it will be firstly divided into chains. After 
that, the prediction will be done for each chain. Figure 3 
shows the workflow of binding sites detection. Each pro-
tein chain will be processed by following steps:

1. Binding sites prediction of high quality bound protein 
(Part 1)

Detection of Binding Sites is employed for binding site 
detection, when the protein chains meet the requirement 
of Number of Ligand Atoms and Stability of Complex. 
Otherwise, enter the following process.

2. Binding sites prediction of unbound protein with 
bound templates of same Homology Indexing (Part 2)

If the query chain has a four-digit classification number 
in SCOPe and has bound template with the same Homol-
ogy Indexing in template database, the binding site of this 
query chain will be detected as the following procedure. 
First, structural alignments between query chain and 
templates will be done, and the top 20 bound templates 
which are the most similar to the query will be selected 
subsequently. The locations of ligands are detected 
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by mapping the ligands in templates to the query, and 
then the optimization of binding sites was following by 
using the new developed Optimized Multiple-Templates 

Clustering method. Finally, Detection of Binding Sites will 
be employed for binding site detection. Otherwise, enter 
the following process.

Fig. 2 Workflow of creating template database

Fig. 3 Workflow of binding sites detection. Each protein chain submitted would be processed successively by following steps: 1 Binding sites pre-
diction of high quality bound protein (Part 1), or enter the following process. 2 Binding sites prediction of unbound protein with bound templates 
of same Homology Indexing (Part 2), or enter the following process. 3 Binding sites prediction of unbound protein with bound templates of Chain 
Length Indexing (Part 3). Any protein chains submitted into our system could receive the results of binding sites via efficient computation
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3. Binding sites prediction of unbound protein with 
bound templates of Chain Length Indexing (Part 3)

If the query chain has no satisfactory homologous 
bound template, the binding site of this query chain will 
be detected as the following procedure. Chain Length 
Indexing will be employed to search the bound tem-
plates, which have difference with query chain less than 
30 % in length, in template database. Then enter the pro-
cess as the description above (Part 2 of “Workflow of 
binding sites detection”) with top 20 most similar bound 
templates. Any protein chains submitted into our sys-
tem could receive the results of binding sites via efficient 
computation.

Results and discussion
Performance of our algorithm and its comparison 
with others
Two widely adopted datasets including 210 bound and 
48 bound/unbound dataset [29] were used for testing our 
algorithm, and the results are shown in Tables  1 and 2. 
The accuracy of our algorithm is approximately 2–10  % 
higher than that of other algorithms for the test with 
either bound or unbound datasets. In addition, with size 
of the dataset increased, our algorithm exhibited even 
more advantage over others regarding accuracy (The 
accuracy differences between our algorithm and the sec-
ond highest algorithm in the Top1 increase from 2.4  % 
with 48 unbound dataset to 11.8  % with 210 unbound 
dataset). 

For bound chain (such as PDB ID: 5p2p, CHAIN ID: 
A), the binding site is composed of residues within 8  Å 
from the ligand (Fig.  4a). For unbound chain (such as 
PDB ID: 3p2p, CHAIN ID: A), unlike bound chain, the 

binding site is detected with the aid of templates (PDB 
ID: 1oxr, CHAIN ID: A). First, the ligand in template is 
mapped to unbound chain. Then the binding site is com-
posed of residues within 10 Å from the ligand (Fig. 4b). 
See Method part for details.

Table 1 Comparison of  the top1 and  top3 success rates 
for various methods using 210 bound structures

a The MCC scores of the Top1 and Top3 are 0.95 and 0.97 respectively with 210 
bound structures
b The success rates of these methods were taken from Xie and Hwang [32]

Method Top1a (%) Top3a (%)

bSiteFinder 94.8 95.7

LISEb 83 94

MPK2b 81 95

MPK1b 75 93

Q-SiteFinderb 70 90

LIGSITECSCb 75 –

LIGSITECSb 70 86

PASSb 51 80

SURFNETb 42 57

Table 2 Comparison of  the top1 and  top3 success rates 
for various methods using 48 bound/unbound structures

a The MCC scores of the Top1 and Top3 are 0.95 and 0.97 respectively with 48 
bound structures
b The MCC scores of the Top1 and Top3 are 0.72 and 0.75 respectively with 48 
unbound structures
c The success rates of these methods were taken from Xie and Hwang [32]

