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Abstract 

The identification of chemical structures in natural product mixtures is an important task in drug discovery but is still a 
challenging problem, as structural elucidation is a time-consuming process and is limited by the available mass spec‑
tra of known natural products. Computer-aided structure elucidation (CASE) strategies seek to automatically propose 
a list of possible chemical structures in mixtures by utilizing chromatographic and spectroscopic methods. However, 
current CASE tools still cannot automatically solve structures for experienced natural product chemists. Here, we 
formulated the structural elucidation of natural products in a mixture as a computational problem by extending a list 
of scaffolds using a weighted side chain list after analyzing a collection of 243,130 natural products and designed an 
efficient algorithm to precisely identify the chemical structures. The complexity of such a problem is NP-complete. 
A dynamic programming (DP) algorithm can solve this NP-complete problem in pseudo-polynomial time after 
converting floating point molecular weights into integers. However, the running time of the DP algorithm degrades 
exponentially as the precision of the mass spectrometry experiment grows. To ideally solve in polynomial time, we 
proposed a novel iterative DP algorithm that can quickly recognize the chemical structures of natural products. By 
utilizing this algorithm to elucidate the structures of four natural products that were experimentally and structurally 
determined, the algorithm can search the exact solutions, and the time performance was shown to be in polynomial 
time for average cases. The proposed method improved the speed of the structural elucidation of natural products 
and helped broaden the spectrum of available compounds that could be applied as new drug candidates. A web 
service built for structural elucidation studies is freely accessible via the following link (http://csccp.cmdm.tw/).
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Background
Examining natural and therapeutic products is crucial for 
drug development because many chemically synthesized 
compounds have potentially serious toxicity and adverse 
effects, while less toxic compounds extracted from natu-
ral products could possibly be developed into new drug 
candidates [1]. In addition, natural products often open 
new chemical spaces not explored by synthetic com-
pounds produced by combinatorial chemistry and can 

further expand the diversity and novelty of molecules 
by extracting different natural sources, such as the deep 
and cold seas [2, 3]. A review by Newman and Cragg [2] 
indicated that 47% of new anti-cancer drugs from 1950 
to 2006 were originally from or derived from natural 
products. Recently, Butler et al. [3] reviewed 100 natural 
products and natural products-derived compounds that 
were either evaluated in clinical trials or in registration 
at the end of 2013. They concluded that 50% of the com-
pounds were natural products or semi-synthetic natural 
products, while the remaining compounds were classified 
as natural products-derived compounds. The exploration 
of new lead compounds from natural products and their 
successful development into clinical trials will continue 

Open Access

*Correspondence:  yjtseng@csie.ntu.edu.tw 
3 Graduate Institute of Biomedical Electronics and Bioinformatics, National 
Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei 106, Taiwan
Full list of author information is available at the end of the article

http://csccp.cmdm.tw/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0244-9&domain=pdf


Page 2 of 15Su et al. J Cheminform  (2017) 9:57 

to be a significant trend in drug discovery over the next 
few years.

However, natural products-based drug discovery faces 
many challenges [4], and the exploration of natural prod-
ucts for new drug development was actually disfavored 
by the pharmaceutical industry in the 2000s [5]. One of 
the major hurdles is the extremely time-consuming pro-
cesses involved in the isolation and structural elucidation 
of bioactive compounds from natural products composed 
of complicated mixtures. Because the magnitude of the 
natural products database is limited, high-throughput 
screening methods cannot be used to effectively iden-
tify potential natural products drugs. Many advances 
in mass spectrometry (MS) and nuclear magnetic reso-
nance (NMR) automation techniques over the last two 
decades have accelerated structural elucidation pro-
cesses for complex natural products mixtures. MS is a 
common tool used to identify elemental constituents of 
a molecule. MS data can provide the molecular weight, 
fragmentation pattern, and molecular formula, which 
can then be matched to structures. Current advances in 
MS instruments can provide high-resolution molecular 
weight measurements [6] and reduce the total number of 
overlapping m/z values. However, MS data itself is insuf-
ficient to determine the structure of a partially or com-
pletely unknown compound [7–9]. On the other hand, 
NMR methods can give a spectroscopic overview of 
compounds. Although high-resolution and high-dimen-
sional NMR methods have undergone continual advance-
ment [10–12], NMR still cannot independently elucidate 
novel chemical structures unless co-eluting compounds 
can be completely separated [8]. Even though LC–NMR–
MS [13] and LC–UV–solid-phase extraction–NMR–MS 
[9] have proven to be effective methods to elucidate com-
pound structures in natural products extracts, the suc-
cessful structural elucidation of unknown compounds 
still greatly depends on the development of computa-
tional systems to help evaluate the mass spectral data 
[14].

Computer-aided structure elucidation (CASE), devel-
oped 40  years ago [15–18], is a well-known compu-
tational approach that can accelerate the process of 
identifying possible chemical constituents based on 
expert systems. To fully automate structural elucidation 
via MS and NMR techniques, different advanced algo-
rithms have been applied in CASE [19–23]. However, the 
many limitations [24] of CASE expert systems still hin-
der the creation of fully automatic processes for struc-
tural elucidation [25]. One of the major restrictions is the 
requirement of 2D NMR data as input in these CASE sys-
tems [26]. 2D NMR experiments are intrinsically insen-
sitive [27] and extremely time-consuming, especially for 
the extraction of 13C nucleus peak shifts [25]. Moreover, 

inaccurate structural elucidation may result from the co-
elution of compounds that cannot be completely sepa-
rated. Therefore, current traditional CASE tools based on 
2D NMR spectra still cannot meet the structure-solving 
needs of experienced natural product chemists [4]. Using 
MS to develop CASE systems can provide more signifi-
cant benefits than NMR-based CASE systems, as MS is 
more sensitive, and the amount of unknown structures in 
the mixtures needed for analysis is smaller. Furthermore, 
MS is not usually affected by impurities in the input mix-
ture [28].

Harn et  al. [29] proposed a novel CASE algorithm, 
known as NP-StructurePredictor, to predict individual 
components in an natural product mixture strictly using 
information obtained from LC–MS experiments. The 
purpose of NP-StructurePredictor is to generate possible 
chemical structures to aid in the identification or struc-
tural elucidation of unknown natural products. This can 
be achieved by matching a list of known scaffolds with a 
list of weighted side chains to produce a list of possible 
compounds under specified structural constraints. In this 
study, we convert this structural elucidation problem to 
a formal mathematic formula and refer to the problem 
as the Chemical Substituents-Core Combinatorial Prob-
lem (CSCCP). Since the computational complexity of 
the CSCCP is NP-complete, the search for optimal solu-
tions (valid structures) in the CSCCP must be executed 
in exponential time complexity for any deterministic 
algorithms without a loss of generality. Thus, using brute 
force (BF) algorithms, which search all possible answers, 
to solve the CSCCP cannot be finished in a reason-
able timeframe. In NP-StructurePredictor, a branch and 
bound (BB) strategy was applied to search for and gener-
ate a set of optimal solutions. Nevertheless, the BB strat-
egy has its limitations as well: [1] although the execution 
time is shorter, in many cases, the algorithm still cannot 
be finished in a reasonable timeframe, [2] it is difficult to 
analyze the stability and accuracy of the BB method, and 
[3] the experimental execution time in real cases is unsta-
ble and poor for complex mixtures and sometimes even 
as slow as the BF algorithm. The BB algorithm used in 
NP-StructurePredictor still limits the number of combi-
natorial candidates of the side chains for each scaffold so 
that the program can be finished in a reasonable execu-
tion time. In such cases, Structure Hunter cannot find the 
optimal solutions.

