
Hanson J Cheminform (2016) 8:50
DOI 10.1186/s13321-016-0160-4

SOFTWARE

Jmol SMILES and Jmol SMARTS:
specifications and applications
Robert M. Hanson*

Abstract

Background: SMILES and SMARTS are two well-defined structure matching languages that have gained wide use
in cheminformatics. Jmol is a widely used open-source molecular visualization and analysis tool written in Java and
implemented in both Java and JavaScript. Over the past 10 years, from 2007 to 2016, work on Jmol has included
the development of dialects of SMILES and SMARTS that incorporate novel aspects that allow new and powerful
applications.

Results: The specifications of “Jmol SMILES” and “Jmol SMARTS” are described. The dialects most closely resemble
OpenSMILES and OpenSMARTS. Jmol SMILES is a superset of OpenSMILES, allowing a freer format, including whites-
pace and comments, the addition of “processing directives” that modify the meaning of certain aspects of SMILES
processing such as aromaticity and stereochemistry, a more extensive treatment of stereochemistry, and several
minor additions. Jmol SMARTS similarly adds these same modifications to OpenSMARTS, but also adds a number of
additional “primitives” and elements of syntax tuned to matching 3D molecular structures and selecting their atoms.
The result is an expansion of the capabilities of SMILES and SMARTS primarily for use in 3D molecular analysis, allow-
ing a broader range of matching involving any combination of 3D molecular structures, SMILES strings, and SMARTS
patterns. While developed specifically for Jmol, these dialects of SMILES and SMARTS are independent of the Jmol
application itself.

Conclusions: Jmol SMILES and Jmol SMARTS add value to standard SMILES and SMARTS. Together they have proven
exceptionally capable in extracting valuable information from 3D structural models, as demonstrated in Jmol. Capa-
bilities in Jmol enabled by Jmol SMILES and Jmol SMARTS include efficient MMFF94 atom typing, conformational
identification, SMILES comparisons without canonicalization, identification of stereochemical relationships, quantita-
tive comparison of 3D structures from different sources (including differences in Kekulization), conformational flexible
fitting, and atom mapping used to synchronize interactive displays of 2D structures, 3D structures, and spectral cor-
relations, where data are being drawn from multiple sources.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The Simplified Molecular-Input Line-Entry System
(SMILES) [1–3] and SMILES Arbitrary Target Specifi-
cation (SMARTS) [4, 5] have been of tremendous value
in the area of cheminformatics. Developed in the late
1980s, these languages have found wide application, par-
ticularly in relation to small primarily organic molecules.
In addition, SMILES has been extended in the form of
CHUCKLES [6] and CHORTLES [7] (an extension of

CHUCKLES), both for biopolymers, and CurlySMILES
(an annotated version of SMILES) [8]. Alternatives to
SMARTS-based molecular querying include Sybyl Line
Notation (SLN) [9, 10], which itself is an adaption of
SMILES, the relatively underdeveloped Molecular Query
Language (MQL) [11], and the XML-based Chemical
Subgraphs and Reactions Markup Language (CSRML)
[12]. And certainly programs such as Jmol [13], PyMOL
[14], VMD [15], and Chimera [16] all have some sort of
native selection language. Some of these languages have
very powerful methods of matching molecular structures
or substructures with query criteria.

Open Access

*Correspondence: hansonr@stolaf.edu
Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield,
MN, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-016-0160-4&domain=pdf

Page 2 of 20Hanson J Cheminform (2016) 8:50

This article focuses on the development of SMILES
and SMARTS dialects that can be used specifically in the
context of a 3D molecular visualization environment to
answer not only the typical questions such as whether
two structures and/or SMILES strings match or whether
a particular 3D structure and/or SMILES string contain
some particular 3D substructure (practical examples 1
and 2, below), but also more challenging questions (prac-
tical examples 3–8, below) such as:

 • Given two 3D structures, what is their isomeric rela-
tionship?

 • Given two 3D structures from two different sources,
how quantitatively similar are they?

 • How can I align two 3D models in order to visualize
their similarity?

 • What would I need to do to the given conformation
of Structure A to match it conformationally with
Structure B? or with some substructure within B?

 • Given a 3D structure, what is its conformation? For
example, if it is a cyclohexane, is it in the chair or
boat form? Are substituents axial or equatorial?

 • How can I correlate 2D and 3D chemical structures
from different sources? For example, how can I cor-
relate a given 2D or 3D structure with a simulated
NMR spectrum?

In this article I introduce adaptations to SMILES and
SMARTS that address all of these questions, allowing
them to be answered immediately and definitively. In the
case of on-line browser-based applications, these answers
can be obtained completely within the standard browser
client, without access to external dedicated cheminfor-
matics services. While the development of Jmol SMILES
and Jmol SMARTS was—not surprisingly—Jmol, it is
important to emphasize that nothing that is presented
here is limited to use in Jmol. All of the additions to
SMILES and SMARTS presented are simple and straight-
forward. The success of implementing Jmol SMILES and
Jmol SMARTS within Jmol simply provides an example
of the continued power of SMILES and SMARTS in the
cheminformatics open-source community.

Implementation
The context for this work is Jmol, a widely used open-
source community-driven program for the visualization
and analysis of molecular structure [12]. Jmol has been
used in a broad range of contexts, including small organic
and inorganic molecules, biomolecules, and crystallo-
graphic structures crossing the boundaries of biology,
chemistry, physics, and materials science. The Jmol appli-
cation is written in Java and implemented (in parallel) in
both Java and JavaScript. It is available in three formats:

as a stand-alone desk-top or batch-driven Java program,
a Java applet, and an HTML5 JavaScript-only equivalent
(JSmol). The reference implementation for this article is
Jmol 14.6.1_2016.07.11.

The dialects of SMILES and SMARTS implemented here
are referred to as “Jmol SMILES” and “Jmol SMARTS”
respectively, but there is nothing specific to Jmol in those
descriptions. As such, Jmol SMILES and Jmol SMARTS
could be implemented if desired in any 3D molecular vis-
ualization platform, such as PyMOL, VMD, or Chimera.
Jmol SMILES most closely resembles OpenSMILES [3],
while Jmol SMARTS is based on OpenSMARTS [5]. Jmol
SMILES is a superset of OpenSMILES, allowing a freer
format, with optional comments and whitespace, optional
“processing directives” that specify the meaning of cer-
tain aspects of SMILES processing such as aromaticity, a
more complete treatment of stereochemistry, and several
other minor additions. Jmol SMARTS similarly adds these
same modifications to OpenSMARTS, as well as several
additional “primitives” and elements of syntax specifically
tuned to the investigation of 3D structural models.

To keep this in perspective, imagine that we have before
us a single molecular structure. Perhaps it is a structure
loaded into JSmol on a web page, perhaps from a stu-
dent drawing a 2D structure with an editor. The devel-
oper of the page may not have any a priori information
about what structure is present. Did the student draw a
ketone (as was requested, perhaps)? Did they properly
identify the diene and dienophile in a Diels–Alder reac-
tion? These are the sorts of questions that Jmol is capa-
ble of investigating, and for which SMILES and SMARTS
matching can be extremely valuable. In addition, we
will see that the real power in the use of SMILES and
SMARTS in a program such as Jmol can be behind the
scenes, totally hidden from the user, powering the func-
tionality that to the user appears simple, nearly instanta-
neous, and possibly almost magical.

To understand the significance behind the develop-
ment of Jmol SMILES and Jmol SMARTS (as opposed to
just using standard versions of such), it is important to
understand a little about how Jmol works. When load-
ing chemical structures, Jmol creates a linear array of
N atoms starting with index 0 and going through index
N − 1. These atoms may all represent one model, where a
“model” could be a single protein structure, or an organic
molecule, or a crystal structure. Thus, a “model” in Jmol
is a sequential set of atoms. When there are multiple
models, they might be from a single source (an exter-
nal database or a locally saved structure), or they may
be from different sources (one from PubChem [17],
the other from NCI/CADD [18]); they may be multiple
models from the loading of a single file or several files;
one might be drawn by a student using a web-based 2D

Page 3 of 20Hanson J Cheminform (2016) 8:50

drawing app; the other a 3D reference the student may or
may not have access to). Whatever the case, we are inter-
ested in answering questions that correlate the given 3D
representation of the model with one or more other rep-
resentations—perhaps a SMILES string, a SMARTS pat-
tern, a 2D structural model, or another 3D model.

While this paper is not meant to be a Jmol tutorial, some
explanation of the Jmol examples is in order. Notation
such as {2.1} in the tables and discussion below refers to
a model—in this case, “the atoms associated with the first
model in the second file loaded.” Notation ({0:24}) refers
to the first 25 atoms in Jmol’s atom array. ({0 5}) refers to
two selected atoms. Words in CAPITALS such as LOAD,
SELECT, PRINT, and SHOW, are Jmol command
tokens; words in lower case followed by parentheses,
such as search(…), smiles(…), compare(…), and find(…)
are Jmol functions. This capitalization is just a conven-
tion for this paper; capitalization in Jmol for commands
tokens, variable names, and function name is not signifi-
cant. So SELECT {2.1} selects all atoms in the first model
of the second file loaded, as does select {2.1}. Functions
smiles(…) and search(…) are Jmol functions specifically
requesting SMILES and SMARTS searches, respec-
tively. For example, the command SELECT search(“a”)
selects all aromatic atoms, and the command SELECT
on search(“a”) highlights them. Some commands, such
as search(…), smiles(…), and find(…) can be applied to
atom sets in Jmol math expressions. For example, car-
bonyl = {1.1}.search(“C=O”), after which the variable
carbonyl can be used in a SELECT command: SELECT
@carbonyl. The find(…) command has broad utility, but
in this context we will see it used for comparing any com-
bination of 3D model and/or string data using SMILES
or SMARTS. Thus, x = {1.1}.find(“SMARTS”,“a”)
is synonymous with x = {1.1}.search(“a”), and also
we can have {1.1}.find(“SMILES”,“C(C)OCC”),
“CCOCC”.find(“SMARTS”,“COC”), and “CCOCC”.
find(“SMILES”,“C(C)OCC”). The commands SHOW
SMILES and PRINT {molecule=1}.find(“SMILES”)
display SMILES strings—the first for the current selec-
tion; the second for the first molecule (in a model with
more than one molecule).

