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Abstract 

Background:  In previous reports, Marrero‑Ponce et al. proposed algebraic formalisms for characterizing topological 
(2D) and chiral (2.5D) molecular features through atom‑ and bond‑based ToMoCoMD‑CARDD (acronym for Topo‑
logical Molecular Computational Design‑Computer Aided Rational Drug Design) molecular descriptors. These MDs 
codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph‑theoretical 
electronic‑density and edge‑adjacency matrices in order to consider atom‑ and bond‑based relations, respectively. These 
MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications 
ranging from antimalarials, antibacterials, tyrosinase inhibitors and so on. To compute these MDs, a computational 
program with the same name was initially developed. However, this in house software barely offered the functionali‑
ties required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usabil‑
ity impractical. Therefore, the present manuscript introduces the QuBiLS‑MAS (acronym for Quadratic, Bilinear and 
N‑Linear mapS based on graph‑theoretic electronic‑density Matrices and Atomic weightingS) software designed to 
compute topological (0–2.5D) molecular descriptors based on bilinear, quadratic and linear algebraic forms for atom‑ 
and bond‑based relations.

Results: The QuBiLS‑MAS module was designed as standalone software, in which extensions and generalizations of 
the former ToMoCoMD‑CARDD 2D‑algebraic indices are implemented, considering the following aspects: (a) two new 
matrix normalization approaches based on double‑stochastic and mutual probability formalisms; (b) topological con‑
straints (cut‑offs) to take into account particular inter‑atomic relations; (c) six additional atomic properties to be used 
as weighting schemes in the calculation of the molecular vectors; (d) four new local‑fragments to consider molecular 
regions of interest; (e) number of lone‑pair electrons in chemical structure defined by diagonal coefficients in matrix 
representations; and (f ) several aggregation operators (invariants) applied over atom/bond‑level descriptors in order 
to compute global indices. This software permits the parallel computation of the indices, contains a batch processing 
module and data curation functionalities. This program was developed in Java v1.7 using the Chemistry Development 
Kit library (version 1.4.19). The QuBiLS‑MAS software consists of two components: a desktop interface (GUI) and an 
API library allowing for the easy integration of the latter in chemoinformatics applications. The relevance of the novel 
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If I have seen further it is by standing on the shoulders of giants.
Isaac Newton, 1676.

Background
The codification of chemical information using mathe-
matical–computational methods to accelerate small-mol-
ecule drug discovery constitutes one of the fundamental 
tasks of mathematical chemistry [1, 2]. In recent years, 
the number and diversity of molecular features, also 
known as molecular descriptors (MDs), has significantly 
increased and corresponding educational and commer-
cial computational implementations developed [3–9]. 
The absence of an ultimate universal chemical descriptor 
emphasizes the need of defining alternative methods to 
codify relevant and orthogonal chemical information.

In previous reports, Marrero-Ponce et  al. proposed 
algebraic formalisms for characterizing topological (2D) 
and chiral (2.5D) molecular features through atom- and 
bond-based ToMoCoMD-CARDD (acronym for Topo-
logical Molecular Computational Design-Computer Aided 
Rational Drug Design) molecular descriptors [10–13]. These 
MDs codify molecular information based on the bilinear, 
quadratic and linear algebraic forms and the graph-theoret-
ical electronic-density and edge-adjacency matrices in order 
to consider atom- and bond-based relations, respectively. 
The ToMoCOMD-CARDD MDs have been successfully 
applied in the screening of chemical compounds of differ-
ent therapeutic applications ranging from antimalarials [14], 
trichomonacidals [15, 16], antitrypanosomals [17], param-
phistomicides [18], antibacterials [19], tyrosinase inhibitors 
[20, 21] and others [22, 23]. To compute these descriptors, 
a computational program with the same name was devel-
oped. However, this software barely offered the functionali-
ties required in contemporary molecular modeling tasks, in 
addition to the inherent limitations that made its usability 
impractical, for instance: (a) it did not support standard 
input formats (i.e. MDL MOL/SDF files) and the only input 
method for the chemical structures entailed the sketching 

of molecular pseudographs using a built-in manual drawing 
mode; (b) parameter configurations could not be exported 
or saved for posterior experiments; (c) no option for batch 
processing of descriptors was offered; (d) lacked the distrib-
uted computing functionality which permits the correct uti-
lization of current multi-core architectures; (e) could not be 
used as a standalone library thus preventing the its integra-
tion in other applications; and (f) presented ambiguities in 
the labeling of the descriptors’ names in the output file.

In addition, in several mathematical procedures 
employed to compute MDs (e.g. GT-STAF [24, 25], 
DIVATI [26] and QuBiLS-MIDAS [27–30]), the mol-
ecules are not analyzed as a whole, that is, these are par-
titioned in order to univocally characterize each atom 
independently. In this way, several mathematical opera-
tors (also known as aggregation operators) may be applied 
over the atom-level indices to compute different global/
local MDs. The use of several aggregation operators is 
based on the idea that the most suitable global defini-
tion of a system may not necessarily be additive. In fact, 
it is reported in the literature that operators other than 
the sum could yield better correlations with determined 
chemical properties [24–28]. In this sense, in the present 
report strategies are defined to generalize the procedure 
of obtaining global or local QuBiLS-MAS (acronym for 
Quadratic, Bilinear and N-Linear mapS based on graph-
theoretic electronic-density Matrices and Atomic weight-
ingS) indices using the so-called aggregation operators. 
Moreover, several new atom-based properties, chemical 
local-fragments (e.g. terminal methyl groups), distance-
based cut-offs (for the analysis of the most important 
non-covalent or covalent interactions) and probabilistic 
transformations of the matrix representations are intro-
duced. Furthermore, initiatives to deal with the compu-
tational and practical limitations inherent to the original 
ToMoCoMD-CARDD program were carried out, with 
the ultimate goal of improving its applicability in present-
day cheminformatics tasks.

extensions and generalizations implemented in this software is demonstrated through three studies. Firstly, a compar‑
ative Shannon’s entropy based variability study for the proposed QuBiLS‑MAS and the DRAGON indices demonstrates 
superior performance for the former. A principal component analysis reveals that the QuBiLS‑MAS approach captures 
chemical information orthogonal to that codified by the DRAGON descriptors. Lastly, a QSAR study for the binding 
affinity to the corticosteroid‑binding globulin using Cramer’s steroid dataset is carried out.

Conclusions: From these analyses, it is revealed that the QuBiLS‑MAS approach for atom‑pair relations yields similar‑
to‑superior performance with regard to other QSAR methodologies reported in the literature. Therefore, the QuBiLS‑
MAS approach constitutes a useful tool for the diversity analysis of chemical compound datasets and high‑through‑
put screening of structure–activity data.

Keywords: ToMoCoMD‑CARDD, QuBiLS‑MAS, Linear, Bilinear and quadratic indices, Atom/bond‑based molecular 
descriptor, Non‑stochastic, Simple stochastic, Double stochastic, Mutual probability matrices, QSAR, Free and open 
source software
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Theoretical scaffold: past and present
Brief history of algebraic maps‑based indices
The algebraic forms-based topological MDs (0–2.5D) 
are divided into three main families: quadratic, bilinear 
and linear indices [12, 31, 32]. They are distinguished in 
atom-based [33] and bond-based indices [10] depend-
ing on whether they are derived from the atom-based or 
bond-based matrix, respectively. The main diagonal ele-
ments for the atom-based matrix [denominated as non-
stochastic (NS) when it doesn’t involve any normalization 
procedure] describe the presence of loops on graph ver-
tices, which are used to characterize atoms in conjugated 
systems having more than one canonical structure [31, 
34]. Thus, the elements for the kth non-stochastic pseu-
dograph-theoretic electronic-density matrix (Mk

ns) are 
labeled as kmij and defined as follows:

where, i and j represent two vertices (atoms) of the 
molecular pseudograph G, k is the matrix power, E is the 
set of edges of G, Pij is the number of edges (eij) between 
the atoms i and j (e.g. Pij = 3 for a triple covalent bond 
between i and j), and Lij is the number of loops in vi [12, 
13, 31, 33, 35, 36]. Likewise, the coefficients correspond-
ing to the bond-based matrix, Ek

ns, may be defined. In this 
way, the entries evw belonging to Ek

ns are equal to 1 if the 
edge v shares a common vertex with the edge w [37, 38]. 
Moreover, the NS matrix may be normalized by means of 
the simple stochastic (SS) procedure [10], yielding matri-
ces whose row or column coefficients are non-negative 
real numbers which sum up to 1. This mathematical pro-
cedure has been explained in detail elsewhere [13, 18, 
39]. Let us take a simple example of the isonicotinic acid 
structure, and consider its corresponding labeled molec-
ular pseudograph and atom-based matrix [31]. Table  1 
shows the non-stochastic (NS) matrix for the isonicotinic 
acid structure for k = 0, 1, 2.