In this study, to further promote the performance of 
searching for all optimal solutions of the CSCCP prob-
lem, we first present a pseudo-polynomial time algorithm 
based on classical dynamic programming (DP) strategies 
that can effectively and accurately search for all correct 
structures in a natural product mixture. The DP strat-
egy is based on the method used by Ibarra and Kim [30]. 
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However, because this is a pseudo-polynomial time algo-
rithm, the time performance is limited by the required 
precision of the molecular weight, which is between four 
and six decimal places. We then propose another iterative 
DP algorithm that can be executed in polynomial time 
for the average case. Four complex herbs with verified 
structures were applied in the study of NP-StructurePre-
dictor, and all were successfully predicted by this method. 
We compared the time performance of our algorithm 
in NP-StructurePredictor. For all cases, our iterative DP 
algorithm outperformed the BF algorithm, classical DP 
algorithm, and the BB program in NP-StructurePredictor 
and also could run to completion in a reasonable time 
and provide optimal solutions. We developed a new, effi-
cient CASE strategy that can accurately predict the pos-
sible structures of compounds in mixtures based only on 
information obtained from LC–MS experiments.

Results and discussion
The identification or prediction of the main chemical 
components present in an natural product mixture with 
traditional chromatographic methods is time-consum-
ing. The limited compound references also make identi-
fication or prediction more difficult for each constituent 
in a mixture. Hence, an efficient algorithm to solve the 
CSCCP is needed.

This section reports the simulation results of the DP 
algorithms developed in this paper. Two other traditional 
methods were implemented and compared with the DP 
algorithms in terms of quality and time performance. All 
four of the algorithms were implemented in Java (JDK 
version 7) and tested on a Linux PC with an Intel Xeon(R) 
CPU 2.40 GHz with 32 GB of memory. Four types of nat-
ural products were used in our simulation: Cuscuta chin-
ensis (C. chinensis), Ophiopogon japonicus (O. japonicus), 
Polygonum multiflorum (P. multiflorum), and Angelica 
sp. According to the experimental identification proce-
dures from the Natural Product Laboratory of the Taiwan 
Medical and Pharmaceutical Industry Technology and 
Development Center as well as investigations from ear-
lier publications, the main structures of each herb have 
been established and were used as a validation set for the 
evaluation of our simulation results. The time complex-
ity analysis of our new CASE algorithms, quality of the 
search results, and running time performance compared 
to those of the traditional methods for the four cases 
were also discussed in the last sections.

Targeted MWs and seed scaffolds are necessary input 
information in our algorithm. To obtain possible tar-
geted MWs, LC–MS experiments for the tested natural 
products were performed beforehand. Targeted MWs 
can then be retrieved from peak tables generated in LC–
MS experiments. In our cases, we used MAVEN [31] or 

XCMS [32] to extract peak tables and then retrieved all 
possible molecular weights as input targeted MWs. To 
identify the main structures of each tested natural prod-
ucts, the obtained data including parent and daughter 
ions pattern were compared with the compounds spectra 
of similar medicinal herbs in earlier publications or data-
bases. This step resulted in the preliminary identification 
of top five high intensity peaks in our cases. These peaks 
can be validated with known standard compounds ana-
lyzed under the same LC conditions, by comparing and 
matching the retention times and MS/MS spectra. These 
identified main structures were used as our validation 
sets. The remaining core structures can be used directly 
as the seed scaffolds in our tested cases after all terminal 
side chains of the identified structures were eliminated. 
The input targeted MWs and seed scaffolds of the four 
natural products were listed in the following sections.

The choice of the seed scaffolds is likely to influence the 
outcome of the structural elucidation. In real cases, users 
can roughly identify the similar structures of natural 
products, in which compound spectra are similar to all 
high intensity peaks measured in the preliminary LC–MS 
experiments. Because those identified structures can be 
regarded as potential candidates of individual component 
in test materials, the core structures of these candidates 
can be directly used as seed scaffolds in our algorithm. 
Furthermore, when users cannot provide the seed scaf-
folds of the test material, our algorithm is capable of per-
forming a full search on all our collected 83,242 possible 
scaffolds. The full searching strategy can automatically 
generate suitable candidates and run to completion in a 
reasonable timeframe.

Structural elucidation of the four natural products using 
the iterative DP algorithm
To identify the main structures in an natural product 
mixture using the iterative DP algorithm, users must 
first provide the program with a list of target molecu-
lar weights (targeted MWs) in a tested natural product 
obtained from the LC–MS spectra as well as seed scaf-
folds if the user has prior knowledge of the potential 
structural category for compounds in the natural prod-
ucts. In this study, the targeted MWs extracted from the 
mass spectra of the four natural products are listed in 
Table 1. C. chinensis and O. japonicus have four targeted 
MWs each, and P. multiflorum contains six targeted MWs. 
For Angelica sp., 35 targeted MWs are given, and thus, 
the computational time for Angelica sp. is much longer 
than that for the other tested herbs. In Fig. 1, we illustrate 
the known seed scaffolds considered in the four natural 
products. Angelica sp. has the highest number of seed 
scaffolds. In the DP algorithm, we elucidate unknown 
chemical structures by extending appropriate side chains 
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on the given seed scaffolds. When the program analyzes 
which side chains can be linked to the seed scaffolds, we 
must also consider the possible sets of positions on the 
scaffold that can be linked by the side chains. Given one 
targeted MW and seed scaffold, our algorithm will output 
a set of optimal structures identified by applying each 
possible set of positions on the scaffold to the searching 
procedure of the DP algorithm. Therefore, a CSCCP pro-
gram needs to be executed Nc × Np × Nk times to iden-
tify the main structures for an natural product, where 
Nc is the number of given seed scaffolds, Np denotes 
the number of given target MWs, and Nk represents an 
average number of possible sets of positions on the seed 
scaffolds. From the statistics of the collected database 
compounds, the average Nk is approximately 5. The num-
ber of different types of possible sets of positions (Nk ) 
in the four tested natural products is listed in Table  2. 
Among the four herbs, C. chinensis in scaffold 1 has the 
maximum Nk of 13, and in scaffold 2, C. chinensis has the 
maximum Nk of 231. Since four different targeted MWs 

of C. chinensis were considered in this study, in total 
4 × (231 + 13) = 976 CSCCPs must be executed to eluci-
date the main structures in C. chinensis.