Jmol SMILES (Tables 1–3)
In terms of SMILES for small molecules, Jmol’s imple-
mentation is a superset of OpenSMILES (Table 1). Thus,
all valid OpenSMILES strings are also valid Jmol SMILES
strings. All of the basic aspects of OpenSMILES are part
of Jmol SMILES, including:

 • Allowed unbracketed element symbols include B, C,
N, O, P, S, F, Cl, Br, and I. Jmol SMILES adds H to this
list of allowed unbracketed atoms.

 • Bracketed atom notation adheres to the required
ordering [<mass>symbol<stereo><hcount><charge>
<:class>], where <mass> is an optional atomic mass,
symbol is an element symbol or “*” (unspecified
atom, with unspecified mass), <stereo> is an optional
stereochemical isomer descriptor given in Table 2,
<hcount> is an optional implicit hydrogen atom
count, <charge> is an optional formal charge in the
form (−1, +1, −2, +2, etc.) or (–, +, – –, ++, etc.),
and <:class> is an optional non-negative integer pre-
ceded by a colon.

 • Possible aromatic elements, indicated in lower case,
include b, c, n, o, p, s, as, and se. Depending upon the
directive, however, any element other than hydrogen
may be allowed to be aromatic. This set is specific to
/open/ with or without /strict/.

 • Connections (indicated as a single digit 0–9 or “%”
followed by a two-digit number) with their optional
bond type preceding them, must follow bracketed
or unbracketed atom symbols immediately. Connec-
tions may span no-bond indicators (“.”). Jmol SMILES
expands this to allow any positive number to be used
as a connection number.

 • Branches, indicated in parentheses, follow connec-
tions, with their optional bond type as the first char-
acter after the opening parenthesis.

 • Bond types include -, =, # (triple), $ (quadruple), “:”
(colon; aromatic, never significant), and “.” (period,
indicating no connection), as well as the cis/trans
double-bond stereochemical indicators/, and \. Single
bonds between aromatic atoms indicate biaryl con-
nections.

Jmol SMILES adds several more features as well, as
shown in Tables 1, 2 and 3. These include more flexible
formatting, processing “directives”, the atomic symbol Xx
(used in quantum mechanics computational programs to
indicate a reference point that is not part of the chemi-
cal structure), unlimited connection numbers, and more
extensive handling of stereochemistry, including ste-
reochemical designations for odd- and even-cumulenes,
imines, and carbodiimides, as well as trigonal pyramidal,
T-shaped, and see-saw molecular shapes. The bond nota-
tions ^nm- and ^^nm- indicate atropisomerism.

Jmol SMILES general additions (Table 1)
In terms of formatting, the only difference is that Jmol
SMILES allows for comments and whitespace. Whites-
pace in Jmol SMILES simply allows more flexibility and
a more human-readable string; comments allow anno-
tation of the created strings with information about the
program used to generate it or whatever is relevant to
the designer of the system. In addition, Jmol SMILES

Page 4 of 20Hanson J Cheminform (2016) 8:50

includes an optional prefix, set off by matching forward
slash characters, that gives directives to a processor that
specify how the SMILES string is to be interpreted (see
below). It is simple enough to convert these annotated
Jmol SMILES strings to more standard SMILES. One
simply strips out the directives, comments, and white
space. Jmol itself simply strips out all comments in a pre-
processing step and ignores all whitespace, as there is no
context in Jmol SMILES where whitespace is relevant.

Comments in Jmol SMILES are set off as //* … *//. Their
utility is illustrated with a simple example. The OpenS-
MILES representation of caffeine, from the Jmol com-
mands LOAD $caffeine; SHOW SMILES/open is [n]1(C)
c(=O)c2c3[n](C)c1(=O).[n]2(C)c[n]3. While useful, per-
haps, what we are missing is a clear 1:1 correlation between
atoms in our structure and atoms in the SMILES string. If
instead, one issues in Jmol SHOW SMILES/open/atom-
Comments, one gets the result in Fig. 1. The comments
allow us to quickly correlate specific atoms in the structure
with specific atoms in the SMILES string. We can see that
the sequence N1–C2–C13–O14–C12–C7–N5–C6–C3–
O4 is working its way clockwise around the six-membered
ring, and N10–C11–C9–N8 are the added four atoms
forming the five-membered ring, completing the structure.

The other additions shown in Table 1 simply broaden
the range of applications of SMILES. Jmol SMILES allows
for “dummy atoms” such as those sometimes found in
quantum mechanics calculations to be introduced as
[Xx]. They have atom number 0 and match only [Xx] and
[#0], not “any atom.” The %(n) syntax allows connection
numbers greater than 99. While having 100 open con-
nections may seem impossible, and using large numbers
is certainly not recommended in general, this feature is
included at this time because it is of use in extensions

of Jmol SMILES to be described in a future publication.
Jmol SMILES allows for the option of more atoms being
aromatic, for example when an aromaticity model does
not involve bonding analysis or electron counting.

Finally, by allowing for double bonds between aromatic
atoms, we can specify that double bonds in the pattern must
also be present in the model or SMILES string being com-
pared. That is, a successful match requires a specified Kekulé
form of an aromatic system. It can be used to check to see
if models from two different sources have the same Kekulé
form. For example, 2-methylpyridine models retrieved from
NCI/CADD and PubChem have different Kekulé forms.
We need aromaticity models to compare them, but we still
might want to distinguish them. The Jmol SMILES string
[n]1ccccc1(C) will match both, but [n]1=cc=cc=c1(C) will
match only the one from PubChem.

Jmol SMILES stereochemistry (Tables 2, 3)
Jmol SMILES fully implements all OpenSMILES ste-
reochemistry designations, including the restriction that
double-bond designations / and \ must be matched. In
addition, Jmol SMILES straightforwardly expands cis/
trans double bond stereochemistry to cover even-num-
bered atom cumulenes, imines, and immonium ions.
Similarly, Jmol SMILES extends standard allenic stereo-
chemistry to odd-numbered cumulenes and carbodiim-
ides. Jmol SMILES supplements tetrahedral (TH), square
planar (SP), trigonal bipyramidal (TB), and octahedral
(OH) stereochemistry notations with notations for trigo-
nal pyramidal (TP, covering chiral phosphines and sulfox-
ides, for example), T-shaped stereochemistry (TS), and
seesaw (SS). Finally, Jmol SMILES adds the single-bond
stereochemistry designations ^nm- and ^^nm- to indi-
cate atropisomerism. Examples of Jmol SMILES notation

Table 1 Basic Jmol SMILES additions

 In the first column, a indicates result may depend upon application; + indicates additions to OpenSMILES

Note Notation Meaning Example Explanation

a+ //*….*// Comment //* prod. by Jmol *// Optional; application-dependent; no general function; removal does not
affect processing

a+ <whitespace> Allowed for formatting Optional use of whitespace; removal does not affect processing of Jmol
SMILES (however there may be aspects of Jmol SMARTS that require
whitespace, these are application-dependent).

a+ /…../ Processing directive /strict/c1cccccc1 Optional; if present, must precede molecule description; see discussion and
Table 3

+ [Xx] Dummy atom [Xx] The atomic symbol “Xx” represents a “dummy” atom that is present but not
part of the actual chemical structure

+ <lower-case
symbol>

Aromatic atoms c1cocc1 Furan
Any atom other than hydrogen may be indicated as aromatic. Note that

only b, c, n, o, p, si, and se are allowed to be aromatic using the processing
directives/open/or/strict/(see below).

+ %(n) Unlimited connectivity C%(102)CCC%(102) Any non-negative number

+ a=a Aromatic double bond c1cc(O)=c(O)cc1 A specific double bond Kekulization, but still aromatic

Page 5 of 20Hanson J Cheminform (2016) 8:50

for imines, carbodiimides, phosphines, and biaryls are
given in Table 3.

A reader with knowledge of organic chemistry R/S ste-
reochemical nomenclature will find a familiar pattern
in these explanations, namely that @ generally involves

putting an atom in the back and reading the remain-
ing atoms clockwise, in sequential order of left to right.
Thus, if the first atom is the lowest priority atom (often
H), and the remaining atoms are listed from highest to
lowest—for example, [C@H](Br)(CC)(C)—then @ is “R”

Table 2 Stereochemical aspects of Jmol SMILES

Page 6 of 20Hanson J Cheminform (2016) 8:50

(H in back; read left-to-right highest to lowest), while
@@ is “S”. Readers more familiar with standard SMILES
explanations of this notation or like the idea that the “at”

symbol has an inherent anticlockwise sense to it, may
wish to replace “front” with “back” and “clockwise” with
“anticlockwise” with no change in meaning.

Table 2 continued

In the first column, absence of a mark indicates same as OpenSMILES; + indicates additions to OpenSMILES

Page 7 of 20Hanson J Cheminform (2016) 8:50

Jmol SMILES directives (Tables 4, 5)
Jmol SMILES input and output can be configured for
several different nuanced dialects of SMILES. This is
done by prefixing a search with directives marked off
with slash marks (Table 4). These directives are not case-
sensitive. Thus, /noaromatic/ and /NoAromatic/ both
mean the same thing. Multiple directives may be placed
between slash marks. No separation is required, but
some sort of separator is recommended—for example,
/noAromatic,noStereo/. Applications may add their
own application-specific directives.

The Jmol SMILES directives /open/ and /strict/ relate
primarily to the aromaticity model assumed in the
SMILES string that is to be processed by the applica-
tion’s SMILES matcher. This is important, because dif-
ferent SMILES generators and parsers have different

aromaticity models. These directives allow appropriate
interpretation of SMILES using their original models.
Examples of differences in these models are shown in
Table 5. The first of these, /open/, uses the OpenS-
MILES definition of aromaticity, which involves a ver-
sion of the Hückel 4n + 2 rule that allows for inclusion
of ring atoms doubly bonded to acyclic atoms, provided
those atoms are not more electronegative than carbon.
The /strict/ directive, which is the default model for
Jmol 14.6, goes one step further, applying a stricter
(organic chemist’s) definition of aromaticity, both
requiring three-dimensional planarity1 and also not
allowing double bonds to exocyclic atoms. Within this
model, 3,6-dimethylidenecyclohexa-1,4-diene and qui-
none are nonaromatic because they are not cyclic pi
systems, cyclobutadiene is nonaromatic because is not
4n + 2, and 1-oxothiophene is nonaromatic because it is
nonplanar. Note that /strict/ and /open,Strict/ are
equivalent.