To compute the algebraic form-based indices, the 
molecular vector concept is employed, which uses 
atom-based properties as weighting schemes. Thus, 
atomic properties (e.g. mass, polarizability, electron-
egativity according to Pauling’s scale and Van der 
Waals volume) may be considered [11, 12]. In this 
way, the molecular structures may be represented 
as vectors. For instance, the Isonicotinic Acid mol-
ecule may be represented by the molecular vector 
x̄ = [xN1, xC2, xC3, xC4, xC5, xC6, xC7, xO8, xO9], where 
x̄ ∈ R

9 (i.e. considering an H-atoms suppressed molecu-
lar graph). Table  1 shows the Pauling electronegativ-
ity-based molecular vector for Isonicotinic acid. The 
weighting scheme for the bond-based molecular vector 

(1)kmij =







Pij if i �= j
�

∃ eij: eij ∈ E
Lij if i = j

�

∃ eij: eij ∈ E
0 otherwise

is built with values computed from the properties corre-
sponding to the atoms that each bond connects [10, 13, 
20, 40]:

where, wij constitutes the weighting scheme computed 
for the edge eij , wi and wj are the atomic weights (e.g. 
electronegativity) for atoms i and j forming the consid-
ered bond (eij), δi and δj are the corresponding vertex 
degrees which also account for bond multiplicity. Moreo-
ver, in order to codify information on the 3D structure of 
the molecule, a trigonometric 3D-chirality correction fac-
tor is applied to the molecular vectors aforementioned, 
which has been comprehensively explained in several 
reports [40–42].

From the previous molecular vectors and matrix for-
malisms, the algebraic calculation of the NS and SS total 
(whole-molecule) bilinear indices may be condensed in 
the following equations, for atom- (see Eq. 3) and bond-
based (see Eq. 4) indices, respectively:

where, n (or m) is the number of atoms (or bonds) in the 
molecule, k = 1, 2, …15 is the matrix power, mk

ij (or ekij ) 
represents the elements of the Mk

ns,ss (or Ek
ns,ss) non-

stochastic (ns) and simple stochastic (ss) matrices, and 
xi and yj are the elements of the x̄ and ȳ atom-based (or 
bond-based) property vectors. On one hand, when the 
vectors x̄ and ȳ encode the same atomic property (i.e. 
x̄ = ȳ), the Eqs. 3 and 4 define the NS and SS total atom-
based and bond-based quadratic indices, respectively. On 
the other hand, if x̄ is a vector with all entries equal to 
1 and ȳ an atom/bond-based property vector, then the 
Eqs. 3 and 4 define the NS and SS total atom-based and 
bond-based linear indices, respectively.

In addition, local-fragment (group or atom-type) quad-
ratic, bilinear and linear atom/bond-based indices can be 
defined to characterize a predetermined molecular frag-
ment (F) instead of the whole molecule (total indices). 
These are computed using the kth local-fragment matrix 
FM

k (FEk), which is computed from the corresponding 
kth total matrix Mk (Ek) considering only those vertices 
(or edges) belonging to the selected molecular fragment. 
These fragments F may be heteroatoms (X), halogens (G) 

(2)wij =
wi

δi
+

wj

δj

(3)

ns,ssbk
(

x̄, ȳ
)

=

n
∑

i=1

n
∑

j=1

mk
ijx

iyj = (x̄)T

×M
k
ns,ss × ȳ ∀k = 1, 2, . . . , 15

(4)

ns,ss
e bk

(

x̄, ȳ
)

=

m
∑

i=1

m
∑

j=1

ekijx
iyj = (x̄)T × E

k
ns,ss

× ȳ ∀k = 1, 2, . . . , 15
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and H-bond donors (N or O atoms sharing a bond with 
an H-atom, labeled as D) [10, 34, 36]. Thus, NS and SS 
local-fragment atom/bond-based bilinear, quadratic and 
linear indices can be computed using the FMk and FEk 
local-fragment matrices instead of the corresponding 
total matrices in the Eqs. 3 and 4.

It is important to remark that for each partitioning of 
a molecule into Z molecular exclusive fragments, there 
will be Z local-fragment matrices. In this case, if a mol-
ecule is partitioned into Z molecular fragments, then the 
original kth power of matrix Mk

ns,ss (or Ek
ns,ss) is exactly 

the sum of the kth power of the local-fragment matri-
ces. Consequently, the total algebraic form-based indices 
are the sum of the exclusive contributions of the respec-
tive local-fragment algebraic form-based indices, as long 
as there is not overlap among the fragments. Therefore, 

taking into consideration the previous elements, the next 
sections address in detail the improvements related with 
the mathematical definition corresponding to the 2D 
algebraic indices introduced by Marrero-Ponce et al. [10, 
31, 32, 43, 44].

The QuBiLS‑MAS MDs: new definitions, generalization 
and extension of algebraic indices
As previously explained, up to date, the 2D atom/bond-
based algebraic indices have been computed as whole-
molecule (total) indices or from specific chemical groups 
(local indices), where the simplest fragment could be the 
atom itself, known as a LOcal Vertex Invariant (LOVI) 
and in case of a bond as LOcal Edge Invariant (LOEI). 
In this manuscript the LOVEIs term is adopted to refer 
both LOVIs and LOEIs of a molecule, and is denoted as 

Table 1 The molecular structure and the atom adjacency stochastic (ss) and non-stochastic (ns) matrices for the k = 0, 1, 2 corresponding 
to the Isonicotinic Acid

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3.04
2.55
2.55
2.55
2.55
2.55
2.55
3.44
3.44⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Isonicotinic Acid
Molecular Structure

Molecular Pseudograph
(Hydrogen Atoms Suppressed)

Molecular column vector
based on Electronegativity

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1 0 0 1 0 1 0 0 0
0 1 1 1 0 0 0 0 0
0 1 1 0 1 0 1 0 0
1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 2 1
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0 0

3 1 0 2 1 2 0 0 0
1 3 2 2 1 0 1 0 0
0 2 4 1 2 1 1 2 1
2 2 1 3 0 1 0 0 0
1 1 2 0 3 2 1 0 0
2 0 1 1 2 3 0 0 0
0 1 1 0 1 0 6 0 0
0 0 2 0 0 0 0 4 2
0 0 1 0 0 0 0 2 1

= = = = =

0.33 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00
0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.00
0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00
0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00
0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.25
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.33 0.11 0.00 0.22 0.11 0.22 0.00 0.00 0.00
0.10 0.30 0.20 0.20 0.10 0.00 0.10 0.00 0.00
0.00 0.14 0.29 0.07 0.14 0.07 0.07 0.14 0.07
0.22 0.22 0.11 0.33 0.00 0.11 0.00 0.00 0.00
0.10 0.10 0.20 0.00 0.30 0.20 0.10 0.00 0.00
0.22 0.00 0.11 0.11 0.22 0.33 0.00 0.00 0.00
0.00 0.11 0.11 0.00 0.11 0.00 0.67 0.00 0.00
0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.25
0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.25