We took C. chinensis with a targeted MW of 286.24 
as an example to demonstrate the identification of the 
main structures using the IDPforCSCCP algorithm. We 
executed the CSCCP algorithm  231 times using differ-
ent sets of possible substituted positions on the second 
scaffold of C. chinensis and obtained 2310 recognized 
structures. The top 10 ranking results among the 2310 
structures are presented in Table  3. The first column in 
Table 3 provides the ranks according to the probabilities 
(
∏n

i=1 Pi,xi) of potential combinations of the scaffolds and 
side chains analyzed from our large collections of natu-
ral products in descending order. The second column 
gives the identified main structures in C. chinensis with 
a targeted MW of 286.24. The numbers shown below 
the structures provide the molecular weight and prob-
ability, 

∏n
i=1 Pixi, of the identified structure. The highest 

two identified structures (rank 1 and rank 2 structures) 
are precisely the same as the main structures validated 
by experimental methods. The two main structures in C. 
chinensis with a targeted MW of 286.24 were correctly 
predicted with the highest ranks using the IDPforCSCCP 
algorithm. The predicted results that match the validated 
structures of C. chinensis for all considered targeted MWs 
are also given in Table 4. The first two columns in Table 4 
provide the molecular weights of the predicted structures 
and the corresponding seed scaffolds. The third column 
provides the identified structures that are equal to the 
validated structures, and their ranks are provided in the 
last column. All validated main structures in C. chinensis 

Table 1  List of the target molecular weights for the four tested natural products

Case name Target weight lists

C. chinensis 286.24, 302.24, 354.31, 478.41

O. japonicus 328.32, 342.35, 356.33, 370.36

P. multiflorum 270.24, 284.27, 290.27, 406.39, 432.38, 578.53

Angelica sp. 162.03, 186.03, 192.04, 202.03, 216.04, 230.09, 244.11, 246.05, 246.09, 246.09, 270.09, 286.08, 288.10, 300.10, 316.09, 328.13, 334.11, 354.15, 
360.08, 360.16, 366.22, 374.14, 376.15, 378.17, 386.14, 388.15, 402.13, 414.17, 414.20, 426.17, 426.17, 428.18, 546.26, 574.29

Fig. 1  The seed scaffolds used for structural elucidation of the four 
tested natural products in our DP algorithms: a C. chinensis, b O. 
japonicus, c P. multiflorum, and d Angelica sp.

Table 2  Number of different types of possible sets of sub-
stituted positions (Nk) for each tested natural product

Case name (Scaffold number, Nk)

C. chinensis (1, 13), (2, 231)

O. japonicus (1, 4), (2, 6), (3, 31)

P. multiflorum (1, 68), (2, 28), (3, 68), (4, 81)

Angelica sp. (1, 58), (5, 28), (3, 8), (4, 15), (5, 11)
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are correctly predicted to be in the top 10 ranks. The pre-
dicted results for O. japonicus, P. multiflorum, and Angel-
ica sp. are also listed in Additional file  1: Tables S1–S3. 
In Additional file  1: Table S3, the seed scaffolds and the 
predicted structures are omitted, and the second col-
umn only provides the seed scaffold number as denoted 
in Fig. 1. In the “rank” column of Additional file 1: Table 
S3, “Non” indicates that the expected main structures 
cannot be identified by our program because the correct 
side chains that link the seed scaffolds were not present 
in our database. Only 9 out of 62 validated main struc-
tures in the four tested natural products cannot be auto-
matically identified by our CASE method. Furthermore, 
the ranks of the predicted structures listed in Table 4 and 
Additional file 1: Tables S1–S3 confirmed the accuracy of 
our algorithm. Among the four tested natural products, 
the predicted ranks of all the validated structures ranged 
from 1 to 83, and the average value of the predicted ranks 
is 8. In our DP algorithm, DPforCSCCP, we can thus ten-
tatively set R equal to 10 because we can elucidate most 
of the correct main structures in the four tested natural 
products using our novel DP CASE algorithm, IDPforC-
SCCP, when R is set to 10. The four case studies dem-
onstrated that the structural elucidation functionality of 
IDPforCSCCP is applicable and reliable. Moreover, our 

ranking methodology was reasonable to reduce false pos-
itive identifications because our predicted structures that 
matched with validated compounds all resulted in high 
rankings.

Analysis of time complexity in the DP and iterative DP 
algorithms
First, we analyzed the time complexity of the DP algo-
rithm described in Fig. 4. Initially, the starting condition 
of C(s,w, r) executes completely in O

(

W ′
0R

)

 time. The 
next four for-loops execute in O

(
∑n

i=1W
′
0KiR

)

 time, and 
each iteration of the four for-loops requires O(1) for the 
side chain information assignments and O

(

KiR logKiR
)

 
for the max (in Lemma 3) function, which is applied by 
a quick-sort algorithm. Thus, the time complexity of 
DPforCSCCP is

In real cases, R is a constant. If K ′ = maxi=1..nKi , 
the total time complexity can be converted to 

O

(

W0

n
∑

i=1

(

KiR+ KiR logKiR
)

)

= O

(

W
′
0R

[

n
∑

i=1

(

Ki logKiR
)

])

.

Table 3  The top ten optimal results from seed scaffold 2 with a given weight of 286.24 for C. chinensis

Rank Structure
(Weight/Probability) Rank Structure

(Weight/Probability)

1
(286.24/0.0051)

6
(286.24/0.0002496)

2
(286.24/0.0038)

7
(286.24/0.0001971)

3
(286.24/0.0017)

8
(286.24/0.0001914)

4
(286.24/0.0012)

9
(286.24/0.0001482)

5

(286.24/0.0004231)

10
(286.24/0.0001336)
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O
(

nW ′
0K

′RlogK ′R
)

 by setting Ki equal to K ′. However, 
DPforCSCCP is not a real polynomial time algorithm. 
Because each W0 is converted into an integer by multiply-
ing by 106 in the DP algorithm, the complexity becomes 
O
(

106 × nW0K
′R logK ′R

)

. Although W ′
0 is a single inte-

ger number, the actual input 106W0 may be exponentially 
times greater than nK ′. Therefore, the main time com-
plexity of DPforCSCCP is the cost on the input 106W0, 
and DPforCSCCP is a pseudo-polynomial time algorithm.