The directive /noAromatic/ indicates that no aroma-
ticity checks of any kind should be made. Thus, C1CCC-
CCC1 and c1ccccc1 both would match both benzene and
cyclohexane. The bond type “:” would be considered sim-
ply to be “unspecified.” This directive is useful when it is

1 The algorithm used by Jmol to identify flat aromatic rings involves the fol-
lowing steps: (1) A set of normals is generated as follows: (a) For each ring
atom, construct the normal associated with the plane formed by that ring
atom and its two nearest ring-atom neighbors. (b) For each ring atom with a
connected atom, construct a unit normal associated with the plane formed
by its connecting atom and the two nearest ring-atom neighbors. (c) If this
is the first normal, assign vMean to it. (d) If this is not the first normal,
check vNorm.dot.vMean. If this value is less than zero, scale vNorm by −1.
(e) Add vNorm to vMean. (2) The standard deviation of the dot products
of the individual vNorms with the normalized vMean is calculated. (3) The
ring is deemed flat if this standard deviation is less than the selected cutoff
value, which in Jmol is 0.1 in the presence of /strict/ and 0.01 otherwise.

Table 3 Examples correlating Jmol SMILES stereochemical notation with 3D structures, illustrating the similarity of new definitions to stand‑
ard ones

Biaryl images are SMARTS matches; all others are SMILES descriptions. Equivalent alternative descriptions for the acyclic compounds. Note how switching of positions
of atoms in the SMILES strings can result in switching of the stereochemical descriptor

Fig. 1 Using comments and white space to correlate a SMILES string
with a 3D structure. This Jmol SMILES was generated using LOAD
$caffeine; SHOW SMILES/open,atomComments

Page 8 of 20Hanson J Cheminform (2016) 8:50

not desired to make any aromaticity assumptions at all or
to specifically test for one Kekulé version and not do any
aromaticity tests.

Directives /noStereo/ and /invertStereo/ are very use-
ful because they allow re-use of SMILES strings for dif-
ferent types of stereochemical matches without having to
remove or switch the stereochemical designations in the
strings themselves, which can be quite complicated. The
directive /noStereo/ simply ignores all stereochemistry
indicated in the SMILES string, including both stereo-
chemistry at chirality centers as well as cis/trans dou-
ble-bond stereochemistry. The directive /invertStereo/
inverts all chirality designations, allowing efficient check-
ing for enantiomers. Finally, the directive /noAtom-
Class/ instructs the parser to disregard atom classes
when creating the molecular graph for matching.

Jmol SMARTS (Tables 6, 7)
The Jmol SMARTS dialect expands significantly on the
OpenSMARTS language. Given below is a full descrip-
tion of Jmol SMARTS, not simply a list of additions
to that language. All differences to OpenSMARTS are
indicated. A discussion of compatibility issues with

OpenSMARTS and Daylight SMARTS is given later in
this paper.

Jmol SMARTS atom primitives (Table 6)
Jmol SMARTS is closely related to OpenSMARTS,
involving 13 additional atom primitives and two modified
primitives (Table 6). This table comprises the full set of
atom primitives in Jmol SMARTS. Several of these added
primitives in Jmol SMARTS were critical in the devel-
opment of an MMFF94-based minimization that uses
SMARTS for atom typing. As in OpenSMARTS, selected
upper- or lower-case element symbols as well as *, a, and
A do not need square brackets. Jmol SMARTS adds H to
this list. Without brackets, CH is simply the same as C[H]
and means “a carbon and its attached H,” whereas [CH]
means “a carbon with exactly one attached H” (that is,
the C only, not the H atom).

Thus, in OpenSMARTS, [D2] matches any atom
with two explicit connections. This does not distin-
guish between hydrogen and non-hydrogen atoms. Jmol
SMARTS adds [d2] to mean “exactly two non-hydro-
gen connections,” and in Jmol the command SELECT
search(“[C;d2]”) selects for aliphatic carbons in the

Table 4 Jmol SMILES directives

Prefix Meaning Jmol example

/open/ Use the OpenSMILES aromaticity model; required for Jmol SMILES
matching of atom class

LOAD $quinone
SELECT smiles(“/open/c1ccccc1”)
(will return “0 atoms selected” because OpenSMILES does not

consider quinone to be aromatic)

/strict/ Use electron counting to define aromatic ring using the Hückel rule
(Jmol application default)

LOAD :cyclobutadiene
SELECT smiles(“/strict/c1ccc1”)
will return “0 atoms selected”

/noAromatic/ Ignore upper/lower case indicators of aromaticity; indicated double
bonds must match exactly

/noAromatic/C1CCCCC1

/noStereo/ Ignore differences in stereochemistry at chirality centers and
double bonds

/nostereo/C{[C@H]}(O)CC=C

/invertStereo/ Reverse stereochemistry match result (chirality centers only, not
double bonds)

/invertstereo/C{[C@@H]}(O)CC=C

/noAtomClass/ Disregard atom class designations when matching /noAtomClass/C[C:1]CC

Table 5 “Open” versus “strict” interpretation of aromaticity

Aromatic?

Open Yes No No Yes Yes Yes

Strict No No No Yes Yes No

Page 9 of 20Hanson J Cheminform (2016) 8:50

loaded atoms with exactly two non-hydrogen connected
atoms. It should be noted that these atoms will be found
regardless of whether the model actually has hydrogen
atoms or not. This is an important distinction, because
some models used in Jmol have hydrogen atoms (those
from NCI/CADD), and some do not (some of those from
RCSB). The new primitive [<n>?] selects for atoms with
either an atomic mass of n or no indicated atomic mass.
Like atom mass itself, this primitive must immediately
precede an atom symbol. So, for example, [12?C] matches
aromatic 12C or C with no indicated isotope (a common
situation), but not 13C or 14C.

The ring selectors [r500] and [r600] are particularly
useful, as they specify a 5- or 6-membered aromatic ring
atom, respectively, which is not something that is sup-
ported in OpenSMARTS. (Note that in OpenSMARTS,
[c&r5] could be an aromatic carbon in a benzene ring, as
long as there is a fused 5-membered ring (as in indene)
not specifically a carbon atom in an aromatic 5-mem-
bered ring.) This coopting of [r<n>] for large n techni-
cally is not compatible with OpenSMARTS, but since it
is basically inconceivable that an actual ring of size 500 or
600 would ever be searched for using Jmol SMARTS, it is
felt that this is not a practical problem.

Finally, Jmol SMARTS patterns also allow for refer-
encing PDB “residue.atom” notation: [ala.C], [ala.*],
and [*.C]. This feature is strictly a lexical match, not a
substructure search, and does not allow searching for
the residue or atom name “*” itself or for residue names
containing a period character. No such residue or atom
names exist in the PDB. The residue component may
include up to three parts, including residue name, num-
ber, and insertion code as “resName#resNum^insCode”.
The atom component may include PDB atom name and
atomic number as “atomName#atomicNum”. The atomic
number can be used to distinguish calcium, [.CA#20],
from alpha-carbon, [.CA#12]. An example of a fully elab-
orated PDB primitive would be [G#129^A.P#15]. Any
of the five references resName, resNum, insCode, atom-
Name, or atomicNum, may be omitted or indicated as
the wild card “*”. Thus, the critical distinguishing charac-
teristic of Jmol SMARTS PDB notation is only the period
itself.

Three additional atom primitives allow for atom selec-
tion that is application specific. So, for example, [=0]
selects for the atom the application assigns index 0 to. In
Jmol, [=0] would refer to the first atom in the Jmol atom
array, ({0}). The notation [“x”], with quotation marks,
selects for atom type “x”, however that has been defined
in the application. In Jmol, atom types will default to the
atom’s name, such as “H12”, but can be set by a specific
file reader or by the user or by an MMFF94 minimization
or partial charge calculation.

Jmol SMARTS allows for nested (aka “recursive”)
searches. This option allows embedding a full SMARTS
string as an atom primitive, selecting the first atom only.
So, for example, [$(cc[OH])] is “the aromatic carbon
atom ortho to an aromatic OH, and in Jmol SELECT on
search(“[$(HccOH)]”) highlights the two ortho hydro-
gens of a phenol.

The general pattern [$(select …)] allows for a hook into
application-specific selection methods. For example, in
Jmol SELECT atomno<10 selects all atoms with atom
number less than 10. SELECT search(“…”) selects using
a SMARTS pattern, and so SELECT search(“[$(select
atomno<10)]Br”) does the same, but limits the result
to atoms connected to bromine. The [$(select…)] nota-
tion thus allows both a potentially huge expansion of
SMARTS capability as well as potentially bringing into an
application’s native search language all the rich capability
of SMARTS, if they are not already present. Notice that,
if implemented in an application, this option may require
that whitespace not be unilaterally stripped from a Jmol
SMARTS pattern prior to processing.

The last three of the entries in Table 5 allow for a varia-
ble number of patterns and for substitution of predefined
variables. In Jmol, these variable substitutions are carried
out as preprocessing steps, in a purely lexical fashion.
They do not in any way improve processing time. (See
Additional files 1, 2 for examples.)

The Jmol SMARTS dialect includes all bond primi-
tives of OpenSMILES as well as ~ (any bond) and @ (any
aromatic bond). It does not implement the “direction or
unspecified” primitives of OpenSMARTS (/? and \?) for
two reasons. First, when working with a 3D model, all
double bonds are specifically E or Z. Additionally, Jmol
SMILES is based on OpenSMILES and thus already
requires that / and \ be matched properly. So FC=C/Cl
is not a valid Jmol SMILES string, and a search in it for
F/?C=C/Cl therefore would not be relevant.