= =
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L. Therefore, if a molecule is comprised of n atoms or 
m bonds then the kth total bilinear, quadratic and lin-
ear indices for each atom “a” (known as total atom-level 
index) or each bond “e” (known as total bond-level index) 
may be computed as two-linear algebraic forms (maps) in 
R
n, in a canonical basis set, and whose values are compo-

nents (entries) of the vector L denoted as La and Le for 
atom- and bond-level indices, respectively. In this way, 
the kth total atom-level and bond-level bilinear indices 
are mathematically defined as follows, respectively:

where x1, …, xn(m) and y1, …, yn(m) are the coordinates or 
components of the molecular vectors x̄ and ȳ [45]. To 
compute these molecular vectors the following atomic 
properties have been selected: (1) atomic mass, (2) the 
Van der Waals volume, (3) the atomic polarizability, (4) 
atomic electronegativity according to Pauling scale, (5) 
atomic Ghose–Crippen LogP, (6) atomic Gasteiger–
Marsili charge, (7) atomic polar surface area, (8) atomic 
refractivity, (9) atomic hardness and (10) atomic soft-
ness. These properties are calculated using the CDK 
library [9]. Note that when x̄ = ȳ atom- and bond-level 
quadratic indices are obtained [i.e. qLa = qa,k(x̄, x̄) and 
qLe = qe,k(x̄, x̄)], while if all coefficients of x̄ are equal 
to 1 then linear indices for atoms (or bonds) may be 
obtained [i.e. fLa = f a,k

(

ū, ȳ
)

 and fLe = f e,k
(

ū, ȳ
)

].
The coefficients mij

a,k (see Eq. 5) are the elements corre-
sponding to the kth NS (or SS) total atom-level pseudo-
graph-theoretic electronic-density matrix [NS(SS)-GEDM] 
M

a,k for atom “a”, while the entries ee,kij  (see Eq. 6) belong-
ing to kth NS (or SS) total bond-level edge-adjacency 
matrix [NS(SS)-EAM] Ee,k for bond “e”. These atom/bond-
level coefficients are obtained from the entries mij

k of the 
M

k total matrix and ekij of the Ek total matrix, respectively, 
using the described procedure to compute local-fragment 
matrices but considering the fragment F as an atom “a” or 
bond “e” of the molecule. Moreover, the diagonal coeffi-
cients mii

1 could have two distinct values in order to achieve 
greater discrimination of molecular structures: (1) aromatic 
ring sensibility for setting up aromatic atoms hooked on full 
aromatic rings instead of mapping individual atom loops as 
shown in the molecular pseudograph of the Table 1, and/or 
(2) the number of lone-pairs for each atom. The e1ii entries 
are always zero.

(5)
bLa = ba,k

(

x̄, ȳ
)

=

n
∑

i=1

n
∑

j=1

m

a,k
ij xiyj

= (x̄)T ×M
a,k

× ȳ ∀a = 1, 2, . . . , n

(6)
bLe = be,k

(

x̄, ȳ
)

=

m
∑

i=1

m
∑

j=1

e
e,k
ij xiyj

= (x̄)T × E
e,k

× ȳ ∀e = 1, 2, . . . ,m

It is important to highlight that as an extension of the 
former ToMoCoMD 2D-MDs several local-fragments 
have been aggregated: H-bond acceptors (A), carbon 
atoms in aliphatic chains (C), H-bond donors (D), halo-
gens (G), terminal methyl groups (M), carbon atoms in 
an aromatic portion (P) and heteroatoms (X). Thus, from 
these local-fragments the kth NS (or SS) local-fragment 
atom-level pseudograph-theoretic electronic-density 
matrices FMa,k for atom “a” and the kth NS (or SS) 
local-fragment bond-level edge-adjacency matrices FEe,k 
for bond “e”, may be computed. Consequently, local-frag-
ment atom- and bond-level bilinear, quadratic and lin-
ear indices are determined from the Eqs.  5 and 6 using 
FM

a,k and FEa,k as matrix forms, respectively. Note 
that the coefficients Fm a,k

ij ∈ FM
a,k and F ee,kij ∈ FE

e,k 
are calculated from the elements Fm

k
ij ∈ FM

k and 
F e

k
ij ∈ FE

k , respectively.
In addition, two normalization procedures are intro-

duced as novel extensions. The atom-based simple sto-
chastic scheme defined in the original ToMoCoMD 
2D-MDs [18, 39, 43] describes changes in the electron 
distribution over time throughout the molecular back-
bone. This SS matrix is not symmetrical and the prob-
ability for atom i to interact with atom j is different from 
the probability for the atom j to interact with the atom i. 
Therefore, with the aim of balancing the probabilities in 
both senses a double-stochastic (DS) matrix is employed, 
that is, a matrix with real non-negatives entries whose col-
umn and row sums are equal to one. In this way, the kth 
total (or local-fragment) DS graph-theoretical electronic-
density (DS-GEDM, (F)Mk

ds) and edge-adjacency (DS-
EAM, (F)Ek

ds) matrix approaches can be calculated from 
the corresponding Mk

ns and Ek
ns matrices, respectively, 

using the Sinkhorn–Knopp algorithm [46]. Addition-
ally, the kth total (or local-fragment) mutual probability 
(MP) graph-theoretical electronic-density matrix (MP-
GEDM, (F)Mk

mp) and edge-adjacency matrix (MP-EAM, 
(F)E

k
mp) are introduced. The mutual probability matrices 

are obtained dividing each entry between the total sum of 
their elements, in this way, symmetrical matrices where 
the total sum is equal to 1 are obtained. The Scheme  1 
shows the steps followed in the computation of the NS-, 
SS-, DS- and MP-GEDMs, while Tables 2 and 3 illustrate 
the calculation of these matrices with and without taking 
in consideration the lone-pair electrons.

Lastly, in order to obtain the global kth total (or local-
fragment) bilinear, quadratic and linear indices from the 
corresponding atom-level (La) or bond-level (Le) defini-
tions, the summation operator is used. The global indices 
obtained using this operator over components of vector L 
coincide with those indices calculated through the origi-
nal procedure vector–matrix–vector detailed in Eqs.  3 
and 4. Note that the summation operator is equivalent 
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to the Manhattan norm applied to elements of the vec-
tor L relative to the origin, which is in turn a specific 
case of Minkowski norm when p =  1. Motivated by this 
understanding, a generalization in which different p val-
ues are used, i.e. p = 2 and 3, where the former (p = 2) is 
the Euclidean norm (see Additional file  1: Figure SI1 for 
geometrical interpretation) was introduced. Additionally, 
other operators (see Additional file 1: Table SI2) applica-
ble to the vector of LOVEIs were applied with the aim of 
generalizing the use of the linear combination to obtain 
global indices. It has been demonstrated in several reports 
[24–28] that better correlations for bioactivities may be 
attained when operators other than the sum are employed.

Neighborhood topological constraints in the 
graph‑theoretical electronic‑density and edge‑adjacency 
matrix
The (F)Mk and (F)Ek matrices contain information on 
the connectivity for all atoms and bonds that consti-
tute a molecule, respectively. However, some biological 
properties do not depend on the chemical structure as 

a whole but rather on interactions at particular topo-
logical distances, for example, short-, middle- and 
large-range contacts. Thus, with the aim of consider-
ing interactions that satisfy specific topological criteria, 
three graph-theoretical constraints (cut-offs) are intro-
duced: (1) keeping only the diagonal elements of the 
matrix, denoted as “Self-Returning Walks” (SRW), (2) 
keeping only the off-diagonal elements of the matrix, 
denoted as “Non-Self-Returning Walks” (NSRW), and 
(3) keeping only the elements within a given interval, 
based on the topological distance for a path cut-off, 
denoted as Lag p.