Method Bounda Unboundb

Top1 (%) Top3 (%) Top1 (%) Top3 (%)

bSiteFinder 93.8 98.7 85.4 95.8

LISEc 92 96 81 92

MPK2c 85 96 80 94

VICEc 85 94 83 90

MPK1c 83 96 75 90

DoGSitec 83 92 71 92

Fpocketc 83 92 69 94

LIGSITECSc 81 92 71 85

LIGSITECSCc 79 – 71 –

MSPocketc 77 94 75 88

POCASAc 77 90 75 92

Q-SiteFinderc 75 90 52 75

PocketPickerc 72 85 69 85

CASTc 67 83 58 75

PASSc 63 81 60 71

SURFNETc 54 78 52 75

Fig. 4 a Binding site of bound chain (PDB ID: 5p2p, CHAIN ID: A). 
The binding site is composed of residues (green) within 8 Å from the 
ligand (red). b Binding site of unbound chain (PDB ID: 3p2p, CHAIN ID: 
A, blue). The detection of binding site is based on the bound template 
(PDB ID: 1oxr, CHAIN ID: A, black) by mapping the ligand of template 
into unbound chain. And the binding site is composed of residues 
(green) within 10 Å from the ligand (red), which is different from 8 Å 
for bound chain prediction
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Indexed alignment
Since there are still lots of protein chains have no satisfac-
tory bound structures, bound templates is borrowed for 
detecting the binding sites in this situation. Our templates 
database contains 101,315 bound templates. It would con-
sume a large amount of computation for predicting the 
binding site if structural alignments go through all the 
chains in the database. Thus, to improve the efficiency of 
our algorithm, Homology Indexing is introduced and then 
the time-consuming structural alignment will be limited 
only among homologous proteins. After building Homol-
ogy Indexing for all 101,315 chains in template database 
by using SCOPe [27], 4254 protein classes are obtained. 
It means that only about 24 (101,315/4254) bound tem-
plates are needed to do the time-consuming structural 
alignment with the query per prediction. This would sig-
nificantly reduce the computation time.

Table  3 shows the alignment frequency between tem-
plates and the query from the 48 unbound dataset after 

Homology Indexing is used. Without Homology Index-
ing, 48 unbound dataset should be aligned with each of 
chains in template database, which means that there are 
48  ×  101,315 time-consuming structural alignments 
needed to be done. But, with the Homology Indexing 
introduced, it can be reduced to 25,127 structural align-
ments, which only account for only 0.5 % of that without 
Homology Indexing. It’s worth noting that alignment fre-
quencies, in Table 3, reach hundreds or even thousands in 
practical, which may be due to the uneven distribution of 
different protein families in template database at present.

Although the efficiency of binding-sites prediction for 
unbound chains has been significantly increased benefiting 
from Homology Indexing, there are still some chains of no 
satisfactory homologous template structures, such as PDB 
ID: 4h12, CHAIN ID: A. For this kind of protein chains, we 
further introduce Chain Length Indexing to reduce the num-
ber of time-consuming structural alignments. Table 4 shows 
the alignment frequency between templates and the query 

Table 3 Frequency of structural alignment with 48 unbound chains using Homology Indexing

PDB ID
CHAIN ID

Alignment  
frequency

PDB ID
CHAIN ID

Alignment  
frequency

PDB ID
CHAIN ID

Alignment  
frequency

PDB ID
CHAIN ID

Alignment 
frequency

3tmsA 535 1ifbA 171 1cgeA 273 1bbsA 747

8adhA 424 3ptnA 1181 1hsiB 1203 1stnA 144

1hxfH 1326 1ypiA 170 1a4jB 489 1ptsA 268

2fbpA 269 5dfrA 463 1imeA 173 2ctbA 106

1gcgA 169 3phvA 1153 1nnaA 416 2cbaA 522

1helA 203 2ctvA 625 1ahcA 188 1krnA 6

1npcA 154 5cpaA 106 2tgaA 1176 2silA 377

1esaA 1246 1a6uH 397 4ca2A 523 1l3fE 156

1brqA 344 1qifA 567 1pdyA 56 1chgA 1160

8ratA 173 3appA 753 1phcA 873 6insE 124

1swbA 269 1djbA 620 1psnA 744 3p2pA 209

1ulaA 724 1byaA 78 3lckA 3131 7ratA 167

Table 4 Frequency of structural alignment in 20 no homologous template chains with Chain Length Indexing involved