Jmol SMARTS implements all logical operations of
OpenSMARTS, both in atom primitives and bonds.
These include the standard operations “!” (NOT), “&”
(AND), and “,” (OR) as well as the special “low prec-
edence” AND operator “;”. The low precedence AND
operator makes up for the fact that SMARTS does not
implement parentheses in logical operations, allow-
ing, for example, for [S,O;X2] to be parsed as “(aliphatic
sulfur or oxygen) with two connections”, in contrast to
[S,O&X2], which would mean “sulfur or (oxygen and two
connections)”. Perhaps WITH would be a better descrip-
tion than AND for this low-precedence version of AND.
The default operation between two primitives is &. Thus,
[S,OX2] is the same as [S,O&X2], not [S,O;X2].

Jmol SMARTS allows for a larger-scope “or” logic using
“||”. This notation is strictly a lexical convention carried

Page 10 of 20Hanson J Cheminform (2016) 8:50

Table 6 Jmol SMARTS atom selection primitives

Note Notation Meaning Example Explanation

S- * Any atom *1**1 Any three-membered ring

S- a Any aromatic atom a1aaaa1 A five-membered aromatic ring

S- A Any non-aromatic atom AAAA A chain of at least four nonaromatic atoms

+- H Hydrogen OH All OH groups; SMARTS only

a+ #-<n> Negative of atom number [#-36] Atom number 36, as defined by the application. (In Jmol, this
corresponds to “@36” or “atomno=36”.)

+ <n>? Mass number or unspecified mass
number

[12?#6] Carbon that isn’t explicitly C13 or C14

[0?] Atom with unspecified mass

[!0?] Any atom with mass specified

S X<n> Total number of connections [X2] This includes all implicit hydrogens, whether in a molecule or
SMILES string

+ d<n> Number of non-hydrogen connec-
tions

[n;d3] Aromatic trivalent nitrogen with no attached H atom. Note
that [nd3] would be read as an aromatic neodymium with an
atomic mass improperly positioned after it

S D<n> Number of explicit connections [#6D3] Carbon atoms with exactly three connections (either in a
molecule with bonds to three atoms or in a SMILES string with
three explicit atoms connected to it

S h<n> Number of implicit hydrogens [C;h2] A methylene group written as “C” or [CH2] in a SMILES string; a
methylene carbon atom from a PDB file or other file that does
not contain hydrogen atoms. (In Jmol, for example, a non-NMR
PDB file loaded before issuing SET pdbAddHydrogens
TRUE.)

S H<n> Total hydrogen count (sum of
attached [H] and implicit)

[CH3] A methyl group

[H0] No attached hydrogens

[!H0] At least one attached hydrogen

a* x<n> Total number of bonds that terminate
on ring atoms

[x1] A non-ring atom that is connected to a ring

[x0] No ring connections

[!x0] or [x] At least one ring connection

a* R<n> Ring membership [R] A ring atom

[!R] A non-ring atom

[R2] An atom in exactly two rings

a* r<n> Ring size [O;r3] An oxygen in a three-membered ring

[O;!r3] An oxygen that is not in a three-membered ring

*+ r500 Five-membered aromatic ring [n;r500] Aromatic nitrogen in a 5-membered aromatic ring (not an
aromatic nitrogen in a 500-membered ring)

*+ r600 Six-membered aromatic ring [n;r600] Aromatic nitrogen a 6-membered aromatic ring (not an aromatic
nitrogen in a 600-membered ring)

S v<n> Total bond order (valence) [C;v3] Total bond count (note that ill-defined resonance structures
such as proteins without hydrogen atoms will overestimate
valence for arginine sidechains

+ Xxx#nn^c.
yyyy#mm

PDB residue name#number^inser-
tionCode. atom name#atomic
number

For PDB data:

[ALA.C] Carbonyl carbon of all alanines

[ILE#35.*] All atoms in ILE35

[#35.*] Residue 35

[*.CA&!CA.CA] Alpha carbons (not calcium ions)

[*.CA#6] Just alpha carbons (atomic number specified)
Note that all matches are by name only, not by analyzing

substructure; atom name may include “.” or “*”; residue name
may contain “*”

+ =<n> Atom index [=22] Atom with atom index 22, however that is defined by the
application

Page 11 of 20Hanson J Cheminform (2016) 8:50

out in a pre-processing stage. For example, C=[O,S] ||
N=[O,S] indicates to run two separate SMARTS matches
and then OR their results. In Jmol this amounts to select-
ing all atoms resulting from either search.

Additional Jmol SMARTS features (Table 7)
Several non-primitive Jmol SMARTS options extend
OpenSMARTS. They are presented in Table 7.

In general, SMARTS matching is used in a binary
sense, returning TRUE if there is a match, or FALSE
if not. In addition, in some contexts, it is valuable to
know which subset of atoms in a model are the atoms
that match. But there is another valuable possibility.
Once a match is found, it could be especially valuable if
some subset of those matched atoms is identified. This
adds significant power to a SMARTS search, as it can
answer questions such as “What atom is next to atom X
in this pattern?” This more nuanced capability in Jmol
SMARTS is provided using curly braces, for example,
{C}C=O. The overall pattern is first matched, then only
those atoms that are within braces are actually identified.
Thus, CC=O matches all atoms of an aliphatic carbonyl
group and its associated alpha carbons, but {C}C=O
returns only the alpha carbons of carbonyl groups, and
{C}[CH]=O returns only the alpha carbons of aldehydes.
This allows very specific atom selection based on the
identity of groupings of atoms. Any number of selection
braces can be present in a Jmol SMARTS pattern. Thus,
select on search(“{c}1c{c}c{c}c1[OH]”) in Jmol selects
for the ortho- and para-carbons of phenol.

Conformational matching, involving ranges of distance,
angle, and torsion measurements (including improper
torsions), have also been of interest to Jmol users. Such
matching is possible using Jmol SMARTS. This is done
using the notation (.d:), (.a:), and (.t:), respectively. A
range of values is included after the measurement type.

C(.d:1.30-1.40)C, for instance, matches aliphatic car-
bon–carbon bonds in the range of 1.30–1.40 Å. Valid
separators include comma and hyphen. Thus, C(.d:1.30-
1.40)C and C(.d:1.30,1.40)C are equivalent. Bond angles
range from 0 to 180, as might be expected; torsions
range from −180 to 180. Positioning of these notations
should be after the atom they refer to, so that the order
of attributes to a SMARTS atom is either atom–connec-
tions–branches–measurements–bond or atom–con-
nections–measurements–branches–bond. For example:
C(.d:1.30-1.40)=C, not C=(.d:1.30-1.40)C; C1(.d:1.30-
1.40)C not C(.d:1.30-1.40)1C. Any number of “OR”ed
ranges can be given, separated for clarity preferably by
commas. For example: {*}(.t:-170,-180,170,180)C=C{*}
selects for vinylic atoms that are trans-related. In addi-
tion, “not this range” can be indicated using “!”, so
that an equivalent description to the above would be
{*}(.t:!-170,170)C=C{*}. Ranges should be selected to
have some width appropriate to an application.

The default in terms of specifying which atoms are
involved in measurements is simply “the next N atoms
in the string,” where N is 1, 2, or 3, respectively. This
sequencing is strictly lexical and is entirely irrespective of
chains. So, for example, the highlighted atoms are meas-
ured in the order shown, from left to right, in each of the
following measurements: C(.a:0,120)C(C)C, CC(.a:0,120)
(C)C, and CC2(.a:0,120)(C).C2.

For more complicated patterns, one can designate
the specific atoms in the measurement using a numeric
identifier after the measurement type and then repeat
that designation immediately after each of the target
atoms. For example, the following will target a range of
unusually low bond angles across the carbonyl group
in the three-atom backbone of a peptide, CA–C–N:
[*.CA](.a1:105-110)C(.a1)(O)N(.a1). In this way, there
is no requirement that measured atoms be connected.

Note that all patterns in Tables 1 and 2 are also part of Jmol SMARTS

S indicates same as OpenSMARTS; + indicates additions to OpenSMARTS; * indicates modified definition for Jmol SMARTS; “a” indicates result may depend upon
application; - indicates does not need brackets

Table 6 continued

Note Notation Meaning Example Explanation

+ “xxx” Atom type [“7”] However that is defined by the application; for example, in Jmol,
[“7”] is a carbonyl carbon atom after assignment by MMFF94

$(…) Nesting [$(aaN)$(aaaC)] An aromatic atom that is both ortho to an amino group and
meta to a methyl group

+ $(select ….) Processor-specific selection phrase [$(select
atomno=x)]

Selects the atom with atom number equal to the value of the
Jmol variable x

+ $<n>(pattern) A specific number of occurrences of
pattern

C[$3(C=C)]C Nonterminal conjugated triene

+ $min-max(pattern) A variable number of occurrences of
pattern

C[$2-3(C=C)]C Nonterminal conjugated diene or triene

+ $<varName> A predefined variable [$a1] Replaces “[$a1]” with whatever $a1 is defined to be (see below)

Page 12 of 20Hanson J Cheminform (2016) 8:50

Distances can be through-space; angles need not be bond
angles; torsions can be improper angles. These numbers
may be re-used, as for connection numbers.

Jmol SMARTS allows the use of any number of prede-
fined variables. These are separated by semicolons and
indicated prior to the actual SMARTS pattern (but after
any directives). Variables may refer to other variables, as
long as the variables referred to are defined previously.
So, for example, the following construction is allowed:
$R1=“[CH3,NH2]”;$R2=“[OH]”; [$([$R1]),$([$R2])],
meaning “a CH3, NH2, or OH group.” Variable replace-
ment is best carried out by a Jmol SMILES parser imme-
diately following removal of comments but prior to any
other parsing.

Jmol SMARTS implements the Daylight SMARTS
“component-level grouping” functionality of the form
(…).(…). Though of rather specialized use, it would, for
example, allow highlighting the diene in one molecule
and the dienophile in another with ({C=CC=C}).({C=C}
C=[!C]). The following Jmol SMARTS pattern will match
any OH group in a component that has at least two car-
bonyl groups: (C=O.C=O).{OH}.

Jmol SMARTS directives
Just like Jmol SMILES, Jmol SMARTS matching can be
tuned to specific modes of searching in terms of dif-
ferent standards. This is done using the same direc-
tives described above for Jmol SMILES. For example, in
Jmol, the commands LOAD :cyclobutadiene; SELECT
search(“/strict/c”) loads a 3D structure of cyclobuta-
diene from PubChem and reports “no atoms selected”,
because cyclobutadiene is strictly not aromatic.