The application of these cut-offs over the matrices 
(F)M

k and (F)Ek yields the following representations: the 
Self-Returning Walks matrices (i.e. srw(F )M

k and srw(F )E
k ), 

the non-Self-Returning Walks matrices (i.e. nsrw(F ) M
k and 

nsrw
(F ) E

k), and the topological path cut-off matrices (i.e. 
p
(F )M

k and p(F )E
k), respectively. The coefficients p(F )m

1 
and p(F )e

1 belonging to these last matrices, respectively, 
are defined as follows:

Schema 1 The stages involved in the computation of the NS‑, SS‑, DS‑, and MP‑pseudograph‑theoretical electronic‑density matrices
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where, pij is a user-defined topological distance thresh-
old, and min and max are the minimum and maximum 

(7)
p

(F )m
k
[

p

(F )e
k
]

=

{

(F )m
k
[

(F )e
k
]

if pmin ≤ pij ≤ pmax

0 otherwise

cut-off values (rank). Table 4 shows an illustrative exam-
ple where three topological constraints are calculated for 
an atom-level matrix. A custom cut-off allows to distin-
guish the interaction types, for example, when a topo-
logical graph-theoretical cut-off is applied, then atomic 

Table 2 The molecular structure considering lone-pair electrons (n) for the first and second powers of the molecular pseudograph’s 
atom adjacency mutual probability (mp), non- (ns), double (ds)- and stochastic (ss) matrices for Isonicotinic Acid

2 0 0 1 0 1 0 0 0
0 1 1 1 0 0 0 0 0
0 1 1 0 1 0 1 0 0
1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 2 1
0 0 0 0 0 0 2 2 0
0 0 0 0 0 0 1 0 2

6 1 0 3 1 3 0 0 0
1 3 2 2 1 0 1 0 0
0 2 4 1 2 1 1 2 1
3 2 1 3 0 1 0 0 0
1 1 2 0 3 2 1 0 0
3 0 1 1 2 3 0 0 0
0 1 1 0 1 0 6 4 2
0 0 2 0 0 0 4 8 2
0 0 1 0 0 0 2 2 5

Isonicotinic Acid displaying 
Lone-pairs Electrons

,
=

,
=

0.50 0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00
0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.00
0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00
0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00
0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.50 0.25
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.67

0.44 0.00 0.00 0.28 0.00 0.28 0.00 0.00 0.00
0.00 0.36 0.28 0.36 0.00 0.00 0.00 0.00 0.00
0.00 0.28 0.22 0.00 0.28 0.00 0.22 0.00 0.00
0.28 0.36 0.00 0.36 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.28 0.00 0.36 0.36 0.00 0.00 0.00
0.28 0.00 0.00 0.00 0.36 0.36 0.00 0.00 0.00
0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.49 0.29
0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.51 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.71

0.06 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00
0.00 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00
0.00 0.03 0.03 0.00 0.03 0.00 0.03 0.00 0.00
0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00
0.03 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00
0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.06 0.03
0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.06

,
=

,
=

,
=

0.43 0.07 0.00 0.21 0.07 0.21 0.00 0.00 0.00
0.10 0.30 0.20 0.20 0.10 0.00 0.10 0.00 0.00
0.00 0.14 0.29 0.07 0.14 0.07 0.07 0.14 0.07
0.30 0.20 0.10 0.30 0.00 0.10 0.00 0.00 0.00
0.10 0.10 0.20 0.00 0.30 0.20 0.10 0.00 0.00
0.30 0.00 0.10 0.10 0.20 0.30 0.00 0.00 0.00
0.00 0.07 0.07 0.00 0.07 0.00 0.40 0.27 0.13
0.00 0.00 0.13 0.00 0.00 0.00 0.25 0.50 0.13
0.00 0.00 0.10 0.00 0.00 0.00 0.20 0.20 0.50

0.35 0.08 0.00 0.24 0.08 0.24 0.00 0.00 0.00
0.08 0.34 0.16 0.22 0.11 0.00 0.08 0.00 0.00
0.00 0.16 0.24 0.08 0.16 0.08 0.06 0.12 0.08
0.24 0.22 0.08 0.34 0.00 0.11 0.00 0.00 0.00
0.08 0.11 0.16 0.00 0.34 0.22 0.08 0.00 0.00
0.24 0.00 0.08 0.11 0.22 0.34 0.00 0.00 0.00
0.00 0.08 0.06 0.00 0.08 0.00 0.37 0.24 0.17
0.00 0.00 0.12 0.00 0.00 0.00 0.24 0.47 0.17
0.00 0.00 0.08 0.00 0.00 0.00 0.17 0.17 0.58

0.06 0.01 0.00 0.03 0.01 0.03 0.00 0.00 0.00
0.01 0.03 0.02 0.02 0.01 0.00 0.01 0.00 0.00
0.00 0.02 0.04 0.01 0.02 0.01 0.01 0.02 0.01
0.03 0.02 0.01 0.03 0.00 0.01 0.00 0.00 0.00
0.01 0.01 0.02 0.00 0.03 0.02 0.01 0.00 0.00
0.03 0.00 0.01 0.01 0.02 0.03 0.00 0.00 0.00
0.00 0.01 0.01 0.00 0.01 0.00 0.06 0.04 0.02
0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.07 0.02
0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.05

,
=

,
=

,
=

Table 3 The zero, first and second powers of the molecular pseudograph’s atom adjacency double stochastic and mutual probability 
matrices for Isonicotinic Acid

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

0.33 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00
0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00
0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00
0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.71
0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00

0.33 0.11 0.00 0.23 0.11 0.23 0.00 0.00 0.00
0.11 0.31 0.14 0.22 0.10 0.00 0.11 0.00 0.00
0.00 0.14 0.20 0.08 0.14 0.08 0.08 0.14 0.14
0.23 0.22 0.08 0.36 0.00 0.12 0.00 0.00 0.00
0.11 0.10 0.14 0.00 0.31 0.22 0.11 0.00 0.00
0.23 0.00 0.08 0.12 0.22 0.36 0.00 0.00 0.00
0.00 0.11 0.08 0.00 0.11 0.00 0.70 0.00 0.00
0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.43 0.43
0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.43 0.43

=
= =

0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11

0.04 0.00 0.00 0.04 0.00 0.04 0.00 0.00 0.00
0.00 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00
0.00 0.04 0.04 0.00 0.04 0.00 0.04 0.00 0.00
0.04 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00
0.04 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.00
0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.08 0.04
0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00

0.04 0.01 0.00 0.02 0.01 0.02 0.00 0.00 0.00
0.01 0.04 0.02 0.02 0.01 0.00 0.01 0.00 0.00
0.00 0.02 0.05 0.01 0.02 0.01 0.01 0.02 0.01
0.02 0.02 0.01 0.04 0.00 0.01 0.00 0.00 0.00
0.01 0.01 0.02 0.00 0.04 0.02 0.01 0.00 0.00
0.02 0.00 0.01 0.01 0.02 0.04 0.00 0.00 0.00
0.00 0.01 0.01 0.00 0.01 0.00 0.07 0.00 0.00
0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.05 0.02
0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01

=
= =
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indices could be calculated for atoms separated by 1 step 
(covalent interactions) or for those atoms separated by 
more than 1 step (p ≥ 2). The present approach could be 
viewed as a threshold that generalizes the use of lag p in 
2D-Moreau–Broto autocorrelations [1]. Likewise, these 
matrices based on cut-offs may be employed to deter-
mine the corresponding atom-level and bond-level repre-
sentations to be used in the calculation of QuBiLS-MAS 
2D-MDs. In Scheme 2, a complete workflow to compute 
the QuBiLS-MAS indices is represented.

The QuBiLS-MAS module
The QuBiLS-MAS module was designed as standalone 
software, with the extensions and generalizations dis-
cussed in “The QuBiLS-MAS MDs: new definitions, gen-
eralization and extension of algebraic indices” section. 
This software was developed in Java v1.8 and the Chem-
istry Development Kit (CDK) library (version 1.4.19) [9] 
was used in the manipulation of the chemical structures, 
as well as in determining the atom- and fragment-based 

chemical properties involved in the calculation process. 
The QuBiLS-MAS software is comprised of a front-end 
and back-end. The front-end is composed of a desktop 
and command-line user interface, while the back-end is 
developed as an Abstract Programming Interface (API) 
to enable its use as an independent Java library in the 
development of other cheminformatics applications or 
in the implementation of other user-friendly interfaces 
either graphical or command-line based. With these two 
components, independence between the software pres-
entation layer and the processing logic implemented 
in the back-end is achieved and thus, any modification 
in the latter does not provoke changes in the front-end 
(GUI), and vice versa.