Query  
chain

Query  
length

Alignment  
frequency

Percentage of  
sequences passed  
Chain Length  
Indexing (%)

Query  
chain

Query  
length

Alignment  
frequency

Percentage of  
sequences passed 
Chain Length 
Indexing (%)

4ggbA 348 39,458 38.9 1wakA 353 39,014 38.5

2yzvA 286 39,291 38.8 4ff5A 227 31,362 31.0

4iezA 186 22,882 22.6 4fk9A 314 40,446 39.9

3ii7A 288 39,614 39.1 1ujcA 156 17,109 16.9

3a3jA 344 39,782 39.3 3ianA 319 40,000 39.5

3chlA 315 40,325 39.8 3rloA 196 25,455 25.1

2cf5A 352 39,192 38.7 3mfcA 187 23,369 23.1

2iq1A 257 36,141 35.7 3dgtA 278 38,641 38.1

1wy0A 327 40,200 39.7 2dh6A 331 40,195 39.7

2y7bA 134 14,998 14.8 1w4sA 146 16,265 16.1
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from 20 dataset of no appropriate homologous templates 
after Chain Length Indexing is used. Without Chain Length 
Indexing, the 20 dataset of no homologous template chains 
should be aligned with each of chains in template database, 
which mean that there are 20 ×  101,315 time-consuming 
structural alignments needed to be done. But, with the Chain 
Length Indexing introduced, it can be reduced to 663,739 
structural alignments, which only account for 32.8 % of the 
number without Chain Length Indexing (Table 4).

It would be argued that the best template will be 
excluded by the use of Chain Length Indexing. However, 
the result indicates that, with or without Chain Length 
Indexing, there are no significant differences in the length 
between templates (Table 5).

Stability of Complex
Examining the bound chain structures in PDB database, 
it is observed that ligands do not always have a stable 
binding with protein chains at binding site, such as PDB 
ID: 2j22, CHAIN ID: A (Fig.  5). For this kind of bound 
structures, binding sites could not be computed directly 
based on their ligands. Thus, Stability of Complex is 
introduced into our algorithm to avoid these situations.

Looking for similar templates by structural alignments 
is needed for unbound chains which have no ligands to 
compute the binding site. In the process of structural 
alignment and ligand mapping successively, ligand in 

template may not have a stable bind with unbound chain 
(Fig.  6a, b). Likewise, Stability of Complex is employed 
here to decide whether ligand from template and 
unbound chain can form a new stable bound structure.

Similarly, Stability of Complex is introduced to build a 
template database (see details in Fig.  2), which reduced 
the number of bound structures from 117,823 to 101,315 
with 14  % structures removed. Not only improved the 
quality of template database, this operation also reduced 
the number of time-consuming structural alignments.

Table 5 Top1 template for 20 no homologous template chains and their length obtained without Chain Length Indexing

Query  
chain

Query  
length

Template  
chain

Template  
length

Template chain  
(length constrained)