Jmol SMARTS compatibility issues
Jmol SMARTS does not include the OpenSMARTS
unspecified designations /? or \?. In addition, Jmol
SMARTS does not implement the unspecified ste-
reochemistry notation @..?, as these have not proven
relevant to 3D molecule searching. Jmol SMARTS
implements “.” as absolutely “not connected” rather than
“might not be connected.” Jmol SMARTS is not an exten-
sion of Daylight “reaction SMARTS” [4], although it does
allow for matching atom classes, which are generally only
relevant in a reaction context, and Jmol as an application
can read reaction SMILES, but simply reads “>>” as the
not-connected symbol “.”.

Jmol SMARTS implements ring-membership primi-
tives [r<n>] and [R<n>] within the OpenSMARTS frame-
work using a simple ring membership model as “within
any ring of size n” and “the number of rings containing
the atom”, respectively. This involves no concept of small-
est set of smallest rings (SSSR). An application imple-
menting Jmol SMARTS is free to limit ring size in ring
membership determinations. In Jmol, for performance
sake, the maximum ring size that will be checked by
default is 8, but that is increased simply by having any
check for any ring larger than 8. For example, for indole,
which contains a five-membered ring fused to a six-
membered ring, so three rings total, of size 5, 6, and 9,
select on search(‘[R2]’) will select the two atoms in the
fusion, because the 9-membered ring is not checked.
However, while select on search(‘[R2&r9]’) will select
all the atoms not involved in the ring fusion, since now
three rings will be found, and those central two atoms
will be considered to be in three rings, not two.

Table 7 Jmol SMARTS non-primitives

D indicates same as Daylight SMARTS; + indicates additions to OpenSMARTS

Notes Notation Meaning Example Explanation

+ {…} Selection set; include only these atoms in
the final atom selection

{[#6]}C=O Select all alpha carbons

+ A(.d:x-y)B Distance from connected atoms A and B
within range x–y

C(.d:1.5-1.6)C All aliphatic carbon–carbon bonds that are
between 1.5 and 1.6 Å long

+ A(.d:!x-y)B Optional “!” indicates “not in this range” C(.d:!1.5-1.6)C Select all CC bonds not in the range 1.5-1.6

+ A(.a:x-y)BC Angle A–B–C within range x–y C(.a:115-125)CC All CCC with angle between 115 and 125
degrees

+ A(.t:x-y)BCD Dihedral A–B–C–D within range x–y,
where x and y are in the range −180
to 180

{[CH3]}(.t:50,70)CC{[CH3]} ||{[CH3]}
(.t:-50,-70)CC{[CH3]}

Find gauche methyl groups and select just
them

+ $R1=“xxx”; Replacement variables .$R1=“C=O”; $(*[$R1]) Same as $(*C=O)

D+ (SMARTS.
SMARTS)

(SMARTS).
(SMARTS)

component-level grouping (with defini-
tion of a component determined by/
groupByModel/and/groupByMolecule/
directives in Jmol)

(F.O) Unconnected F and O in the same compo-
nent

(F).(O) F and O in different components

(*).(*) Only select atoms if there are multiple
components

Page 13 of 20Hanson J Cheminform (2016) 8:50

Jmol application‑specific directives (Table 8)
Table 8 lists application-specific directives for Jmol 14.6.
Upon SMILES generation, /atomComments/ adds com-
ments indicating which atoms in the structure map to
which atoms in the SMILES string, and the /hydrogens/
directive indicates that all hydrogen atoms are to be given
explicitly. The /topology/ directive creates a SMILES
string that shows * for all atoms and indicates no bond
types. It can be used for matching ring and chain patterns
without regard to specific atoms or bonds.

Three directives are specific to SMARTS matching.
The /firstMatchOnly/ directive tells the Jmol SMARTS
processor to stop after one successful match. The Jmol
application-specific directives /groupByModel/ and
/groupByMolecule/ (the Jmol default), govern how com-
ponent-level grouping is done.

Aromatic models are important for SMILES generation
and matching. The directive /aromaticPlanar/, which
was the Jmol default through Jmol 14.5, is also available.
This directive avoids any Hückel analysis and is based
instead solely on three-dimensional ring planarity (see
footnote 1), without respect to electron counting. The
/aromaticPlanar/ option allows planar sp2-hybridized
systems such as quinone and cyclobutadiene to be con-
sidered aromatic and allows the finding of aromatic rings
in structures that may or may not indicate any multiple
bonds, such as the results of many quantum mechan-
ics calculations and structures saved in XYZ and PDB
formats. In addition, the directive /aromaticDefined/
indicates that all aromatic atoms in the model to be
investigated are explicitly set already, and thus no aroma-
ticity model is necessary. This directive could be used in
Jmol when a structure is loaded from a file that includes
explicit bond aromaticity, such as SDF query files, where
bond type 6 is “aromatic single” and bond type 7 is “aro-
matic double” [19]. Both /strict/ and /aromaticDouble/
are used in Jmol’s MMFF94 [20, 21] determination of
atom types.

Results and discussion
MMFF94 atom typing
One of the first applications of Jmol SMARTS was in
Jmol’s implementation of the molecular mechanics mini-
mization package MMFF94. For this method, each atom
must be assigned a specific atom type, with identifica-
tions such as “general 5-ring C (imidazole)” and “alpha
aromatic 5-ring C”. The MMFF94 program itself uses
an elaborate sequence of logical steps to discover each
of 82 distinct atom types for each atom in a structure,
one at a time. Rather than attempting to implement this
complicated algorithm in Java de novo, it was decided
to have Jmol instead use SMARTS to do this task, scan-
ning through types rather than atoms and identifying all

atoms of a given type at once (and automatically skipping
checking for types for elements that are not in the struc-
ture. The key is to go through a list of SMARTS checks
in a very specific order. A full list of SMARTS tests used
by Jmol for MMFF94 atom typing is given at SourceForge
[21].

Table 9 shows the sequence of Jmol SMILES checks
specifically for sulfur. All sulfur atoms are assigned
one of atom types 15, 16, 17, 18, 44, 72, 73, or 74. The
order of these tests is important. For example, the test
for sulfur doubly bonded to carbon (atom type 16;
$([SD1]=[#6D3]), must be done before the test for ter-
minal sulfur (atom type 72; $([SD1][#6]). This works
because once the algorithm finds an atom type match, no
further tests are needed, and it exits. The process is made
more efficient by grouping tests by element and valence
and only running tests on element/valence combinations
that are present in the compound. In addition, a single
test can test for several environments at the same time.
For example, the SMARTS search $([SD3]([OD1,ND2])
([#6,#7D3,#8D2])[#6,#7D3,#8D2]) tests for sulfoxides,
sulfonimides, and all related substitutions of carbon by N
or O, all of which are categorized as atom type 71. Notice
the efficient use of [r500] for thiophene sulfur.

Practical examples
 Going back to the questions posed in the introduction to
this paper, I now provide eight practical examples of Jmol
SMILES matching and Jmol SMARTS searching within
Jmol that are derived largely from Jmol user community
requests for functionality.

1. Do these two structures and/or SMILES strings
match? SMILES strings are often used for database
look-up using simple string-based algorithms. In order
for that to work, the SMILES string of interest must be
expressed identically to one stored in the database. Basi-
cally, this means that it must be produced by the same
algorithm used to produce the database’s own SMILES
keys. The process of converting a generic SMILES string
to a unique form is called “canonicalization.” Since
SMILES generator programs at different databases dif-
fer, the resultant canonical SMILES strings from dif-
ferent databases can be different as well. For example,
for acetaminophen, database look-ups from PubChem
and NCI/CADD, as well as drawing the structure using
JSME [22] give the distinctly different canonical SMILES
shown in Table 10. Canonicalization can be useful; it
allows a program to match structures using simple string
matching. Interestingly, in the context of 3D structure
matching in Jmol, given a single target 3D structure and
a SMILES string, a pair of 3D structures, or a SMILES
string and a 3D structure, there is no particular need

Page 14 of 20Hanson J Cheminform (2016) 8:50

Ta
bl

e
8

Jm
ol

 a
pp

lic
at

io
n-

sp
ec

ifi
c

di
re

ct
iv

es

G
 fo

r J
m

ol
 S

M
IL

ES
 g

en
er

at
io

n;
 S

 fo
r J

m
ol

 S
M

IL
ES

 (f
ul

l m
ol

ec
ul

e)
 m

at
ch

in
g;

 P
 fo

r J
m

ol
 S

M
A

RT
S

pa
tt

er
n

m
at

ch
in

g

N
ot

e
D

ire
ct

iv
e

M
ea

ni
ng

Jm
ol

 e
xa

m
pl

e

G
/a

to
m

Co
m

m
en

ts
/

A
dd

 c
om

m
en

ts
 w

he
n

ge
ne

ra
tin

g
SM

IL
ES

 s
tr

in
gs

 th
at

 in
di

ca
te

 th
e

co
rr

el
at

io
n

be
tw

ee
n

SM
IL

ES
 a

to
m

s
an

d
Jm

ol
 a

to
m

s
PR

IN
T

{*
}.fi

nd
(“S

M
IL

ES
/a

to
m

Co
m

m
en

ts
/”

)
SH

O
W

 S
M

IL
ES

/a
to

m
Co

m
m

en
ts

G
/h

yd
ro

ge
ns

/
M

ak
es

 a
ll

hy
dr

og
en

s
ex

pl
ic

it
in

 g
en

er
at

in
g

a
SM

IL
ES

 s
tr

in
g

LO
A

D
 $

be
nz

en
e

PR
IN

T
{*

}.fi
nd

(“S
M

IL
ES

/h
yd

ro
ge

ns
/”

)
c1

([H
])c

([H
])c

([H
])c

([H
])c

([H
])c

1[
H

]