Back‑end: the QuBiLS‑MAS molecular descriptors 
library‑computational complexity of algorithms
All the requests performed by the users through the GUI 
are processed by the QuBiLS-MAS library. This compo-
nent is structured in packages according to the goals of 

Table 4 First, second and third order NS—matrices for Isonicotinic Acid, obtained by applying three types of topological constraints 
(cut-off): Self-Returning Walks (SRW), Non-Self-Returning Walks (NSRW) and a topological path cut‑off distance from 2 to 5 (LAG [2–5])

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0
1 0 2 1 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 [ − ]

1 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 3 0 0 0 0
0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 3

0 0 2 1 0 0 0 0 0
0 0 0 1 1 0 0 0 1
2 0 0 2 0 0 0 0 0
1 1 2 0 2 1 0 1 2
0 1 0 2 0 2 1 0 1
0 0 0 1 2 0 2 1 0
0 0 0 0 1 2 0 2 1
0 0 0 1 0 1 2 0 2
0 1 0 2 1 0 1 2 0

0 0 2 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1
2 0 0 2 0 0 0 0 0
1 0 2 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0
0 1 0 0 1 0 1 0 0

[ − ]

0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0
0 0 0 0 7 0 0 0 0
0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 7 0 0
0 0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 0 7

0 6 0 1 1 0 0 0 1
6 0 12 9 2 1 0 1 2
0 12 0 2 2 0 0 0 2
1 9 2 0 7 3 2 3 7
1 2 2 7 0 6 3 2 3
0 1 0 3 6 0 6 3 2
0 0 0 2 3 6 0 6 3
0 1 0 3 2 3 6 0 6
1 2 2 7 3 2 3 6 0

0 0 0 1 1 0 0 0 1
0 0 0 0 2 1 0 1 2
0 0 0 2 2 0 0 0 2
1 0 2 0 0 3 2 3 0
1 2 2 0 0 0 3 2 3
0 1 0 3 0 0 0 3 2
0 0 0 2 3 0 0 0 3
0 1 0 3 2 3 0 0 0
1 2 2 0 3 2 3 0 0

[ − ]
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the functionalities (see Additional file  1: Figure SI3 for 
UML diagram). The main package is tomocomd.cardd.
qubils which contains the packages descriptors, matri-
ces, metrics and workers that encapsulate the main con-
cepts utilized in the definition of the QuBiLS-MAS MDs. 
The descriptors package includes the classes related to 
the calculation of the total and local-fragment bilin-
ear, quadratic and linear algebraic maps. The matrices 
package contains the objects responsible for building 
the pseudograph-theoretic electronic-density matrix and 
the edge-adjacency matrix corresponding to atom- and 
bond-based representations, respectively. Additionally, 
the simple-stochastic, double-stochastic and mutual 
probability normalization strategies, as well as the topo-
logical constraints (cut-offs) are defined in this package. 
The tools package includes classes for the identification 
of the local-fragments, as well as the considered aggrega-
tion operators. Lastly, the workers package comprises the 
classes for the configuration and control of the algebraic 
MDs calculation process.

The algorithms responsible for performing the multi-
plication based on bilinear, quadratic and linear algebraic 
forms constitute the principal procedures to compute the 
QuBiLS-MAS indices. This procedure consists of a loop 

that iterates for each atom of the molecule to determine 
the corresponding atom- or bond-level matrix. Next the 
atom/bond-level matrices are multiplied by the corre-
sponding property vectors in order to obtain the atom/
bond-level indices. The corresponding sequential imple-
mentations have a computational complexity of O(n3). 
Nonetheless, when the atom/bond-level matrices are 
computed according to the mentioned procedure, it is 
noted that the only entries with values different from 
zero correspond to the atom with respect to which the 
atom/bond-level matrix is built. Therefore, instead of 
iterating for each atom in order to build the atom/bond-
level matrix used posteriorly to determine the corre-
sponding index, it is more suitable to compute the atom/
bond-level indices at the same time as the original matrix 
is analyzed. Taking this into account, the algorithms have 
been optimized to an inferior polynomial order, achiev-
ing a complexity of O(n2) in the computation of the atom/
bond-based contributions for the QuBiLS-MAS indices.

Graphic user interface of the QuBiLS‑MAS software
To facilitate the calculation of the QuBiLS-MAS MDs, 
a friendly Desktop GUI was developed in order to 
provide a simple and intuitive way to configure the 

Schema 2 Workflow followed in the computation of the ToMoCoMD‑CARDD QuBiLS‑MAS MDs
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different parameters used, such as: algebraic forms, 
matrix approaches, atomic properties, topological cut-
offs and so on. Figure  1 shows the main GUI and the 
dialog windows designed to configure some of these 
parameters. These configuration sections allow the users 
to personalize the bilinear, quadratic and linear indices 
according to their necessities and thus predefined MDs 
are not calculated.

In the “Algebraic Form” panel, the specific algebraic 
maps to be used in the computation of the MDs are cho-
sen according to the selected option in the “Constraints” 
panel, which could be atom-based or bond-based. Also, 
chirality detection may be configured in the “Constraints” 
panel. The matrix normalization formalisms (MP, NS, 
SS, and DS) used in the algebraic forms are configured 
in the “Matrix Form” panel, as well as the maximum 
order (k value) to which the coefficients of the matrices 
are raised. In the “Cut-Off” panel the option to “keep all” 
(KA) atomic interactions is selected by default, but other 
options [i.e. “Self-Returning Walks” (SRW), “Non-Self-
Returning Walks” (NSRW) and/or the value-rank(s) of 
threshold p] may be considered to take into account only 

the non-covalent interactions according to the estab-
lished criterion. The “Local-Fragments” panel contains 
the options to configure the seven chemical groups (or 
atom-types) that may be employed to compute either the 
total or local-fragment indices. Likewise, in the “Proper-
ties” panel the atomic properties used to setup different 
weighting schemes are chosen. Finally, the mathemati-
cal operators used to compute the global total or local 
indices from the atomic contributions are selected in the 
“Invariants” panel.

It is important to highlight that the selected options 
to compute the descriptors can be exported into an 
XML configuration file, called the project file, which can 
be used to calculate the same QuBiLS-MAS indices for 
other datasets when the software is run again. Another 
important feature is that the software can be executed 
on computer clusters using a command-line interface, 
which uses the project files to obtain the configuration of 
the indices to be computed. Also, the QuBiLS-MAS soft-
ware has incorporated the “On/Off H-Atoms” option to 
consider (or not) the H-atoms during the calculation, the 
“On/Off Lone-Pair Electron” option to consider (or not) 

Fig. 1 Main graphic user interface for QuBiLS‑MAS software (a) and dialog windows to configure the following parameters: invariants or aggrega‑
tion operators (b), atom properties (c) and local‑fragment chemical groups (d)
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the number of lone-pairs for heteroatoms and the “Show 
Debug Report” option to track the algebraic processes 
that take place during the calculation (see Additional 
file 1: SI4).

The supported input file format for the chemical struc-
tures to be analyzed is the MDL MOL/SDF format and 
these are sequentially read in order to employ suitable 
memory allocation according to the size of the molecule. 
Moreover, the path of the output file may be specified 
where the values of the computed MDs are saved. To this 
end, the QuBiLS-MAS software supports the following 
output file formats: CSV, ARFF, and TXT (space- and tab-
separated ASCII format) which are easily interpretable in 
popular statistical and/or machine learning software.

The calculation procedure is monitored in real time 
through the main interface and controlled with the inter-
active mode of the GUI. Indeed, more than one project 
file can be calculated over different datasets. This is a fea-
ture implemented in the QuBiLS-MAS software encap-
sulated into a batch processing module, which is useful 
for carrying out high-throughput and routine MD calcu-
lations. This module is designed to manage the configu-
ration of up to eight independent tasks (see Additional 
file  1: SI5), where each task consists of one or several 
datasets for which one or several projects files previ-
ously saved with the QuBiLS-MAS GUI may be com-
puted. Finally, a module for chemical structure curation 
tasks was incorporated, taking into account Tropsha’s 
guidelines [47]. Table  5 shows a comparison between 
the old [48] ToMoCOMD software and the present one 
(QuBiLS-MAS module), highlighting the numerous 
functionalities incorporated. Table 6 compares the char-
acteristics for common molecular descriptor calculating 
software and including the QuBiLS-MAS program, spec-
ifying the respective strengths and weaknesses. 

Assessment of the performance of the QuBiLS-MAS 
descriptors
Information content analysis based on Shannon’s entropy
Shannon’s entropy (SE) quantifies the information con-
tent codified by molecular indices, according to the 
principle that variables that effectively discriminate all 
molecules in a dataset possess high entropy values, while 
redundant variables have low entropy values. To perform 
this study, the Spectrum dataset (http://www.msdiscov-
ery.com/spectrum.html) comprised by 1963 structures 
was used. The highest SE for this dataset is equal to 10.93 
bits  (log2N, where N is the number of compounds). In the 
following subsections the novel QuBiLS-MAS 2D-MDs 
are analyzed taking into account the proposed internal 
generalizations, as well as with respect to well-known 
MDs computed by other software. For this study, the 
IMMAN software was used [49].