We then analyzed the time complexity of the IDPforC-
SCCP algorithm. As shown in Fig.  5, the while loop in 
the program is the same as that in the DPforCSCCP algo-
rithm, and it executes completely in O

(

nW ′′RK̄ log RK̄
)

 
time, where K̄  is the average of Ki. Herein, we estimate 
the average value of the target weight of the natural 
products. In our collected natural products database, 
a total of 82,847 natural products contain ring struc-
tures, and only these compounds were considered in this 
study. The average total molecular weight of all possible 

maximal substituents in each compound is 89.42, where 
for a given scaffold, the maximal substituent is the side 
chain with the maximal molecular weight. On aver-
age, we can assume that the variable W ′′ is a constant. 
Therefore, in an average case, the time complexity in the 
while loop of IDPforCSCCP reduces to O(89nRK̄ log RK̄ ).  
The rest of the while loop in IDPforCSCCP requires only 
O(R) to check the size and the weight, and thus, we can 
ignore this step. Finally, we considered the number of 
executed while loops. For each while loop, R is multi-
plied by 10. In the first while loop, the program executes 
in O(89n10R′K̄ log 10R′K̄ ); in the second while loop, the 
program executes in O(89n102R′K̄ log 102R′K̄ ); and so 
on. Assuming that the while loop is executed L times, 
the total time complexity of IDPforCSCCP then becomes 
∑L

i=1

(

89n10iRK̄ log 10iRK̄
)

 for the average case. When 
L is sufficiently small, the CSCCP can be ideally solved 
in polynomial time, on average, using our iterative DP 
algorithm, IDPforCSCCP. We will discuss the value of L 

Table 4  The identified structures that match the baseline data for C. chinensis. The last column indicates the ranks deter-
mined by our DP algorithm

Weight Seed scaffold Validated structures Rank

286.24 1

286.24 2

302.24 1

354.31 1

478.41 8
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in the subsequent section. We noted that in the previous 
DPforCSCCP algorithm, even if W ′ is set to 89× 10D , the 
time complexity is still near exponential. Because W ′ has 
to be converted into an integer number and the precision 
number D is typically set to at least 6, the time complex-
ity of the DPforCSCCP algorithm can only be reduced to 
O
(

106 × 89nRK̄ log RK̄
)

 for the average case.
The number of while loop iterations (L) is the main fac-

tor that improves the time performance of the IDPforC-
SCCP algorithm over the DPforCSCCP algorithm. We 
used while loops to overcome the limitation of the num-
ber of decimal places of the mass (D) in the DPforCSCCP 
algorithm. According to the analysis of the time com-
plexity in IDPforCSCCP, L is a dominant factor affecting 
the time performance of the algorithm. In Table  5, we 
list the values of L executed by the IDPforCSCCP algo-
rithm in the four tested natural products. Because the 
IDPforCSCCP algorithm can finish within three loops 
for all tested cases, three situations in Table 5 are consid-
ered: the first situation involves cases in which the IDP-
forCSCCP algorithm finished in only one while loop, the 
second one involves cases in which the IDPforCSCCP 
algorithm ran to completion in exactly two while loops, 
and the last represents cases in which the IDPforCSCCP 
algorithm finished in exactly three while loops. The 
second to fourth columns in Table  5 list the number of 
executed CSCCPs in each tested case based on the three 
situations. The percentages of the numbers occurring in 
the three situations are indicated in parentheses. In 99% 
of the situations, the IDPforCSCCP algorithm finished 
in only one loop. Only a few cases required two or three 
loops for calculation, and no cases required more than 
three loops. The IDPforCSCCP breaks in the first while 
loop only when the number of current solutions in which 
the total weights match to the W ′′ in the first loop are less 
than R, or when more than R optimal solutions was found 
in the first loop. The main idea behind IDPforCSCCP for 
acceleration of structural elucidation is by removing all 
decimal digits of molecular weight. In the low incidence 
of cases where the IDPforCSCCP required more than one 
loop indicates the elimination of decimal digits is unlikely 
to affect the precision of structure elucidation or the 
search for optimal solutions. Therefore, the two breaking 

conditions are satisfied with high incidence in the end of 
the first while loop.

Assuming that the number of while loop iterations is 
only 1, the time complexity of the entire IDPforCSCCP 
algorithm only requires O

(

89nK̄R′ log K̄R′
)

 time for the 
average case, where K̄ = (

∑n
i=1 Ki)/n and R′ is 100. Thus, 

the time complexity of IDPforCSCCP can be further 
reduced to O

(

8900nK̄ log 100K̄
)

 for the average case. 
Therefore, our novel CASE procedure developed using 
the iterative DP algorithm can automatically elucidate the 
unknown structures in complex mixtures within reason-
able polynomial time for the average case.

Time performance comparison with traditional algorithms
In this section, the time performances of the DPforC-
SCCP and IDPforCSCCP algorithms were compared with 
those of traditional methods, including the brute force 
(BF) method and the branch and bound (BB) strategy. 
The total execution times of the BF, BB, DPforCSCCP 
and IDPforCSCCP algorithms for the elucidation of the 
main structures in the four natural products are listed 
in Table  6. The first column represents the tested natu-
ral products. The second to fifth columns give the execu-
tion time (in seconds) for the BF, BB, DPforCSCCP, and 
IDPforCSCCP algorithms, respectively. In DPforCSCCP, 
we set the number of decimal places of the mass (D) to 
2 because the main structures of the four natural prod-
ucts predicted from DPforCSCCP were all matched to 
the validated structures when the parameter D was set to 
at least 2. More than 3 years of computation time would 
be required to finish structural elucidation in the CSCCP 
using the BF algorithm for C. chinensis, and more than 

Table 5  Running iterations of the while loop executed using the IDPforCSCCP algorithm for our four tested herbs

The numbers in parentheses are the percentage of occurrence of the three situations listed in the second to fourth columns

Tested herbs # of running iterations executed 
within one loop

# of running iterations executed in exactly 
2 loops

# of running iterations executed 
in exactly 3 loops

C. chinensis 975 (99.9%) 1 (0.1%) 0 (0%)

O. japonicus 164 (100%) 0 (0%) 0 (0%)

P. multiflorum 1338 (98.5%) 16 (1.2%) 4 (0.3%)

Angelica sp. 4084 (100%) 0 (0%) 0 (0%)

Table 6  Time performance comparison between  the BF, 
BB, DPforCSCCP and IDPforCSCCP algorithms

Cases Execution time
seconds (min)

BF BB DPfor CSCCP IDPfor CSCCP

C. chinensis > 3 years 914 (15.2) 3757 (62.6) 17 (0.3)

O. japonicus 177 (3.0) 141 (2.4) 12 (0.2) 0.75 (0.01)

P. multiflorum > 6 years > 1 days 1079 (18.0) 67 (1.1)

Angelica sp. > 80 days ~ 1 days 3919 (65.3) 188 (3.1)
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6 years would be required using the BF algorithm for P. 
multiflorum. The execution times of the BF algorithm 
for C. chinensis and P. multiflorum were both extremely 
large. The main reason for such long execution times was 
that the BF searching method requires the examination 
of all combinations of seed scaffolds and side chains. The 
maximal numbers of side chain combinations (

∏n
i=1 Ki ) 

in CSCCP for C. chinensis and P. multiflorum are 
41,249,161,384,704 and 2,429,941,913,502,481. Note that 
the numbers of seed scaffolds, targeted MWs, and possible 
sets of positions on the seed scaffolds were not consid-
ered in the maximal numbers. Obviously, the thousands 
of trillions of calculations in the BF algorithm resulted in 
an unreasonable execution time for structural elucida-
tion in these two cases. Even if parallel programming is 
applied to solve the BF algorithm, the method still can-
not finish within a reasonable time. The traditional BB 
method can obviously improve the time performance 
in the four tested cases. However, the BB algorithm still 
required more than 1 day for the structural identification 
of P. multiflorum and Angelica sp.