G
/t

op
ol

og
y/

G
en

er
at

e
SM

IL
ES

 s
tr

in
gs

 th
at

 re
pr

es
en

t a
ll

at
om

s
as

 “*
”, t

hu
s

al
lo

w
in

g
SM

A
RT

S
pa

t-
te

rn
 m

at
ch

es
 w

ith
ou

t r
eg

ar
d

to
 s

pe
ci

fic
 e

le
m

en
ts

LO
A

D
 $

in
da

ne
SH

O
W

 S
M

IL
ES

/t
op

ol
og

y
*1

*2
**

**
*2

**
1

P
/fi

rs
tM

at
ch

O
nl

y/
Re

tu
rn

 o
nl

y
th

e
fir

st
 m

at
ch

, n
ot

 a
ll

oc
cu

rr
en

ce
s

of
 a

 m
at

ch
LO

A
D

 $
he

pt
an

e
SE

LE
C

T
O

N
 s

ea
rc

h(
“/

fir
st

M
at

ch
O

nl
y/

C
”)

1
at

om
 se

le
ct

ed

P
/g

ro
up

By
M

ol
ec

ul
e/

3D
 c

om
po

ne
nt

s
ar

e
gr

ou
pe

d
by

 c
ov

al
en

tly
-b

on
de

d
se

ts
 (J

m
ol

 d
ef

au
lt)

LO
A

D
 “$

ca
rb

et
ap

en
ta

ne
 c

itr
at

e”
SE

LE
C

T
on

 s
ea

rc
h(

“/
gr

ou
pB

yM
ol

ec
ul

e/
(C
=

O
.C
=

O
)”)

(h
ig

hl
ig

ht
s

th
e

ca
rb

on
yl

 g
ro

up
s

of
 th

e
ci

tr
at

e
io

n
on

ly
, b

ec
au

se
 c

ar
be

ta
pe

nt
an

e
ha

s
on

ly
 o

ne
 c

ar
bo

ny
l g

ro
up

, a
nd

 th
e

in
di

ca
te

d
gr

ou
pi

ng
 re

qu
ire

s
th

at
 b

ot
h

be
 in

 th
e

sa
m

e
co

m
po

ne
nt

)

P
/g

ro
up

By
M

od
el

/
Co

ns
id

er
 e

ac
h

m
od

el
 in

 Jm
ol

 to
 b

e
on

e
co

m
po

ne
nt

, r
eg

ar
dl

es
s

of
 h

ow
 m

an
y

co
va

-
le

nt
ly

 d
is

jo
in

t s
et

s
it

co
nt

ai
ns

x
=

 s
ea

rc
h(

“/
gr

ou
pB

yM
od

el
, fi

rs
tM

at
ch

O
nl

y/
(C

).(
C

)”)
(re

tu
rn

s
an

 a
to

m
 s

et
 c

on
ta

in
in

g
th

e
fir

st
 n

on
ar

om
at

ic
 c

ar
bo

n
of

 e
ac

h
m

od
el

 w
he

n
th

er
e

ar
e

tw
o,

 o
r n

o
at

om
s

if
th

er
e

is
 o

nl
y

on
e

m
od

el
)

G
SP

/a
ro

m
at

ic
D

ou
bl

e/
D

ou
bl

e
bo

nd
s

be
tw

ee
n

ar
om

at
ic

 a
to

m
s

m
us

t m
at

ch
 e

xp
lic

itl
y

fo
r 3

D
 m

ol
ec

ul
e

co
m

pa
ris

on
—

SM
IL

ES
 s

tr
in

gs
 a

nd
 S

M
A

RT
S

pa
tt

er
ns

 w
ith

 =
 b

et
w

ee
n

ar
om

at
ic

at

om
s

w
ill

 s
et

 th
is

 fl
ag

 a
ut

om
at

ic
al

ly
 d

ur
in

g
pr

oc
es

si
ng

LO
A

D
 fi

le
s “

$1
,2

-d
ih

yd
ro

xy
be

nz
en

e”
 “:

1,
2-

di
hy

ro
xy

be
nz

en
e”

PR
IN

T
{1

.1
}.fi

nd
(“S

M
IL

ES
”,{

2.
1}

) =
=

 {1
.1

}
tr

ue
 (b

ec
au

se
 b

ot
h

N
C

I a
nd

 P
ub

C
he

m
 h

av
e

st
ru

ct
ur

es
 fo

r t
he

se
 tw

o
co

m
po

un
ds

)
PR

IN
T

{1
.1

}.fi
nd

(“S
M

IL
ES

/a
ro

m
at

ic
D

ou
bl

e/
”,{

2.
1}

) =
=

 {1
.1

}
fa

lse
 (b

ec
au

se
 th

e
tw

o
st

ru
ct

ur
es

 h
av

e
di

ffe
re

nt
 d

ou
bl

e-
bo

nd
in

g
pa

tt
er

ns
)

G
SP

/a
ro

m
at

ic
Pl

an
ar

/
Ca

rr
y

ou
t a

 3
D

 a
na

ly
si

s
to

 d
efi

ne
 a

ro
m

at
ic

 a
to

m
s

LO
A

D
 $

qu
in

on
e

SE
LE

C
T

sm
ile

s(
“/

ar
om

at
ic

Pl
an

ar
/c

1c
cc

cc
1”

)
(w

ill
 re

tu
rn

 “6
 a

to
m

s
se

le
ct

ed
” b

ec
au

se
 Jm

ol
’s

de
fa

ul
t i

s
to

 c
on

si
de

r t
he

 p
la

na
r r

in
g

of

qu
in

on
e

to
 b

e
ar

om
at

ic
)

G
SP

/a
ro

m
at

ic
D

efi
ne

d/
Bo

nd
s

to
 b

e
m

at
ch

ed
 a

s
ar

om
at

ic
 a

re
 a

lre
ad

y
m

ar
ke

d
as

 s
uc

h;
 m

ak
e

no
 a

tt
em

pt
 to

de

te
rm

in
e

ar
om

at
ic

ity
 in

 th
e

st
ru

ct
ur

e
LO

A
D

 :b
en

ze
ne

CO
N

N
EC

T
{*

} {
*}

 a
ro

m
at

ic
 m

od
ify

C
A

LC
U

LA
TE

 a
ro

m
at

ic
SE

LE
C

T
sm

ile
s(

“/
ar

om
at

ic
D

efi
ne

d/
c1

cc
cc

c1
”)

(a
ro

m
at

ic
 a

to
m

s
ha

ve
 b

ee
n

pr
e-

ca
lc

ul
at

ed
)

Page 15 of 20Hanson J Cheminform (2016) 8:50

for canonicalization. We simply compare two 3D sets of
atoms and bonds, without ever generating two SMILES
strings for comparison. (If a canonical SMILES is desired
in Jmol, the command SHOW chemical SMILES can
be used to pass the request to NCI/CADD for remote
processing.)

Jmol’s find() function allows simple comparison of
SMILES strings and/or 3D structures, regardless of their
source. The syntax is as simple as A.find(“SMILES”,
B) where A and B can be two SMILES strings or two
models, such as {2.1}, representing “all the atoms in
the first model in the second file,” or ({0:10}), (paren-
theses significant) meaning the first 11 atoms in the
collection, regardless of model. For example, the Jmol
command LOAD files “$caffeine” “:caffeine” loads
the caffeine molecule from both NCI/CADD and
PubChem. After that command, there are 48 atoms in
an array behind the scenes in Jmol. The first 24, refer-
enced as ({0:23}) or as {1.1}, are from NCI/CADD ($caf-
feine); the next 24, referenced as ({24:47}) or {2.1}, are
from PubChem (:caffeine). Following this, PRINT
{1.1}.find(“SMILES”,{2.1}), meaning “print the result

of finding the second model “in” the first model using
SMILES, reports ({0:23}), indicating that all 24 atoms
of the NCI/CADD structure were found. Alterna-
tively, if we run a different function, we can find the
1:1 atom correlation between the two models: PRINT
compare({1.1},{2.1},“map”).format(“JSON”), which
reports: [[0,37],[8,36],[6,35],[7,30],[2,28],[11,29],[9,26],
[1,27],[4,24],[13,25],[3,33],[12,34],[10,32],[5,31]]. If you
look carefully there, the first coordinates, 0, 8, 6, 7, …
are not anything like the second coordinates: 37, 36, 35,
30, … The files are very different, but the models are at
least topologically the same. They are both caffeine.

2. Does this structure and/or SMILES string contain
this particular substructure? Replacing the key-
word “SMILES” with “SMARTS” in the above example
turns this into a substructure search. Thus, LOAD files
“$butane” “$hexane”; print {2.1}.find(“SMARTS”, {1.1},
true) gives the result ({14:19}), which turns out to be the
full set of six carbon atoms in the hexane model, corre-
sponding to all possible arrangements of SMARTS search
CCCC within SMILES string CCCCCC. Adding a third
parameter true to the find SMARTS function, PRINT
{2.1}.find(“SMARTS”,{1.1},true), gives instead an array
of all possible matches. We expect three, because the
CCCC could start at the 1st, 2nd, or 3rd atom in the
chain, and that is what we get: [({14:17}),({15:18}),({16:19
})]. Note that these three 4-atom sets do not include H
atoms.

The use of aromatic directives is particularly useful in
a situation where one wishes to compare two versions of
a drawn structure. They give us an opportunity to qual-
ify our search: Do the models agree in terms of overall
aromaticity? If({*}.find(“SMILES”, “c1(O)ccccc1O”)){…}
or, given that that is true, are their Kekulé structures
different?