Comparative variability analysis according to the matrix 
formalisms
The four matrix schemes defined in the present report 
are analyzed. To this end, 880 MDs are calculated for 
each matrix. Figure  2 shows similar entropy distribu-
tions for the non-, double- and simple-stochastic matrix 
approaches, while the best behavior is obtained with the 
mutual probability approach. The superior performance 
of the mutual probability formalism with respect to the 
other three matrix transformations justifies the theoreti-
cal contribution of this scheme in the computation of the 
QuBiLS-MAS 2D-MDs.

Analysis of variability according to the aggregation 
operators
The aim of this section is to evaluate the variability of the 
QuBiLS-MAS 2D-indices according to the mathematical 
operators used over the vector of LOVEIs. In this study, 
the aggregation operators classified as norms, means 
and statistical invariants are compared. To this end, 110 
atom-based linear indices for each operator were calcu-
lated and the results are shown Fig. 3. As it can be noted, 
the best results are achieved by the Potential Mean, 
Quadratic Mean and Standard Deviation operators with 
71, 67, 66 and 65% of the total variables having entropy 
values greater than 9.0 bits (82% of the maximum 
entropy), respectively. Moreover, the indices based on 
the Manhattan (sum of LOVEIs) and Minimum opera-
tors present the worst performance, while the remaining 
distributions have similar behavior. This result suggests 
that the generalization of the linear combination of 
LOVIEs to consider other aggregation operators yields 
variables with greater information content, and thus, it 
should contribute to a greater modeling capacity for the 
QuBiLS-MAS MDs.

Variability analysis of QuBiLS‑MAS 2D‑indices 
versus DRAGON descriptor families
The purpose of this analysis is to compare the entropy 
of the QuBiLS-MAS 2D-MDs with the DRAGON 
descriptor families. To perform this study some 
DRAGON descriptor-blocks were clustered into bigger 
families: (1) 0D_others for molecular properties, con-
stitutional and charge descriptors, (2) 1D-fragment for 
functional group counts and atom-centered fragments, 
(3) 2D-conn_autocorr_inf for 2D autocorrelations, con-
nectivity and information indices, (4) 2D-edge_walk 
for edge adjacency indices, walk and path counts, (5) 
2D-eigenvalues for Burden eigenvalues, topological 
charge and eigenvalues-based indices, and (6) 3D-Ran-
dic_geometrical for Randic molecular profiles and geo-
metrical descriptors. The remaining DRAGON families 
were kept with the same denominations. The maximum 

http://www.msdiscovery.com/spectrum.html
http://www.msdiscovery.com/spectrum.html
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number of descriptors considered for each family is 91, 
which corresponds to the 0D_others family that has the 
least number of MDs.

As it can be observed in Fig.  4, the QuBiLS-MAS 
2D-MDs show the best overall performance with 
all the considered indices presenting entropy values 

Table 5 Comparison between the old software (TOMOCOMD) and the new one proposed in this report (QuBiLS-MAS)

Features Computer program

TOMOCOMD QuBiLS‑MAS

Description level

Theoretical

 Algebraic form maps 3 (quadratic, bilinear and linear)

 Atom and Bond level Yes Yes

 Matrices 2 (NS, SS) 4 (NS, SS, DS, MP)

 Atom Weightings 4 (M, V, P, E) 10 (M, V, P, E, A, C, PSA, R, H, S)

 Local‑fragments 3 (D, G, X) 7 (A, C, D, G, M, P, X)

 Chirality YES, c = ±1 YES, extended to c = ±0.25 to ±3 with a 0.25 step

 Lone‑pair electrons – Yes

 Topological constraints – Yes, three cut‑off types (SRW, NSRW, Lag P)

 H‑atoms consideration – Yes, permits inclusion or removal

 Invariants or aggregation operators – Yes, 21 aggregation operators classified in four major groups

Computational

 Open source – Yes, under LGPL

 Availability Shareware Freeware

 Programming language Borland Delphi Java

 Clear Object‑oriented source code design – Yes

 Canonical namespace packages structure – Yes, under com.tomocomd.qublis.

 Target operating system(OS) Microsoft Windows Platform‑independent

 Graphical user interface Yes Yes

 Command line – Yes

 Portable MDs library – Yes, as pre‑compiled Java JAR file

 Supported input format In‑house file format mol/sdf MDL

 Output format Text File (TSV) Text File (TSV, SSV, CSV), Weka (ARFF)

 Structure curation and cleaning – Yes, available under Structure menu item (with 10 check/cleaning tasks, 
H‑atoms handling, and function for chemical formats conversion)

 Built‑in example data – Yes, six chemical datasets

 Unique MD header – Yes, identifying the codification scheme

 Batch Processing mode – Yes

 Parallelized computing – Yes, using the Fork/Join framework

 Configurable projects – Yes

 Import/export configuration – Yes, using a XML file format

 Calculation progress – Yes, for descriptors and molecules

 Real‑time memory monitor – Yes, with garbage collection option when desired

 Events logging – Yes, accessible through the History Tab

 Calculation report – Yes

 Runtime help accessibility – Yes

 User owner’s manual – Yes

 Online webpage – Yes http://www.tomocomd.com/qubils

Matrices Non‑stochastic (NS), simple stochastic (SS), double stochastic (DS) and mutual probability (MP). Atom weightings (atomic properties) (1) atomic mass (M), 
(2) the Van der Waals volume (V), (3) the atomic polarizability (P), (4) atomic electronegativity according to Pauling scale (E), (5) atomic Ghose–Crippen LogP (A), (6) 
atomic Gasteiger–Marsili charge (C), (7) atomic polar surface area (PSA), (8) atomic refractivity (R), (9) atomic hardness (H), and (10) atomic softness (S). Local-fragments 
(atom-type and/or group-type) H‑bond acceptors (A), carbon atoms in aliphatic chains (C), H‑bond donors (D), halogens (G), terminal methyl groups (M), carbon atoms 
in an aromatic portion (P) and heteroatoms (X). Chirality trigonometric 3D‑chirality correction factor (c). Topological constraints (cut-offs) (1) keeping only the diagonal 
elements of the matrix, denoted as “Self‑Returning Walks” (SRW), (2) keeping only the offdiagonal elements of the matrix, denoted as “Non‑Self‑Returning Walks” 
(NSRW), and (3) keeping only the elements within a given interval, based on the topological distance for a path cut‑off, denoted as Lag p

http://www.tomocomd.com/qubils
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above 9.55 bits (87% of the maximum entropy). As 
for the DRAGON MD families, the 2D-edge_walk, 
3D-GETAWAY and 2D-conn_autocorr_inf indices 
show the best behavior with 63, 21 and 15 variables 
presenting SE values greater than 8.70 bits (80% of the 
maximum entropy), respectively, although all these 

distributions are inferior to the one corresponding 
to the QuBiLS-MAS 2D-indices. This is a promising 
result bearing in mind that the DRAGON MD families 
are obtained from a diverse range of theoretical and 
practical considerations, encompassing over 30  years 
of research.

Fig. 2 In‑house comparison of Shannon’s entropy distribution for the QuBiLS‑MAS 2D‑Indices considering the non‑stochastic, simple stochastic, 
double‑stochastic and mutual probability matrix formalisms

Fig. 3 In‑house comparison of Shannon’s entropy distribution for the QuBiLS‑MAS 2D‑Indices considering the norms, the statistical operators of 
central tendency and the operators for dispersion and form
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Variability comparison for QuBiLS‑MAS 2D‑indices 
with respect to other descriptor computing software
The variability distribution of the QuBiLS-MAS MDs 
was computed and compared to MDs calculated with 

other programs used in cheminformatics tasks, such 
as: DRAGON [3], MOLD2 [4], PADEL [7], _ENREF_70 
CDK Descriptor Calculator [9], MODESLAB [50], 
BLUECAL [51] and POWER MV [52]. To this end, the 

Fig. 4 Shannon’s entropy distribution for DRAGON MDs families versus bilinear, linear and quadratic QuBiLS‑MAS 2D‑Indices

Fig. 5 Shannon’s entropy distribution for QuBiLS‑MAS topological indices and other descriptors computed by well‑known software used in chem‑
informatics studies



Page 19 of 26Valdés‑Martiní et al. J Cheminform  (2017) 9:35 

DRAGON’s example data comprising 42 structurally 
diverse chemicals was used. The cut-off number of vari-
ables for this study was 170 MDs, determined by the 
BLUECAL software as it possesses the least number of 
indices. As it can be observed in Fig. 5, the QuBiLS-MAS 
topological indices achieve superior performance than 
other software considered, with the former presenting all 
its values above 4.62 bits [86% of the maximum entropy 
(log241 = 5.35)], while the indices of the remaining 
approaches practically have all their indices inferior to 
this threshold. The high entropy distribution obtained for 
the QuBiLS-MAS topological indices demonstrates the 
relevance of these MDs, in the sense that they are sen-
sitive to progressive structural modifications and should 
therefore be valuable in different cheminformatics tasks.