In our DPforCSCCP algorithm, the program finished 
within 1.5  h for all cases. In the case of P. multiflorum, 
which is the most complex example, our DP algorithm 
reduced the execution from 6  years by BF to 1079  s 
(18 min). The execution time of the DP algorithm is also 
much faster than the BB algorithm for all tested cases, 
except C. chinensis. The time performance of the BB algo-
rithm for C. chinensis is 4 times faster than that of the 
DPforCSCCP algorithm, whereas the time performance 
of DPforCSCCP algorithm for O. japonicus, P. multiflo-
rum, and Angelica sp. is 12–80 times faster than that of 
the BB algorithm. For the extreme case of P. multiflorum, 
the execution time of the BB algorithm requires over 
1 day, whereas for the DPforCSCCP algorithm, only 1079 s 
(18 min) are needed. This result confirms that our devel-
oped DPforCSCCP algorithm can be executed in poly-
nomial time for an average case and is faster than the BB 
algorithm. However, as D increases, the execution time for 
DPforCSCCP may become lower than that for the BB algo-
rithm or even the BF algorithm (Lemma 5). The iterative 
DP algorithm, IDPforCSCCP, can perform the structural 
elucidation without setting the parameter D. To confirm 
that the IDPforCSCCP algorithm outperforms the DPforC-
SCCP algorithm in the four tested cases, we present the 
execution time of the IDPforCSCCP algorithm for the four 
natural products in Table  6. The execution times range 
from 12.18 to 3919.70  s (0.2–65.3  min) for DPforCSCCP 
and from 0. 75 to 188.44  s (0.01–3.1  min) for IDPforC-
SCCP. IDPforCSCCP finished within 3 min in all cases. On 
average, the time performance of IDPforCSCCP is 67 times 
better than that of DPforCSCCP. For the extreme case of 
P. multiflorum, the IDPforCSCCP algorithm reduced the 

execution time from 6 years by BF to close to 1 min. Our 
iterative DP algorithm is much more efficient than the BF, 
BB, and our original DP algorithms.

Several approaches including the BF, BB, DPforCSCCP 
and IDPforCSCCP algorithms were applied to solve the 
CASE problem in this study. The BF and BB algorithms 
blindly check all combinatorial candidates for the sub-
stituted positions in the scaffold, while the two DP algo-
rithms, DPforCSCCP and IDPforCSCCP, formulate the 
CSCCP in terms of a cost equation and save each solution 
of each sub-problem for the effective generation of opti-
mal solutions. The IDPforCSCCP algorithm can reduce a 
large number of combinations of side chains to identify 
the main structures in natural products without the limi-
tation of the number of decimal places of the mass, thus 
further accelerating the identification procedures. IDP-
forCSCCP would realize the spectroscopist’s dream of 
fully automated structural elucidation.

Improvement in the structural elucidation results using the 
iterative DP algorithm
Using the iterative DP algorithm, we can search for opti-
mal solutions for structural elucidation without any limi-
tations, compared to the previous study by Harn [29]. A 
large number of possible sets of positions (Nk) that can 
be linked by the side chains on the seed scaffolds could 
result in an unreasonable execution time for structural 
elucidation. To reduce the execution time when apply-
ing the BB algorithm, the parameter Nk was limited to 5, 
at most, in Harn’s CASE tool [29]. Thus, the structures 
identified using Harn’s algorithm may be trapped in a 
local optimum. In the iterative DP algorithm, the vari-
able Nk does not need to be limited, as our algorithm is 
much more efficient than the BB algorithm. We took the 
herb C. chinensis as an example to demonstrate the dif-
ferentiation between our global optimal results and local 
optimal results determined by the BB algorithm. Table 7 
gives the number of structures identified with the BB and 
IDPforCSCCP algorithms for the different targeted MWs 
of C. chinensis with the given seed scaffolds. The number 
of structures identified by the BB algorithm ranged from 
3 to 18 for scaffold 1 and from 149 to 300 for scaffold 2, 
while the number identified by IDPforCSCCP ranged 
from 4 to 116 for scaffold 1 and from 1802 to 2006 for 
scaffold 2. Eight times more structures were recognized 
by the IDPforCSCCP algorithm than by the BB method 
in this example because IDPforCSCCP can maximize the 
chemical searching space in the CSCCP. We also show the 
top-ranking structures identified by Harn’s method with 
the limitation of Nk = 5 in Fig. 2a and that identified by 
the IDPforCSCCP algorithm without limitation of Nk in 
Fig. 2b for the targeted MW of 354.31 in C. chinensis with 
seed scaffold 1. The estimated probabilities of the potential 
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main structures in C. chinensis are also shown below each 
structure. The IDPforCSCCP algorithm can identify a 
top-ranked structure with higher probability than the BB 
method. When the value of Nk was limited, the program 
cannot search all side chain combinations to recognize 
the optimal structure for a given targeted MW. High-per-
formance computing by IDPforCSCCP enables complete 
structure searches without limitation of Nk for identifica-
tion of the correct main structures in natural products.

To demonstrate the actual improvement in the struc-
tural elucidation results using the iterative DP algorithm, 
we compared the identification results of the structural 
elucidation of Angelica sp. Harn’s CASE tool cannot cor-
rectly predict twelve structures out of a total of forty-five 
main compounds in this case. In fact, the overall predic-
tion rate for our IDPforCSCCP algorithm increased to 
82%. Four additional structures, including Imperatorin, 

Isoimperatorin, Umbelliprenin, and Ostruthol, were fur-
ther correctly identified in our study (Additional file  1: 
Table S3). IDPforCSCCP indeed improved both the time 
performance and prediction accuracy for the structural 
elucidation of natural products. In fact, IDPforCSCCP 
still failed to predict some main structures since our 
system can only utilize the collected side chains to con-
struct possible structures on the scaffolds. If additional 
common or structurally related side chains were manu-
ally input to our database, IDPforCSCCP would be able to 
correctly predict these failed structures.