Table 9 MMFF94 atom types for sulfur expressed in Jmol SMILES notation

18 SULFONAMIDE S [$([SD4]([OD1,ND2])[OD1,ND2]),$([SD3](=C)([OD1,ND2])[OD1,ND2])]

17 SULFOXIDE S (also S(=O)[N]) [$([SD3]([OD1,ND2])([#6,#7D3,#8D2])[#6,#7D3,#8D2])]

73 SULFUR IN SULFINATE [$([SD3]([OD1,SD1])[OD1])]

44 S IN THIOPHENE [sD2r500]

15 THIOL, SULFIDE [$([SD2](-*)-*)]

74 SULFINYL SULFUR, C=S=O [$([SD2]([CD3])[OD1])]

72 THIOCARBOXYLATE S [$([SD1][CD3][SD1])]

16 S DOUBLY BONDED TO C [$([SD1]=[#6D3])]

72 TERMINAL SULFUR ON SPO, SCO, SSO [$([SD1][#15,#6,#16][OD1])]

72 TERMINAL SULFUR ON C [$([SD1][#6])]

72 TERMINAL SULFUR ON P or S [$([SD1][#15,#16])]

Table 10 Different canonical SMILES representations
of acetaminophen

Service “Canonical” SMILES

PubChem

NCI/CADD

JSME

CC(=O)NC1=CC=C(C=C1)O

C1=C(NC(=O)C)C=CC(=C1)O

CC(=O)Nc1ccc(O)cc1

Page 16 of 20Hanson J Cheminform (2016) 8:50

If (!{*}.find(“SMILES”,“/noaromatic/C1(O)=CC=CC
=C1(O)”)){…}

3. Given two structures, what is their isomeric relation-
ship? The directives /nostereo/ and /invertstereo/ can
be effectively used to compare two 3D structures, a 3D
structure and a reference stereochemical SMILES string,
or two stereochemical SMILES strings. The pseudo-code
for a full isomeric determination is as follows:

If (the molecular weights are different) Return NONE
If (A.matches(B)) Return IDENTICAL
If (!A.matches(/nostereo/B) Return CONSTITUTIONAL
ISOMERS
If (A.matches(/invertstereo/B) Return ENANTIOMERS
Return DIASTEREOMERS

Note that both the /nostereo/ and the /inverstereo/
directives are used to good effect here. In Jmol, this is
basically what is carried out behind the scenes [23] in
getRelationship(String smiles1, String smiles2). This
method is invoked when the Jmol command PRINT
compare(A, B,“ISOMER”) is issued. Here again, A and B
can be any combination of 3D model atoms and SMILES
strings. The importance of the/invertstereo/directive is
clear: We do not want to be manually inverting the ste-
reochemistry of SMILES strings. In addition, in this case
where B is a structure and not a SMILES string already,
Jmol is internally generating the SMILES string for B and
then prepending these directives en route to its SMILES
processor module.

4. Given two structures from two different sources, how
quantitatively similar are they? Structures used in
Jmol are often derived from a variety of databases, both
computational and experimental. The question arises
as to how much different such structures are from one
another. In this case what is needed is a 1:1 atom mapping
between the two structures followed by an alignment.
The problem is that the two structure files likely have
completely different atom order, and also there could be
several suitable mappings. Jmol uses (relatively standard)
Jmol SMILES matching to generate this mapping and
then uses a quaternion eigenvalue algorithm [24] for the
alignment, checking each possibility and looking for the
best-fit RMSD. This guarantees that we end up with the
very best fit of all possible mappings. If A and B are two
3D structures loaded into Jmol, then their similarity is
found by compare(A,B,”SMILES”, “stddev”), where the
result is expresses as a standard deviation. The entire cal-
culation is complete in a fraction of a second.

5. How can I align two 3D models in order to visual-
ize their similarity? If we remove that last parameter,
the return will be the 4 × 4 rotation–translation matrix
describing how to best align the atoms of A onto B. We
can effect that overlay of atoms for a visual comparison
using the rotate selected command, as shown in Fig. 2.
The following script generates a visual comparison of the
caffeine structure found at NCI/CADD with the one at
PubChem:

LOAD files “$caffeine” “:caffeine”; FRAME *
VAR A = {1.1}; B = {2.1}
VAR m = compare(A, B, “SMILES”)
SELECT A
ROTATE selected @m
COLOR @B yellow

(Variable m here is the 4x4 optimal rotation/translation
matrix.) In this case we have a very good fit, with RMSD
0.080 Å for all non-hydrogen atoms.

We can also do this alignment using a substructure.
So, for example, if we wanted to align these two models
specifically using the five-membered ring, we could use a
SMARTS search for Cn1cncc1. Substituting above VAR
m = compare(A, B, “SMARTS”, “Cn1cncc1”). Finally,
in Jmol there is still a simpler way. The combination of
SMARTS- or SMILES-based mapping and quaternion-
based alignment can be done in one go using the COM-
PARE command:

COMPARE {1.1} {2.1} SMILES rotate translate
COMPARE {1.1} {2.1} SMARTS “Cn1cncc1” rotate
translate

6. What would I need to do to the given conformation of
Structure A to match it conformationally with Struc-
ture B? or with some substructure within B? One very
powerful combination of these features also adds dihe-
dral driving—the ability to rotate dihedrals in a way that

Fig. 2 Caffeine from PubChem (yellow) and NCI/CADD (standard
colors) before and after SMILES-based alignment

Page 17 of 20Hanson J Cheminform (2016) 8:50

allows flexible conformational fitting prior to quaternion
rotation. In this case, a SMARTS search identifies the key
bonds that need to be driven. This is illustrated in Figs. 3
and 4. The following Jmol script loads two models, one
of tyrosine and one of lysergamide, displaying them in
ball&stick and wireframe, respectively:

LOAD files “$tyrosine” “$lysergamide”
SELECT 2.1; TRANSLATESELECTED {10 0 0} //
just get the two models about 10 ang. apart
FRAME *; ZOOMTO 0 {*} 0; // show all models, and
zoom into show all of them
SELECT {2.1}; WIREFRAME only // select the sec-
ond model and make it just thin lines
DISPLAY remove 1.1 and _H // remove the 1st mod-
el’s hydrogen atoms from the display

The Jmol command COMPARE {1.1} {2.1} BONDS
“c1ccccc1CCN” rotate translate does the final magic.
Using a SMARTS search, it matches atoms in the two
structures, identifies the associated bonds, calculates all
relevant dihedral angles in tyrosine, then rotates all of
those dihedrals to positions that match their counter-
parts in lysergamide. Quaternion-base alignment and
animated overlay then transports the conformation-
ally modified tyrosine to its best-fit location within the

lysergamide molecule (Fig. 4). A bit of coloring highlights
the success of the operation by assigning color in tyros-
ine (model 1.1) based on distance to the nearest atom in
lysergamide (model 2.1):

{1.1}.property_d = {1.1}.distance.min({2.1})
SELECT{1.1}; COLOR balls property_d

7. Given a cyclohexane structure, is it in the chair or boat
form? Are substituents axial or equatorial? The capa-
bility to match ranges of values for distances, angles,
and dihedrals in Jmol SMARTS allows conformational
identification of structures. All that is needed is a careful
definition of whatever motif is desired. For example, the
various chair conformations of 1,2-dimethylcyclohexane
can be distinguished by torsional angles involving ring
carbons and the methyl groups (Fig. 5):

cis-1,2: [CH3](.t:-170,-180,170,180)C1CCC(.t:50,
70,-50,-70)CC1[CH3]

trans-1,2-diequatorial: [CH3](.t:-170,-180,170,180)
C1CCC(.t :-170,-180,170,
180)CC1[CH3]

trans-1,2-diaxial: [CH3](.t :-170,-180,170,180)CC
[CH3]

In general, we can describe gauche as, roughly,
*(.t:50,70,-50,-70)***, eclipsed as *(.t:-20,20)*** and anti
as *(.t:170,180,-170,-180)***. Note that in all these cases
we are allowing for some nonideality of structures. Anti
may or may not be 180-degree dihedral. We allow 10
degrees plus-or-minus.

8. How can I correlate 2D and 3D chemical structures
from different sources? For example, how can I corre-
late a given 2D or 3D structure with a simulated NMR
spectrum? The capability of HTML5 and JavaScript to
allow on a single web page a 2D drawing app (JSME), a
3D visualization app (Jmol), and an NMR spectroscopy
simulation client (JSpecView [25], a component of Jmol)
provides both an opportunity and a challenge. We can,
in principle, correlate atoms in the 2D drawing, atoms in
the 3D interactive structure, and peaks in the NMR spec-
trum, thus allowing the user seamless clicking with vis-
ual references updating simultaneously in all three apps
(Fig. 6) [26]. The challenge is to do the atom–atom map-
ping necessary to make that work. This is especially chal-
lenging because the services that provide the 2D and 3D
structures on the page and the 3D structure that is used
in the spectral analysis all come from different sources.
And to make it even more challenging, an online spectral

Fig. 3 Tyrosine (ball and stick) and lysergamide (wireframe)

Fig. 4 Fully conformationally aligned tyrosine (ball and stick, colored
by distance to nearest atom of lysergamide) and lysergamide (wire-
frame)

Page 18 of 20Hanson J Cheminform (2016) 8:50

analysis may return a correlation to a different 3D struc-
ture than was sent to it. Though “canonical” on their own,
these services are anything but canonical as a suite!

The JSmol solution required two atom correlations—from
2D to 3D, and from 3D to 3D—including H atoms, which
are not usually part of a SMILES match. A variation of the
Jmol compare() function was developed for this purpose:
atommap = compare({1.1} {2.1} ‘MAP’ ‘H’). Here model
1.1 is the structure on the bottom left in Fig. 6; model 2.1 is
the model derived from the 2D JSME drawing app above it.
“MAP” indicates we want a correlation, and “H” means we
want a SMILES all-atom correlation, which includes hydro-
gen atoms. The variable atommap is assigned an array of
arrays, [[a1, b1], [a2,b2], ….], indicating the exact 1:1 correla-
tion of these two structures in terms of atom indices. The

correlation between Jmol and JSpecView in the end was not
done using SMILES. Instead, the JSV application matches
atoms structures returned by the server by matching indi-
vidual 3D atom positions. But it would have been possible to
use this same compare() function with that comparison as
well. Non-canonical SMILES comparison is also being used
on this page just to check that the apps are well synchro-
nized and that all models are identical:

jsmeSMILES = jme._applet.smiles(); (JavaScript)
if(!{1.1}.find(“SMILES”,javascript(jsmeSMILES)))… (in
JSmol)

Of course, this is all done virtually instantaneously
behind the scenes; the page visitor simply sees a well-
coordinated application that behaves quite naturally.