Linear independence of the QuBiLS‑MAS algebraic 
descriptors
In this section, the possible orthogonality of the QuBiLS-
MAS 2D-Indices with respect to the DRAGON 0D-2D 
MDs is examined, using the Principal Component Analy-
sis (PCA) [53, 54]. The PCA is a mathematical technique 
that converts several correlated variables into a reduced 
number of non-correlated variables, called principal 
components. The extracted components have the follow-
ing features: (1) the first component will explain the high-
est possible variance of all determined components, (2) 
the successive components will explain the variance that 
the previous components did not explain, and (3) vari-
ables loaded in each component are linearly independent 
to the ones loaded in the remaining components. For all 
the studies performed in this section, the curated Spec-
trum Collection dataset (1963 molecules) was employed.

To perform this analysis, two sets of descriptors were 
calculated using QuBiLS-MAS MDs and the DRAGON 
(824 MDs) software, respectively, with the latter compris-
ing of the following families: 0D-others (B01 Constitu-
tional, B19 Charge and B20 Molecular Properties) with 
91 indices, 1D-fragment (B17 Functional Groups Counts 
and B18 Atom-centered Fragments) with 274 indices, 
2D-conn_autocorr_inf (B04 Connectivity, B05 Informa-
tion and B06 2D-AutoCorrelations) with 176 indices, 
2D-edge_walk (B03 Walk-Path Counts and B07 Edge 
Adjacency) with 154 indices, 2D-eigenvalues (B08 Bur-
den, B10 Eigenvalue-based and B09 Topological Charge) 
with 129 indices, and finally the B02 2D Topological with 
119 indices.

In this analysis, 12 principal components were selected, 
which explain approximately 74.60% of the cumulative 
variance (see Additional file 1: SI6 and Additional file 1: 
SI7). As it can be observed, Factors 1 (27.83%), 2 (13.06%), 
8 (2.47%) and 9 (1.99%) exhibit strong loadings for some 

QuBiLS-MAS indices and some 0D–2D descriptors of 
the DRAGON software. On the other hand, exclusive 
loadings are obtained for the QuBiLS-MAS descriptors 
in the Factors 3 (8.6%), 4 (6.26%), 5 (3.86%), 6 (3.51%), 7 
(2.71%), 11 (1.42%) and 12 (1.20%), explaining 27% of the 
total variance. Factor 10 (1.62%) is important for some 
0–2D DRAGON MDs as these are exclusively loaded in 
this factor, and these indices include: TI2 (B02 2D Topo-
logical), PW2 (B02 2D Topological), RBF (0D–others) 
and EEig01r (2D-edge_walk) [for details on these descrip-
tors, see Additional file  1: SI8]. On the whole, much of 
the information codified by the 0D-2D DRAGON MDs 
is equally captured by the QuBiLS-MAS indices, con-
sidering that negligible variance (1.62%) is explained by 
the factor exclusive for the former (F10). Moreover, the 
numerous factors (i.e. F3, F4, F5, F6, F7, F11 and F12) 
exclusive for the QuBiLS-MAS MDs suggest that orthog-
onal information is codified and thus demonstrating the 
theoretical contribution of the generalization schemes 
adopted in this framework.

QSAR modeling of the binding affinity to corticosteroid 
binding globulin (CBG) of Cramer’s steroid dataset
In what follows, the predictive ability of the QuBiLS-
MAS approach is assessed. To accomplish this objec-
tive, QSAR models for predicting the “binding affinity to 
the corticosteroid-binding globulin (CBG) of the popu-
lar Cramer’s steroid database” (see Additional file 1: SI9 
for names and CGB values of compounds) were built. 
This dataset has been used as a “benchmark” to evalu-
ate the quality of novel procedures. A total of 1455 vari-
ables were computed for each algebraic form (quadratic, 
bilinear and linear maps). The prediction models were 
built using Multiple Linear Regression (MLR) as the fit-
ting method, coupled with the Genetic Algorithm (GA) 
as variable subset selection strategy and the statisti-
cal parameter Q2

loo (“leave-one-out” cross validation) as 
the fitness function. Throughout the study, regression 
models of 2–6 variables were developed and the best 
model in each case retained for posterior validation. 
The GA was setup with the following configurations: 
population size—100, crossover/mutation rate—0.7, 
selection operator was fixed at 60 and the number of 
iterations—500,000. In addition, the tabu list option was 
configured to remove those MDs with correlation equal 
or greater than 0.95. The MLR-GA based model building 
was performed using the MobyDigs [55] computer pro-
gram. The best models built were also assessed with the 
bootstrapping [56] (Q2

boot) and Y-scrambling [57] (a(Q2)) 
validation methods in order to assess the predictive 
power and the possible chance correlation with respect 
to the activity modeled.
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Examination of matrix formalisms
In order to assess the performance of the NS, SS, DS 
and MP matrix-based approaches in QSAR modeling, 
46 variables for each formalism were calculated. Fig-
ure  6a shows the statistical parameters achieved in this 
experiment, where the SS approach (Q2

loo  =  81.85%, 
Q2

boot  =  77.89%) presents the best behavior, followed 
by MP (Q2

loo  =  79.05%, Q2
boot  =  74.85%). The indices 

based on NS (Q2
loo =  73.48%, Q2

boot =  68.09%) and DS 
(Q2

loo = 72.01%, Q2
boot = 65.4%) matrices present a much 

lower performance. This result is in agreement with the 
variability analysis, where the highest entropy indices 
involved the SS and MP matrix formalisms.

Analysis of the aggregation operators
The following study evaluates the predictive power of 
the aggregation operators proposed as a generaliza-
tion scheme for the linear combination of LOVEIs as 
method for obtaining global (or local) indices. As it can 

be observed in Fig. 6b, all Q2
loo values are superior to 50%, 

with the best performances corresponding to the statisti-
cal operators, followed by the mean operators and lastly 
by the norms. Regarding the evaluation of the operators 
classified as “classical algorithms” (Fig. 6c) it is observed 
that Kier–Hall (KH), Total Sum (TS), Gravitational (GV) 
and Autocorrelation (AC) algorithms yield comparable 
to superior performance with respect to the remaining 
operators. It may therefore be concluded that the incor-
poration of the aforementioned generalization scheme 
improves the performance of the QuBiLS-MAS indices 
in modeling tasks and thus demonstrating its practical 
contribution.