Conclusions
For the structural elucidation of complex natural prod-
ucts, we defined a new CSCCP problem based only on the 
information obtained from MS spectra. Theoretically, to 
solve the CSCCP, exponential time should be required in 
the worst-case scenario. We designed a novel CASE algo-
rithm by applying a classical DP algorithm to search for the 
optimal solutions, and the time complexity was in pseudo-
polynomial time. However, the higher precision of the 
molecular weight required, the higher the time complex-
ity of our DP algorithm, even reaching exponential time. 
We thus developed an iterative DP algorithm that can be 
executed in polynomial time for the average case. Four real 
natural products, C. chinensis, O. japonicus, P. multiflo-
rum, and Angelica sp., were applied in our study to verify 
the results and time performance of our algorithm. The 
execution time was compared with that of the BF and BB 
algorithms. Our iterative DP algorithm outperformed the 
BF and BB programs. In addition, we could really elucidate 
the correct structures in herbs derived from a previous 
study. Because the time performance of our algorithm is 

Table 7  Number of  structures identified by  the branch 
and bound and IDPforCSCCP algorithm for the four differ-
ent targeted MWs of  C. chinensis with  the given  seed scaf-
folds

Each cell contains two numbers. The first is the number of structures identified 
by the branch and bound method (Nk = 5), and the second is for the number of 
structures identified by the IDPforCSCCP algorithm without limitation of Nk

Targeted MWs Number of identified structures 
(Brach and bound (Nk = 5), IDPforC-
SCCP)

Scaffold 1 Scaffold 2

286.24 (3, 4) (149, 1936)

302.24 (12, 24) (196, 1802)

354.31 (3, 29) (300, 2006)

478.41 (18, 116) (300, 1995)

Fig. 2  The top-ranking results identified by the branch and bound method with the limitation of Nk = 5 (a) and the IDPforCSCCP algorithm without 
limitation of Nk (b) for the targeted MW of 354.31 in C. chinensis with seed scaffold 1
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more efficient than those of the other algorithms, we could 
search for the real optimal solutions in an acceptable time 
in the four tested cases without the limitation described in 
previous studies of the number of combinatorial candidates 
of the substituted positions in each scaffold. The proposed 
efficient algorithm provides a new tool for spectroscopists 
to aid in the structural elucidation of unknown complex 
mixtures when only MS spectral information is known. A 
web service built for structural elucidation is freely acces-
sible (http://csccp.cmdm.tw/).

Methods
Data Set
Four types of herbs were used to validate the accuracy and 
time efficiency of our prediction method: Cuscuta chin-
ensis (C. chinensis), Ophiopogon japonicus (O. japonicus), 
Polygonum multiflorum (P. multiflorum), and Angelica sp. A 
list of possible scaffolds (seed scaffolds) for the tested herbs 
obtained from the preliminary LC–MS identification pro-
cedures from the Natural Product Laboratory of the Tai-
wan Medical and Pharmaceutical Industry Technology and 
Development Center (PITDC) is shown in Fig. 1. A prelimi-
nary identification of the high-intensity mass peaks was also 
performed, and the possible molecular weights (targeted 
MWs) of the tested herbs derived from the peak tables are 
listed in Table 1. The possible seed scaffolds and the list of 
targeted MWs were used as input in our new CASE pro-
gram. The procedure is used to elucidate the possible main 
chemical structures in herbs containing the list of possible 
seed scaffolds to match the peaks corresponding to the given 
targeted MWs. To combine different side chains on the seed 
scaffolds for identification of most of the possible main 
structures in the herbs, a database containing a list of pos-
sible side chains that can attach on the seed scaffolds from 
natural products was generated. The collected natural prod-
uct database included the Dictionary of Natural Products 
(DNP) [33], “ZINC natural products” subset of ZINC [34], 
and the Traditional Chinese Medicine Database (TCMD, 
updated on 2010-07-14) [35]. The number of natural prod-
ucts that contain ring structures is 82,847, and only these 
compounds were considered. Furthermore, the Natural 
Product Laboratory of PITDC has identified a list of main 
structures of each herb with their LC–MS/MS procedures. 
The verified main structures of each herb were provided in 
the results and discussion section and were used as a base-
line for the evaluation of our prediction results.

Definitions of the structural elucidation problem
Our new CASE system identified main structures that 
matched the targeted MWs of herbs by combining the 
known seed scaffolds with a list of possible side chains. 
The procedure was defined as a Chemical Substituents-
Core Combinatorial Problem (CSCCP) in the studies. The 

scaffold (core) of the compounds represented a common 
substructure of molecules that may have similar biological 
activities, and a side chain (substituent) denoted a chemi-
cal group that is attached to the scaffold. The position of an 
atom between the scaffold and a side chain is called a sub-
stituted position. A compound may have many different 
substituted positions, and each substituted position on a 
scaffold can also be linked by many different attached side 
chains. For each seed scaffold, according to the analysis 
of the relationship between the scaffolds and side chains 
from our collected natural product database, we can com-
pute the attaching probabilities of the side chains that can 
link to each substituted positions of that scaffold. The main 
procedure of our new CASE method utilized this informa-
tion to elucidate chemical structures, and the formal defi-
nition of the CSCCP (Definition 1) was as follows.

Definition 1  Given a chemical scaffold with n possible 
substituted positions, let s ∈ {1, 2, . . . , n}, where s is a var-
iable representing only the considered substituted posi-
tions from 1, 2, . . . , s. Xs is all sets of possible side chains 
from position 1, 2, . . . , s. Let i ∈ {1, 2, . . . , s}, where i rep-
resents the ith substituted position when the substituted 
positions from 1, 2, . . . , s are considered. Ki is the number 
of side chains that can be linked to the scaffold at posi-
tion i. Therefore, |Xs| = K1K2 . . .Ks. The xith substituent 
at position i of the scaffold, where xi ∈ {1, 2, . . . ,Ki}, has 
a known probability pi,xi ∈ [0, 1], representing its fre-
quency of occurrence in nature, and a molecular weight 
mi,xi, which is a nonzero positive floating point number. 
The problem is the generation of chemical structures that 
extend a set of possible substituents to the scaffold while 
satisfying [1] the condition that the product of the proba-
bilities of all extending substituents is maximized and [2] 
the total molecular weight of the extending substituents 
is equal to a specified target molecular weight, W0. Fur-
thermore, the top R optimal solutions of this optimiza-
tion problem were the output predicted structures of this 
problem. When R is 1, the optimal solution only includes 
the highest 

∏n
i=1 pi,xi value in which the total weight is 

equal to W0. R is an integer parameter in the system. Each 
substituted position on the scaffold can only be extended 
by one side chain. The CSCCP can be defined as the fol-
lowing floating point linear programming formulation:

(1)
max
topR

n
∏

i=1

pi,xi

(2)

n
∑

i=1

mi,xi = W0

xi ∈ {1, 2, . . . ,Ki}, ∀i ∈ {1, 2, . . . , n}

http://csccp.cmdm.tw/
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Figure  3 provides an example illustrating the CSCCP 
optimization problem. Here, given a seed scaffold with 
three substituted positions (n = 3), the side chain list for 
each substituted position (K1 = 2, K2 = 2, K3 = 2), and a 
target molecular weight (W0 = 98), each side chain has a 
pair of molecular weight and occurrence probability val-
ues (m1,1 = 15, m1,2 = 17, m2,1 = 17, m2,2 = 62, m3,1 = 17, 
m3,2 =  62; p1,1 =  0.2, p1,2 =  0.8, p2,1 =  0.8, p2,2 =  0.2, 
p3,1 = 0.2, p3,2 = 0.8). Two out of a total of eight combina-
tions of side chains generates the structures with the total 
molecular weight of 98 in this example. The first optimal 
solution has the highest 

∏n
i=1 pi,xi value of 0.512, and the 

second optimal solution has the second highest 
∏n

i=1 pi,xi 
value of 0.032. When R is 1, the first optimal solution is 
the result of predicted structure. In fact, to identify the 
correct main structures in the natural product, more 
than one possible seed scaffold should be given. Moreo-
ver, for a given seed scaffold, all combinations of side 
chains derived from sets of different substituted positions 
should be considered to generate possible compound 
candidates. For example, a scaffold has a set of possi-
ble substituted positions (for example, in Fig.  1) for R1, 
R2, and R3 and may have different candidates for other 
positions. Therefore, the complexity of these conditions 

makes the CSCCP difficult to be completed in a reason-
able time.

DP algorithm
In this study, we first proposed a DP algorithm as our 
new CASE strategy that can be executed in pseudo-pol-
ynomial time complexity to find the optimal solutions 
in the CSCCP. The optimization problem of CSCCP has 
been defined in Definition 1 by Eqs. 11 and 2. The CSCCP 
can also be represented by a cost function defined as 
follows:

Definition 2  (CSCCP cost function, C) In the 
CSCCP, n denotes the number of substituted posi-
tions on a given seed scaffold, and W0 is the targeted 
MW, as defined in Definition 1. A CSCCP cost funct
ion C : {s|1 ≤ s ≤ n, s ∈ N } × {w|1 ≤ w ≤ W0,w ∈ N }×  
{r|1 ≤ r ≤ R, r ∈ N } → [0, 1] , is defined such that 
C(s,w, r) represents the highest rth value of 

∏s
i=1 pi,xi 

when only s out of n positions are substituted by side 
chains and the total weight of the selected side chains 
is equal to w (

∑s
i=1mi,xi = w), where w is an integer 

number. If the original molecular weights W0 and mi,xi 
are floating point numbers, they are transformed to 
integers for the following analysis. Therefore, C(s,w, r) 

Fig. 3  An example structural elucidation defined in our CSCCP problem
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corresponds to a sub-problem of the CSCCP since only 
s substituted positions are considered. The r highest val-
ues of 

∏s
i=1 pi,xi , xi ∈ {1, 2, . . . ,Ki},∀i ∈ {1, 2, . . . , s} are 

denoted as C(s,w, 1 : r), where “1:r” denotes “from 1 to 
r”. The goal of the CSCCP is to find the R highest values 
C(n,W0, 1 : R) of 

∏n
i=1 pi,xi satisfying 

∑n
i=1mi,xi = W0, 

where “1 : R” denotes “from 1 to R”.

Therefore, the problem of finding the optimal solutions 
in the CSCCP can be regarded as solving a mathematical 
procedure of the cost function C(n,W0, 1 : R). To com-
pute the cost function, we first need to set the initial con-
figurations of the cost function. The initial condition of 
C(s,w, r) obeys the following Lemma 1.

Lemma 1  In C(0,w, r), for any values of w and r, 
C(0,w, r) is 0, except for the case of C(0, 0, 1), in which 
C(0, 0, 1) is equal to 1.

Next, we utilized the dynamic programming strategy 
to iteratively compute the cost function based on the 
initial condition defined in Lemma 1. The main concept 
of the DP method is based on the principle of optimal-
ity: for any initial conditions and decisions, the deci-
sions selected over the remaining period must be optimal 
for the remaining problem, with the states resulting 
from the previous decisions acting as the initial condi-
tion [30]. Therefore, to solve the entire CSCCP prob-
lem, C(n,W0, 1 : R), we must compute the sequence of 
the sub-problems, C(s,w, 1 : R) for s = 1, 2, . . . , n, and 
w = 1, 2, . . . ,W0. We used Lemma 2 to represent the 
relationship between the sub-problems.

Lemma 2  Given the values of C(s − 1, 1 : w, 1), we can 
infer the value of C(s,w, 1) using the equation below:

According to the principle of DP, the optimal solution 
of C(s,w, 1) can be decided by the optimal solutions in the 
previous step, C(s − 1, 1 : w, 1). In other words, the high-
est values of 

∏s−1
i=1 pi,xi matching the molecular weights 

from 1 to w were obtained when the positions from 1 to 
s − 1 on the scaffold were linked by the appropriate side 
chains derived from the computation of the DP algo-
rithm. Thus, we can directly evaluate the optimal solu-
tions of C(s,w, 1) based on the known C(s − 1, 1 : w, 1) 
in Lemma 2. Next, we extend Lemma 2 into Lemma 3 to 
calculate the highest R optimal solutions.

Lemma 3  If C(s,w, 1 : R) are the highest R optimal solu-
tions, with s ∈ {1, 2, . . . , n} and w ∈ {0, 1, . . . ,W0}, then: 

C(s,w, 1) = max
xs∈{1,2,...,Ks}

{ps,xs × C(s − 1,w −ms,xs , 1)}

C(s,w, 1 : R) = max
topR,xs∈{1,2...,Ks},r∈{1,2...,R}

{ps,xs × C
(

s − 1,w −ms,xs , r
)

}   , 

where Ks is the number of possible side chains at the sth 
substituted position on the given seed scaffold and ms,xs 
and ps,xs are the molecular weight and probability of the 
xths  side chain that can be linked on the sth substituted 
position.

Note that the order of the positions used to iteratively 
calculate the sub-problem, C(s,w, 1 : R), will not affect 
the results of the optimal solutions according to our 
proven Lemma 4.

Lemma 4  If we select any arbitrary order of s substi-
tuted positions to calculate C(s,w, 1 : R), the solutions of 
C(s,w, 1 : R) are unchanged.

Considering Lemmas 1–4, we can reasonably conclude 
Theorem 1.

