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Abstract 

Background: In-silico quantitative structure–activity relationship (QSAR) models based tools are widely used to 
screen huge databases of compounds in order to determine the biological properties of chemical molecules based 
on their chemical structure. With the passage of time, the exponentially growing amount of synthesized and known 
chemicals data demands computationally efficient automated QSAR modeling tools, available to researchers that may 
lack extensive knowledge of machine learning modeling. Thus, a fully automated and advanced modeling platform 
can be an important addition to the QSAR community.

Results: In the presented workflow the process from data preparation to model building and validation has been 
completely automated. The most critical modeling tasks (data curation, data set characteristics evaluation, variable 
selection and validation) that largely influence the performance of QSAR models were focused. It is also included the 
ability to quickly evaluate the feasibility of a given data set to be modeled. The developed framework is tested on data 
sets of thirty different problems. The best-optimized feature selection methodology in the developed workflow is able 
to remove 62–99% of all redundant data. On average, about 19% of the prediction error was reduced by using feature 
selection producing an increase of 49% in the percentage of variance explained (PVE) compared to models without 
feature selection. Selecting only the models with a modelability score above 0.6, average PVE scores were 0.71. A 
strong correlation was verified between the modelability scores and the PVE of the models produced with variable 
selection.

Conclusions: We developed an extendable and highly customizable fully automated QSAR modeling framework. 
This designed workflow does not require any advanced parameterization nor depends on users decisions or expertise 
in machine learning/programming. With just a given target or problem, the workflow follows an unbiased stand-
ard protocol to develop reliable QSAR models by directly accessing online manually curated databases or by using 
private data sets. The other distinctive features of the workflow include prior estimation of data modelability to avoid 
time-consuming modeling trials for non modelable data sets, an efficient variable selection procedure and the facil-
ity of output availability at each modeling task for the diverse application and reproduction of historical predictions. 
The results reached on a selection of thirty QSAR problems suggest that the approach is capable of building reliable 
models even for challenging problems.
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Introduction
Background
The advantages of automation of repetitive tasks in the 
laborious drug discovery process are numerous and 
include increased research quality by reducing error 
along with significant time saving, boosted up productiv-
ity, and capacity to name a few. In this era where large 
amounts of data are produced every day and large com-
putational resources are available, the introduction of 
machine learning approaches has significantly automated 
the drug discovery procedure and provides a faster alter-
native for ultrahigh-throughput screening of large data-
bases of chemical molecules against a biological target 
[1–3].

Machine learning approaches are being applied in 
the drug discovery cycle to produce a robust model, 
capable of empirical predictions of biological proper-
ties of candidate compounds for new therapeutic mol-
ecules. Many successful studies have been reported in 
the literature which attests the importance of machine 
learning approaches combined with traditional prac-
tices to approach medicinal chemistry challenges [4]. 
In traditional lab work methodologies, many expen-
sive tests are often required which many times include 
animal testing to provide information about human 
safety for suggested chemicals. The legislation does 
not support such frequent experiments on laboratory 
animals, but rather promotes the sharing of data to 
the use of integrated alternative in-vitro and in-silico 
strategies of toxicokinetics [5–7]. Currently the Avi-
cenna Research and Technological Roadmap, funded 
by the European Commission, strongly suggests the 
use of in-silico techniques coupled with clinical trials 
[8]. This framework describes strategic priorities to 
establish the safety assessment of new medical inter-
ventions and at the same time minimizes the ethi-
cally concerned activities such as the animal or human 
experimentation.