The QuBiLS‑MAS MDs versus literature reports
To evaluate the earnest contribution of the QuBiLs-MAS 
approach, it is necessary to assess its performance in 
correlation studies with determined molecular proper-
ties and compare the results with the existing methods. 
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Different QSAR models for predicting the binding affin-
ity to CBG of the 31 structures of Cramer’s steroid data-
base (1–31 or also 1–30 with compound 31 as outlier) 
have been reported in the literature, which will be com-
pared here with the models obtained using the QuBiLs-
MAS 2D-MDs. In this experiment, the best 3–5 variable 
models were selected according to the quality of the sta-
tistical parameters Q2

loo and Q2
boot. Table 7 shows the best 

regression models and their corresponding statistical 

parameters, based on the QuBiLs-MAS 2D-indices. 
Comparisons with other QSAR methodologies reported 
in the literature are presented in Table 8 according to the 
Q2

loo statistic. 
In general, when the 31 steroids are taken into account 

as training set, the models based on QuBiLS-MAS indi-
ces yield comparable-to-superior performance relative 
to other methods reported in the literature according 
to the Q2

loo statistic. Up to now, the best model reported 

Table 7 Statistical parameters for the best models for 2–6 variables for the physicochemical property log K, considering 
the 31 structures as the training set

a Compound 31 excluded, taken as outlier, is not taken into account in the training set

Size R2 Q2
loo Q2

boot a (Q2) F Models Equations

2 0.778 0.734 0.738 −0.208 49.16 log K = 1.596 (±0.885) + 3.809 (±0.582) (19)

TS[1]_MX_B_AB_nCi_2_SS12_T_KA_a‑h − 0.118 
(±0.011)

KH[1]_MX_F_AB_nCi_2_MP2_T_KA_h

3 0.863 0.826 0.820 −0.259 57.14 log K = −32.132 (±3.841) − 75.624 (±9.789) (20)

TS[1]_RA_F_AB_nCi_2_MP2_T_KA_h + 135.484 
(±13.179

TS[4]_PN_Q_AB_nCi_2_MP0_T_KA_h + 1782.101 
(±257.835)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v‑h

4 0.915 0.887 0.879 −0.324 70.59 log K = −66.472 (±6.939) − 0.223 ± 0.021) (21)

AC[2]_MX_B_AB_nCi_2_SS7_T_KA_r‑h + 0.407 
(±0.089)

TS[5]_HM_B_AB_nCi_2_SS8_T_KA_v‑h + 131.848 
(±10.928)

TS[4]_PN_Q_AB_nCi_2_MP0_T_KA_h + 3323.451 
(±355.509)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v‑h

5 0.932 0.902 0.890 −0.376 68.53 log K = −70.522 (±6.342) − 0.246 (±0.020) (22)

AC[2]_MX_B_AB_nCi_2_SS7_T_KA_r‑h + 0.422 
(±0.081)

TS[5]_HM_B_AB_nCi_2_SS8_T_KA_v‑h + 144.507 
(±9.991)

TS[4]_PN_Q_AB_nCi_2_MP0_T_KA_h + 4616.536 
(±15.439)

GV[2]_MX_Q_AB_nCi_2_MP3_X_KA_h + 3536.215 
(±324.863)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v‑h

6 0.942 
(0.960)a

0.914 
(0.937)a

0.898 
(0.925)a

−0.414 
(−0.465)a

65.26 (91.74)a log K = −81.005 (±6.216) − 0.233 (±0.020) (23)

AC[2]_MX_B_AB_nCi_2_SS7_T_KA_r‑
h − 39,144.250 (±4.757)

AC[2]_MN_B_AB_nCi_2_MP2_A_KA_c‑h + 0.572 
(±17.485)

TS[5]_HM_B_AB_nCi_2_SS8_T_KA_v‑h + 120.683 
(±1.681)

TS[4]_PN_Q_AB_nCi_2_MP0_T_KA_h + 0.804 
(±0.354)

TS[6]_HM_Q_AB_nCi_2_SS0_A_KA_h + 3979.089 
(±310.376)

KH[2]_PN_B_AB_nCi_2_SS8_T_KA_v‑h
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Table 8 Comparison of Q2
loo statistics of nD-QSAR methods for the property log K (CGB)† for 31 (or 30)

nD‑QSAR method PCs/var. Statistical method Q2 loo Equations/references

31/30 Steroids (all dataset)

Combined electrostatic and shape similarity matrix 6 Genetic NN 0.941 [59]

QuBiLS‑MASc 6 MLR and GA 0.937 Equation 23

QuBiLS‑MAS 6 MLR and GA 0.914 Equation 23

Hodking SM 6 Genetic NN 0.903 [59]

QuBiLS‑MAS 5 MLR and GA 0.902 Equation 22

QuBiLS‑MAS 4 MLR and GA 0.887 Equation 21

Fragment QS‑SM 4 PLS 0.886 [60]

MEDV‑13 5 MLR and GA 0.882 [61]

MiDSASA—“template” 2 “compounds” – 0.88 [62]

SOMa 3 – R2 0.85 [63]

Tuned‑QSAR 6 MLR and PCA 0.842 [64]

Autocorrelation vector 30 – – 0.84 [65]

CoMMA 3 PLS 0.828 [66]

QuBiLS‑MAS 3 MLR and GA 0.826 Equation 20

Similarity Indices (ESP MC matrix 30) 1 PLS 0.820 [65]

SOMFA/esp + ALPHA – SOR 0.82 [67]

Combined electrostatic and shape similarity matrix 6 MLR and GA 0.819 [59]

EEVA 4 PLS 0.81 [68]

SOM‑4D‑QSAR 4 SOM neural network 0.80 [69]

Charges and Properties from MEPS‑AM1 5 MLR 0.80 [70]

HE State/E‑Statea,b 3 – 0.80 [71]

E‑Statea,b 3 – 0.79 [71]

CoSA 3 “Bins” PLS 0.78 [72]

QSAR/E‑State 3 “atoms” – 0.78 [73]

TQSI 4 MLR 0.775 [64]

EVA 5 PLS 0.77 [74]

CoMSA 1 PLS 0.76 [75]

MQSM 5 MLR and PCA 0.759 [64]

EVA + ALPHA – SOR 0.75 [67]

GRIND – PLS 0.75 [76]

SEAL 3 PLS 0.748 [77]

SOMFA/esp 6 PLS 0.74 [67]

CoSCoSAa 3 – 0.74 [78]

CoSASA 3 “atoms” PLS 0.73 [72]

E‑State and kappa shape index 4 MLR 0.72 [79]

TARIS 2 – 0.71 [80]

MQSM 3 MLR 0.705 [64]

Combined electrostatic and shape similarity matrix 5 PLS 0.70 [59]

SAMFA‑RF – RF 0.69 [81]

SAMFA‑PLS 4–5 PLS 0.69 [81]

4D‑QSAR 2 PLS 0.69 [69]

CoMMA (ab initio) 6 PLS 0.689 [82]
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has been the one based on the “Combined Electrostatic 
and Shape Similarity Matrix” (Q2

loo  =  0.941, var  =  6), 
which is an alignment- and grid-based method known to 
be computationally expensive. Additionally, this model 
employs the Genetic Neural Network (GNN) as the fit-
ting method, which generally yields more robust and 
better optimized models compared to other linear meth-
ods. Even then, comparable performance is obtained 
with QuBiLs-MAS models [(Q2

loo  =  0.937 (compound 
31 excluded), var  =  6), (Q2

loo  =  0.914 (compound 31 
included), var =  6)] based on the MLR-GA, which is a 
much simpler technique than GNN. Therefore, based on 
the results obtained in this study, it can be claimed that 
the QuBiLs-MAS MDs proposed offer a considerable 
advantage over well-known traditional methodologies.

Conclusions
The QuBiLs-MAS approach for atom-pair relations, 
in its diverse generalizations and extensions, seems 
to renew the prospect of achieving 2D-QSAR models 
with good predictive power. Inspired by the “No Free 
Lunch” theorem [58], which postulates that there is no 
unique best alternative for tackling optimization prob-
lems, the different extensions constitute an innovative 
undertaking to suitably characterize the different phe-
nomena that affect the molecular configuration and 
intermolecular interactions, and thus affecting their 
biological activity. Variability and Principal Component 
analyses of the QuBiLs-MAS indices demonstrated that 
the proposed generalizations yield indices with supe-
rior variability compared to other indices defined in the 
literature and capture chemical information not codi-
fied by the DRAGON MD families. Also, it was demon-
strated that suitable gains are obtained in the predictive 
ability of the QSAR models with the QuBiLs-MAS 
approach. Therefore, the QuBiLs-MAS 2D-indices 
constitute a relevant tool for the diversity analysis of 
compound datasets and high-throughput screening of 
structure–activity data.

Futures outlooks
Future tasks include the development of a version of the 
QuBiLs-MAS module to compute molecular indices on a 
distributed computing system for high-throughput calcu-
lation, as well as, a version to use the Graphical Process-
ing Units (GPU) present in several personal computers 
nowadays. Moreover, various (dis-)similarity multi-met-
rics to consider relations for more than two atoms (multi-
linear forms) are to be introduced, in addition to a new 
set of multi-metrics based cut-offs.
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Table 8 continued

nD‑QSAR method PCs/var. Statistical method Q2 loo Equations/references
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