Conclusions
In this article I have presented a set of additions to
standard SMILES and SMARTS that allow for powerful
applications in 3D structure visualization, comparison,
and analysis. Jmol SMILES additions are minimal. Jmol
SMARTS atom primitive additions widen the scope of
SMARTS searching capability, adding features that are
applicable to 3D structures and useful in Jmol, such as
allowing Jmol to create atom types for MMFF94 calcu-
lations efficiently. Additional atom specifications allow
for application-specific atom selection based on criteria

Fig. 5 Trans-diaxial conformation selected by Jmol SMARTS selected
using SELECT on search(“[CH3](.t:-170,-180,170,180)CC[CH3]”)

Fig. 6 A web application using SMILES to coordinate selection of atoms in 2D and 3D structures, with correlation to simulated 1HNMR spectra

Page 19 of 20Hanson J Cheminform (2016) 8:50

not included in any SMARTS specification as well as
patterns that are specific to wwPDB-derived models,
the ability to specify a variable number of repeating pat-
terns, and the substitution of predefined variables. Non-
primitive Jmol SMARTS options include the allowance
for subset selection, conformational matching, overall
pattern logic, and predefined variables. The result is a
rich language for 3D molecular investigation and com-
parison that greatly expands the usefulness of SMARTS
pattern matching.

Additional extensions to Jmol SMILES and Jmol
SMARTS that are specific to biopolymers and also
extend SMARTS searching to inorganic and periodic
crystal structure and to polyhedra analysis are being
implemented in Jmol and will be addressed in future
communications.

Supplemental material
Jmol scripts for all example in this article are pro-
vided as Additional file 1. All figures in this article are
included as PNGJ format files in Additional file 2. These
“image + data” files can be drag-dropped or otherwise
loaded into Jmol or JSmol to reproduce the 3D model
exactly as it appears in the image. Exact scripts used for
their creation can be found in Additional file 1.

Acknowledgements
This article is dedicated to the memory of Jean-Claude (JC) Bradley, an early
proponent of open science and an inspiration to us all.

The author wishes to thank all Jmol code contributors since its inception
in 1996 as well as the many Jmol users who have contributed innumerable
excellent suggestions and solutions during the past 10 years. Special thanks
go to Egon Willighagen and Michael “Miguel” Howard for carrying the torch
of project director prior to my engagement in 2006, Ángel Herráez, who has
been instrumental in developing Jmol teaching and documentation materials,
Zhou Renjian, for his work on Java-to-JavaScript code that has allowed Jmol
to be produced simultaneously in Java and JavaScript, and Nicolas Vervelle,
who introduced the first primitive SMILES matcher into Jmol. I thank the Blue
Obelisk-SMILES discussion list members for their thoughtful consideration of
many of the ideas presented in this paper, specifically John May, Tim Vander-
meersch, Andrew Dalke, and Craig James. Finally, thanks are in order for the
excellent and thorough comments made by reviewers in the process of this
manuscript’s publication.

Competing interests
The author is the principal developer of Jmol, a free open-source program for
molecular structure visualization and analysis.

Availability and requirements
Jmol SMILES and Jmol SMARTS can be implemented within any system. They
are available currently as part of Jmol, available at SourceForge as open-
source code or fully compiled Java (Jmol.jar) or JavaScript (site/jsmol). Java
1.6 or higher is required for the Java version; JSmol has been tested in Firefox,
Chrome, and Safari.

Additional files

Additional file 1. Jmol scripts.

Additional file 2. PNGJ image+data files for figures.

Received: 10 February 2016 Accepted: 2 September 2016

References
 1. Weininger D (1988) SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36

 2. Weininger D (2003) SMILES: a language for molecules and reactions. In:
Gasteiger J (ed) Handbook of chemoinformatics. Wiley-VCH, Weinheim,
pp 80–102

 3. Open Smiles. http://www.opensmiles.org/
 4. Daylight Inc. 4. SMARTS—a language for describing molecular patterns.

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
 5. OpenSMARTS Specification (draft Sept 2012). http://www.moldb.net/

opensmarts
 6. Siani MA, Weininger D, Blaney JM (1994) CHUCKLES: a method for

representing and searching peptide and peptoid sequences on both
monomer and atomic levels. J Chem Inf Comput Sci 34:588–593

 7. Siani MA, Weininger D, James CA, Blaney JM (1995) CHORTLES: a method
for representing oligomeric and template-based mixtures. J Chem Inf
Comput Sci 35:1026–1033

 8. Drefahl A (2011) CurlySMILES: a chemical language to customize and
annotate encodings of molecular and nanodevice structures. J Chemin-
form 3:1

 9. Ash S, Cline MA, Homer RW, Hurst T, Smith GB (1997) SYBYL Line Notation
(SLN): a versatile language for chemical structure representation. J Chem
Inf Model 37:71–79

 10. Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD (2008) SYBYL Line Nota-
tion (SLN): a single notation to represent chemical structures, queries,
reactions, and virtual libraries. J Chem Inf Model 48:2294–2307

 11. Proschak E, Wegner JK, Schüller A, Schneider G, Fechner U (2007) Molecu-
lar Query Language (MQL)—a context-free grammar for substructure
matching. J Chem Inf Model 47:295–301

 12. Yang C, Tarkhov A, Marusczyk J, Bienfait B, Gasteiger J, Kleinoeder T, Mag-
dziarz T, Sacher O, Schwab C, Schwoebel J, Terfloth L, Arvidson K, Richard
A, Worth A, Rathman J (2015) New publicly available chemical query
language, CSRML, to support chemotype representations for application
to data mining and modeling. J Chem Inf Model 55:510–528

 13. Hanson RM (2010) Jmol—a paradigm shift in crystallographic visualiza-
tion. J Appl Crystallogr 43:1250–1260

 14. Delano W. PyMOL molecular graphics system. https://sourceforge.net/
projects/pymol/

 15. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynam-
ics. J Mol Graph 14:33–38

 16. Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin
T (2004) UCSF Chimera—a visualization system for exploratory research
and analysis. J Comput Chem 25:1605–1612

 17. The PubChem Project. https://pubchem.ncbi.nlm.nih.gov
 18. NCI/CADD Group Chemoinformatics Tools and User Services. https://

cactus.nci.nih.gov
 19. Accelrys. CTfile formats. http://download.accelrys.com/freeware/ctfile-

formats/ctfile-formats.zip
 20. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, param-

eterization, and performance of MMFF94. J Comput Chem 17:490–519
 21. Hanson RM. MMFF94-smarts.txt. http://sourceforge.net/p/jmol/code/

HEAD/tree/trunk/Jmol/src/org/jmol/minimize/forcefield/data/MMFF94-
smarts.txt

 22. Bienfait B, Ertl PJSME (2013) a free molecule editor in JavaScript. J Chem-
inform 5:24

 23. Hanson R. Jmol SmilesMatcher. https://sourceforge.net/p/jmol/
code/HEAD/tree/trunk/Jmol/src/org/jmol/smiles/SmilesMatcher.
java?format=raw. SmilesMatcher.java method getRelationship(String
smiles1, String smiles2)

 24. Horn KP (1987) Closed-form solution of absolute orientation using unit
quaternions. J Opt Soc Am A 4:629–642. http://www.opticsinfobase.org/
viewmedia.cfm?uri=josaa-4-4-629&seq=0

http://dx.doi.org/10.1186/s13321-016-0160-4
http://dx.doi.org/10.1186/s13321-016-0160-4
http://www.opensmiles.org/
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.moldb.net/opensmarts
http://www.moldb.net/opensmarts
https://sourceforge.net/projects/pymol/
https://sourceforge.net/projects/pymol/
https://pubchem.ncbi.nlm.nih.gov
https://cactus.nci.nih.gov
https://cactus.nci.nih.gov
http://download.accelrys.com/freeware/ctfile-formats/ctfile-formats.zip
http://download.accelrys.com/freeware/ctfile-formats/ctfile-formats.zip
http://sourceforge.net/p/jmol/code/HEAD/tree/trunk/Jmol/src/org/jmol/minimize/forcefield/data/MMFF94-smarts.txt
http://sourceforge.net/p/jmol/code/HEAD/tree/trunk/Jmol/src/org/jmol/minimize/forcefield/data/MMFF94-smarts.txt
http://sourceforge.net/p/jmol/code/HEAD/tree/trunk/Jmol/src/org/jmol/minimize/forcefield/data/MMFF94-smarts.txt
https://sourceforge.net/p/jmol/code/HEAD/tree/trunk/Jmol/src/org/jmol/smiles/SmilesMatcher.java?format=raw
https://sourceforge.net/p/jmol/code/HEAD/tree/trunk/Jmol/src/org/jmol/smiles/SmilesMatcher.java?format=raw
https://sourceforge.net/p/jmol/code/HEAD/tree/trunk/Jmol/src/org/jmol/smiles/SmilesMatcher.java?format=raw
http://www.opticsinfobase.org/viewmedia.cfm%3furi%3djosaa-4-4-629%26seq%3d0
http://www.opticsinfobase.org/viewmedia.cfm%3furi%3djosaa-4-4-629%26seq%3d0

Page 20 of 20Hanson J Cheminform (2016) 8:50

 25. Hanson RM, Lancashire R (2012) Making the connection between
molecular structure and spectroscopy: Jmol, JSpecView, and JCAMP-
MOL. Abstracts of Papers of the American Chemical Society 244

 26. Hanson, RM. JSpecView/JSME/nmrdb/NCI-Resolver demo. http://che-
mapps.stolaf.edu/jmol/jsmol/jsv_predict2.htm

http://chemapps.stolaf.edu/jmol/jsmol/jsv_predict2.htm
http://chemapps.stolaf.edu/jmol/jsmol/jsv_predict2.htm

	Jmol SMILES and Jmol SMARTS: specifications and applications
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Jmol SMILES (Tables 1–3)
	Jmol SMILES general additions (Table 1)
	Jmol SMILES stereochemistry (Tables 2, 3)
	Jmol SMILES directives (Tables 4, 5)
	Jmol SMARTS (Tables 6, 7)
	Jmol SMARTS atom primitives (Table 6)
	Additional Jmol SMARTS features (Table 7)
	Jmol SMARTS directives
	Jmol SMARTS compatibility issues
	Jmol application-specific directives (Table 8)

	Results and discussion
	MMFF94 atom typing
	Practical examples

	Conclusions
	Supplemental material
	Acknowledgements
	References