Several available in-silico QSAR models based tools 
are widely used to screen very large databases of com-
pounds in order to determine toxicity or any desired 
biological effects of chemical molecules based on their 
chemical structure [9, 10]. The well-characterized inter-
nationally accepted validation principles for creating vali-
dated models have been used by regulatory agencies of 
United Sates (US) and gaining a boost in the European 
Union (EU) too [8, 11–13]. In the EU, the standard rec-
ommendations of chemicals risk assessment by regu-
latory QSAR models has been set by the Registration, 
Evaluation, Authorization, and Restriction of Chemicals 
(REACH)  [14] and the Organization for Economic Co-
operation and Development (OECD) [15]. The progress 
of such projects highlights the increased importance of 

productivity gains from fully accessible automation in the 
drug discovery and QSAR modeling fields.

These days, the aim of pharmaceutical projects is the 
integration of complex non-homogeneous data to build 
global models intended to be applicable within wide 
ranges of chemical space. However, with the passage of 
time, there is an exponentially growing amount of syn-
thesized and known chemical compounds data being 
added to the many existing molecule databases, public 
or private. This rise of available data is producing new 
opportunities to build models with broader applicability 
domains while at the same time challenging the existing 
models, as wider data sets allow for a more extensive test-
ing and validation of previous in-silico screening efforts. 
From these databases, data can easily be explored to 
build QSAR models based on available structural proper-
ties of the compounds that correlate with their biologi-
cal activity [16–18]. These models can also be used as an 
efficient tool to improve the understanding of biologi-
cal processes. Also, well-trained and properly validated 
models are reliable for automated prediction of physi-
ological characteristics of new compounds to assist the 
experimental drug discovery process by decreasing the 
time of the initial screening stages [19–22].

The QSAR/QSPR modeling “life cycle” involves some 
standard steps, critical for reliable model building. These 
steps include (1) model building by the application of 
one or several machine learning approaches, (2) model 
validation with an internal test set to assess its quality (3) 
model selection according to the results of the internal 
validation procedure, and (4) model validation with an 
external test set (Independent Validation Set) to ascertain 
its predictability of the properties of compounds never 
tested in model building and thus giving a more reliable 
measure of the selected model quality [4, 22]. It is also 
important to consider model updating as new data may 
become available. This repetitive nature of QSAR/QSPR 
modeling “life cycle” highlights a fundamental require-
ment of automation of critical steps with well-defined 
input, outputs, and success criteria in both the drug dis-
covery industry and biomedical research. To achieve this 
objective, it is fundamental to have a scrutinizable pro-
cedure for applying to a variety of problems. Automating 
such procedures in the form of a reusable workflow is a 
reachable goal with current technology, provided that a 
reliable method is extant and applicable to a wide range 
of problems. Such automation would reduce the neces-
sary and often tedious labor of model building, while at 
the same time guaranteeing that, for the available data, a 
quality model is reached.

Over the past decade, attempts have been made to 
attract the attentions towards the need of automation of 
the QSAR modelling process. More recently, Dixon et al. 
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[23] developed a machine-learning application (Auto-
QSAR) for automated QSAR modeling. It is unable to 
access data directly from online repositories and users 
required deep understanding to prepare a curated and 
standardized data set before modeling by AutoQSAR. 
eTOXlab [24] which is another framework allows auto-
mated QSAR mainly by a command line interface. 
Python programming skills are necessary to work with 
eTOXlab. An interesting alternative of integrated solu-
tion for fully automated modeling is OCHEM [25] but 
it’s online nature makes it unsuitable for using it with pri-
vate/sensitive data sets, which demand better privacy and 
safety independent of third party. Cox et al. [26] designed 
a Pipeline Pilot web application (QSAR Workbench). 
This application makes the built models available to all 
users in Pipeline Pilot [27], which is not freely available 
to the vast scientific community. The Automated Predic-
tive Modeling, another modeling system [28], demands 
expert technical skills and significant resources for model 
development and maintenance.