Template 
length

3mq1F 100 3mq1A 101 3mq1A 101

4kh0B 150 4kgvB 145 4kgvB 145

4fzbO 200 4fzbK 201 4fzbK 201

3ujoC 250 3ujoD 250 3ujoD 250

3zq6A 300 3zq6C 284 3zq6C 284

3mk6B 351 4ehtB 260 4ehtB 260

2q14B 400 2q14H 398 2q14H 398

2yg4B 450 2yg3A 449 2yg3A 449

4k3tA 498 4k3tB 498 4k3tB 498

4bthB 546 2wybB 546 2wybB 546

4mfdC 595 4jx5A 596 4jx5A 596

3szgA 650 3sytC 652 3sytC 652

3alaF 700 3alaE 701 3alaE 701

3w3lA 751 3w3lB 751 3w3lB 751

3lq4A 801 1rp7A 801 1rp7.A 801

3zhuD 852 2yidD 852 2yidD 852

2wyhB 891 2f7oA 1014 2f7oA 1014

2okxB 954 2okxA 954 2okxA 954

2xt6B 989 2xt6A 1055 2xt6A 1055

4dx5A 1044 2j8sA 1044 2j8sA 1044

Fig. 5 Unstable bound structure of ligand (GOL, red) and protein 
chain (PDB ID: 2j22, CHAIN ID: A, blue) at binding site
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An Optimized Multiple‑Templates Clustering method
Similar to FINDSITE [31], 3DLigandSite [25] and 
COFACTER [19], the prediction accuracy of our algorithm 
is improved by Optimized Multiple-Templates Clustering. 
However, in other works, the cluster number is required in 
previous algorithms, which actually could not be obtained 
before computing. In addition, the distances between 
ligands in each cluster have no reasonable physical mean-
ing. In our algorithm, this deficiency is overcome by defin-
ing a new constraint, which restrict that the distances 
between geometric centers of all the ligands (for one bind-
ing site) in the same cluster should be less than a certain 
threshold (cluster radius). Ligands in multiple templates 
could be clustered automatically following the constraint 
with reasonable physical meaning, and there has no need 
to estimate cluster number before clustering.

Considering the space complexity of bound structure, 
cluster radius to be used is optimized based on test set. 
For 48 unbound dataset, threshold is set from 1.0 to 8.0 Å 
to compute the accuracy of the Top1 and Top3. Table 6 
shows the accuracy computed with different cluster 

radius, and the accuracies of the Top1 range from 72.3 
to 85.4 %. It’s worth noting that the accuracy of our algo-
rithm with any cluster radius is higher than that of other 
algorithms (Tables 2, 6).

Result in Table 6 indicates that the Top1 and Top3 have 
highest prediction accuracies with 48 unbound dataset, 
when cluster radius is set to 3.0 Å. Thus, 3.0 Å is set as the 
default parameter by bSiteFinder in Optimized Multiple- 
Templates Clustering.

Conclusions
bSiteFinder as a protein-binding sites prediction server 
was developed based on the largest database of bound 
templates so far with stringent quality control. Each pro-
tein chain submitted would be processed by following 
steps: (1) Binding sites prediction of high quality bound 
protein; (2) Binding sites prediction of unbound protein 
with bound templates of same Homology Indexing; (3) 
Binding sites prediction of unbound protein with bound 
templates of Chain Length Indexing. Any protein chain 
submitted could receive the results of binding sites via 
efficient computation. By introducing Homology Index-
ing, Chain Length Indexing, Stability of Complex and 
Optimized Multiple-Templates Clustering into our 
algorithm, the efficiency of our server have been signifi-
cantly improved. What’s more, the accuracy was approxi-
mately 2–10  % higher than that of other algorithms for 
the test with either bound dataset or unbound dataset. 
For 210 bound dataset, bSiteFinder achieved high accu-
racies up to 94.8 % (MCC 0.95). For another 48 bound/
unbound dataset, bSiteFinder achieved high accuracies 
up to 93.8 % for bound proteins (MCC 0.95) and 85.4 % 

Fig. 6 a Unbound chain (PDB ID: 1bbs, CHAIN ID: A, blue) and related appropriate template (PDB ID: 1hrn, CHAIN ID: B, yellow). After mapping the 
ligand (03D, red) in template to unbound chain, a new stable bound structure is formed with the tightly binding between the ligand and unbound 
chain. The top 20 templates at most ranked according to the similarity would be subsequently clustered. b Unbound chain (PDB ID: 1bbs, CHAIN 
ID: A, blue) and related appropriate template (PDB ID: 3g6z, CHAIN ID: A, yellow). After mapping the ligand (NAG, red) in template to unbound chain, 
a new stable bound structure could not be formed. The reason is that there are more residues (see the red circle) in template than unbound chain 
which have a close connection with the ligand

Table 6 Comparison of  prediction accuracies using Opti-
mized Multiple-Templates Clustering with different cluster 
radius with 48 unbound dataset

Threshold (Å) Top1 Top3 Threshold (Å) Top1 Top3

1 0.792 0.958 5 0.854 0.938

2 0.837 0.958 6 0.792 0.918

3 0.854 0.958 7 0.723 0.867

4 0.853 0.938 8 0.754 0.876
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for unbound proteins (MCC 0.72). An online bSiteFinder 
server is freely available at http://binfo.shmtu.edu.cn/
bsitefinder/, and the source code is provided at the meth-
ods page. Our work lays a foundation for functional 
annotation of protein and structure-based drug design. 
With ever increasing numbers of three-dimensional pro-
tein–ligand complex structures, our server should be 
more accurate and less time-consuming.
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