Theorem  1  The highest R optimal solutions in the 
CSCCP, C(n,W0, 1 : R), can be solved by iteratively find-
ing the optimal solutions of C(s,w, 1 : R) for the position s 
from 1 to n and the molecular weight w from 0 to W0based 
on the initial condition of Lemma 1.

From the above discussions, we designed a new CASE 
tool to solve the CSCCP. The pseudocode of the DP pro-
cedure, DPforCSCCP, is presented in Fig.  4. According 
to Lemma 1, lines 1–4 initialize the cost function. Lines 
5–16 are the code required to iteratively calculate the 
cost function of the CSCCP for the positions on the seed 

Fig. 4  The dynamic programming algorithm for the computation of 
the Chemical Substituents-Core Combinatorial Problem (CSCCP)
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scaffold from 1 to n and the molecular weight from 1 to 
W

′

0 based on Lemmas 2–4, where W ′

0 is the integer for-
mat of W0. To preserve the precision of the set of optimal 
solutions determined by the DP algorithm, all molecular 
weights in {mi,xi |i = 1, 2, . . . , n, xi = 1, 2, . . . ,Ki} as well 
as W0 were scaled to integer numbers by multiplying by 
an appropriate number, λ, in order of magnitude. If the 
number of mass decimal places in W0 is D, we set λ as 
10D. The default value of D was 6 in our DP algorithm. 
Then, W ′

0 = W0 ∗ 10
D will retain all the floating point 

information of the original W0. Lines 10–11 consider the 
boundary condition when the molecular weight of the 
selected side chain is greater than the value of w. Lines 
9–15 correspond to the calculation of the cost function, 
max, defined in the formula in Lemma 3. The symbol C 
refers to a look-up table of the cost function, which is a 
3D matrix in which the index of the weight is in integer 
format. When followed by brackets, such as in C[s,w, r] , 
C will refer to the look-up table, while when followed by 
parenthesis, such as in C(s,w, r), C will refer to the previ-
ously defined cost function. Another 3D matrix of L was 
used to store the selected side chain information derived 
from the results of the cost function in line 16. At the 
end of the DP algorithm, the top R highest products of 
the probabilities from the combinations of the linked side 
chains were obtained in C[n,W0, 1 : R], where the total 
molecular weight of the linked side chains was equal to 
W0. The corresponding identified R structures can be 
generated from the information in matrix L.

In the DPforCSCCP algorithm, when D is too large, the 
time complexity must be in exponential time. The follow-
ing lemma shows the lower bound of D in this case.

Lemma 5  When the number of mass decimal places D 
is greater than log10

(
∏n

i=1 Ki

)

/W0, the time complexity 
of DPforCSCCP is greater than that of the BF algorithm 
for the CSCCP.

Iterative DP algorithm
According to Lemma 5, a larger D results in a worse time 
performance for DPforCSCCP that could be even slower 
than the brute force algorithm. To improve the DPforC-
SCCP algorithm, we introduce in this section a modified 
algorithm without the limitation of D. First, we derived 
Theorem 2:

Theorem  2  Let us assume that all molecu-
lar weights mi,xi ∈ R are converted into integers 
m′′

i,xi
= mi,xi + 0.5 ∈ N, W0 ∈ R is converted to 

W ′′
0 = W0 + 0.5 ∈ N, and R is changed to R′ > R . Let 

C be the look-up table used by DPforCSCCP when 
the targeted MW is W ′

0 = 10D ∗W0 and C ′ be the 
look-up table used by IDPforCSCCP when the tar-
geted MW is W ′′

0 . Then, if R′ is sufficiently large, the set 
C ′

[

n,W ′′
0 − 0.5n : W ′′

0 + 0.5(n+ 1),R′
]

 contains all of the 
values in C[n,W ′

0,R] calculated by DPforCSCCP.

Theorem  2 concludes that when a new sufficiently 
large number R′ is assigned in the DP algorithm, all the 
optimal solutions of the CSCCP still can be evaluated 
without considering D. According to Theorem  2, we 
proposed the iterative dynamic programming algorithm 
(IDPforCSCCP) depicted in Fig.  5 to efficiently identify 
the main structures in natural products. Both the tar-
geted MWs and molecular weights of the side chains are 
first directly converted into integer format by truncating 

Fig. 5  The iterative dynamic programming algorithm for compu‑
tation of the Chemical Substituents-Core Combinatorial Problem 
(CSCCP)
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all of the floating point information. For example, if 
W0 = 400.03, then W ′′

0 = 400. Because the main proce-
dure of the DP algorithm for the calculation of the cost 
function was not modified, the code from line 3 to line 
16 in IDPforCSCCP is the same as the code in DPforC-
SCCP. However, the code from line 3 to 16 is enclosed 
by a new while loop to evaluate the cost function based 
on different ranges of R′. In the while loop starting 
from line 1 of the IDPforCSCCP algorithm, the value of 
R’ in the first iteration is set to R ×  10, and for the fol-
lowing iterations, R’ is iteratively multiplied by 10 until 
R′ is greater than 

∏n
i=1 Ki. The code from line 17 to 18 

is used to store the values of the cost function and the 
corresponding side chains. In line 19 and 20, Ctmp and 
Ltmp are one-dimensional arrays storing all of the ele-
ments in C[n,W ′′

0 − 0.5n : W ′′
0 + 0.5(n+ 1), 1 : R′] and 

L
[

n,W ′′
0 − 0.5n : W ′′

0 + 0.5(n+ 1), 1 : R′
]

, respectively. 
Because we ignore the number of mass decimal places 
in the targeted MW in IDPforCSCCP, we use the func-
tion realWEqualToW0 in line 21 to evaluate whether the 
molecular weights of the identified solutions in floating 
point format are equal to the original targeted MW, W0 . 
The composite function indexesOf(realWEqualToW0()) 
in line 21 returns the indexes of the correct optimal solu-
tions in which the real weight is equal to W0. When the 
number of correct optimal solutions in the while loop is 
greater than R, as coded in line 24, the while loop is bro-
ken in line 25 because the top R optimal solutions have 
already been identified. In line 24 of Fig.  5, the nonZe-
roValues function takes an array as input and returns the 
same array without zero values, while the size function 
returns the size of the array. In IDPforCSCCP, we should 
also consider another boundary condition derived from 
the following Lemma 6.

Lemma 6  In the IDPforCSCCP algorithm, if the number 
of optimal solutions searched in the first iteration is less 
than R, the set of the searched optimal solutions will not 
be updated in subsequent iterations.

According to Lemma 6, we designed the boundary con-
dition in lines 22–23. If the size of the searched optimal 
solutions is less than R, the while loop is also broken. The 
proofs for Lemmas 1–6 and Theorems 1–2 are all given 
in the Additional file 1. The source code of the IDPforC-
SCCP algorithm programming in Java was provided in 
the Additional file 2.
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