Objectives
Some of the major pinpointed gaps in the above dis-
cussed software packages include lack of fully automated 
process, require that users have a thorough understand-
ing of the data and modeling problems and several 
require computer programming and/or machine-learn-
ing knowledge, complex parameterization to custom-
ize complex modeling algorithms, and most do not give 
full access to view the intermediate results at each step 
of the modeling. Also to the best of our knowledge, none 
of these packages provide a facility to check overall data 
quality/feasibility to produce a robust QSAR model (data 
modelability), which can be an important measure to 
minimize time and computational cost. In the current 
work, we developed an open source automated QSAR 
modeling system that addresses these issues by providing 
better solutions for expert and non-expert users. The key 
ideas behind structuring the presented automated QSAR 
modeling workflow platform are:

  • It should be freely available and support any operat-
ing system with easy installation.

  • Should be easily be applied for fully automated QSAR 
modeling by directly accessing up to date data from 
online molecules databases or by using private data 
sets.

  • Provide automated data curation facility including 
removal of irrelevant data by selecting only the bio-
activity type of interest, filtering out missing data, 
handling of duplicates (e.g. same or two experimen-
tal records: same structure) and dealing with several 
forms of the same molecule (including salt groups).

  • Reliably perform most critical tasks of QSAR mod-
eling including descriptor/fingerprints calculation, 
feature selection, model building, validation, and pre-
diction.

  • Make a prior estimation of the feasibility of any given 
data set to produce a predictive QSAR model before 
the time-consuming process of feature selection, 
model building and validation.

  • It should adopt the best optimized feature selection 
methodology to select the adequate features for each 
problem. This is a critical task necessary to avoid 
over-fitting and to have a better understanding of the 
data, the model and the factors involved.

  • The application must follow the same protocol of 
training series to re-train and update models with 
new molecules as they become available and to make 
external predictions.

  • For different applications and reproduction of histor-
ical predictions, all outputs of intermediate tasks and 
each previous version of models must be stored on 
local machines.

  • Regarding extensibility, the framework should pro-
vide useful starting points for performing customiza-
tion to modify and further extend the existing work-
flow by domain specific interests.

Many research labs aim to develop their own complete 
workflow by using workflow automation tools for a 
broader domain of related biological problems [29–32]. 
Some of the more popular workflow frameworks include 
Taverna [33], Pipeline Pilot [27], Galaxy [34], Kepler [35], 
Loni Pipeline [36] or the KoNstanz Information MinEr 
(KNIME) [37]. These well-deployed workflows with 
graphical user interface provide a clear view of the run-
ning process rather than working as a black box, or with 
complex and opaque code. Moreover, it is an efficient 
way to manage complex chemical data to help stand-
ardize procedures, automate laborious procedures, and 
assist in data analysis [29]. For the current study, we have 
selected KNIME, an open source data-mining framework 
developed by the Nycomed Chair for Bioinformatics and 
Information Mining at the University of Konstanz to 
manipulate and analyze data with a strong emphasis on 
chemical manipulation and information management. 
KNIME has made it easy to perform the calculation of 
molecular descriptors to quantify molecular structures, 
evaluation of chemical similarity and other cheminfor-
matics problems [CDK [38], RDKit [39], Schrodinger 
[40, 41], ChEMBL [42], OpenPHACTS [43], BioSolveIT 
(http://www.biosolveit.de/KNIME)].

The developed open source automated QSAR mod-
eling KNIME workflow embeds all tools necessary to 
perform all steps of the QSAR life cycle by following 

http://www.biosolveit.de/KNIME
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best practicing methods [22, 44]. This designed work-
flow can easily be applied to build the predictive QSAR 
models reliably by directly accessing online manually 
curated databases or using users own private data with-
out having expertise in machine learning/programming. 
In this work, we illustrate and describe a model building 
workflow with an optimized feature selection methodol-
ogy and show its application in real world examples, by 
directly fetching binding data for thirty different QSAR 
problems from an online manually curated database 
(ChEMBL [42]) and building models using runtime pre-
pared processed data. The workflow, given a target or 
problem, automatically accesses and processes molecular 
data, calculates descriptors and fingerprints, evaluates 
data set modelability, selects optimized set of features 
by using an established methodology [45] and follows 
an unbiased standard protocol [22, 44] of QSAR model 
building by external and internal validation. The objec-
tive of this work is not to highlight the predictive power 
of the presented models but rather to elaborate a relia-
ble methodology to automate the production of models 
with good predictive qualities for very difficult problems. 
Nonetheless, the quality of the results suggests that the 
approach is capable of building reliable models for a large 
variety of problems.

Automated model building
The main focus of the current work is to present an 
implementation of a well-defined and efficient modeling 
procedure capable of building robust and reliable mod-
els and validate them both internally and externally. To 
accomplish this it was necessary to address two critical 
issues in QSAR modeling. The first one is to know how 
to deal with high dimensional data by identifying and 
selecting the subset of descriptors sufficient to predict 
the desired biochemical property. The second aspect in a 
modeling workflow is model validation, so that the model 
results can be unbiasedly assessed. This will ultimately 
qualify the applicability of the model for activity predic-
tion of external compounds in drug discovery processes 
[22]. An overview of the standard protocol of automated 
QSAR modeling workflow is shown in Fig. 1. This work-
flow starts with data preparation and data quality vali-
dation, data curation that includes gathering molecular 
structures and corresponding biological activity data 
for a specified target. Furthermore, to quantify various 
features of molecular structures a variety of chemical 
descriptors are computed. Before proceeding to the time-
consuming trials of feature selection, model building and 
validation, data modelability evaluation is performed. 
Difficult data sets will not be recommended to model. 
After this step, the feature selection process follows, so as 
to identify an optimized non-redundant set of variables 

that can lead to best models. This critical step not only 
provides a better understanding of generated data but 
also improves the prediction performance of relevant 
predictors [45]. This latter phase typically involves exten-
sive testing of different models with an increasing set of 
variables. Finally, when a relevant and reduced set of var-
iables has been determined, it can be used to develop the 
final QSAR model by following a rigorous internal and 
external validation process without compromising model 
quality assessment.

Architecture
This QSAR modeling workflow uses several custom-
ized nodes of (KNIME version 3.2) and is able to access 
online databases with millions of bioactive compounds. 
KNIME nodes can perform an extensive set of functions 
for many different tasks such as read/write data files, data 
processing, statistical analysis, data mining, and graphi-
cal visualization. Moreover, to reduce the complexity 
of large complicated workflow, a particular part of the 
workflow (sub-workflows) can be isolated in meta-nodes. 
The developed workflow aims at the simplification and 
automation of the QSAR model building. An overview of 
the implemented methodology is shown in Fig. 2 (see full 
KNIME view in Additional file  1: Figure S1). The com-
plete process is divided into several systematic tasks of 
QSAR modeling including (a) data access and process-
ing, (b) descriptors calculation, (c) data set modelability 
estimation (d) feature selection, (e) model building and 
(f ) validation, along with adequate data visualization. 
Each of these subtasks is enclosed within the KNIME 
meta-nodes that are isolated from the rest of workflow 
enabling easy parameterization with a user-friendly con-
figuration interface. The details of each task are covered 
in the following sections.

Data access and processing
There are typically two different alternatives for data set 
construction in model building, either the user has its 

Fig. 1 Overview of automated QSAR modeling workflow
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own private data set with measurements curated from 
different sources or measured in the lab, or else retrieves 
the information from an available online data reposi-
tory, that is continuously being updated by dedicated 

teams. The proposed workflow is able to encompass both 
approaches, giving the user the ability to use its own data 
set (with optional structural and descriptor calculation) 
or use an online repository (Fig. 3).

Fig. 2 Automated QSAR modeling methodology
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Nowadays, there are several large open source data-
bases with annotated bioactivities for small molecules, 
with comprehensive information on biological proper-
ties of millions of chemicals. This wide data availability 
is one of driving forces beneath this effort. Most popu-
lar molecular databases like PubChem [46, 47], PDSP Ki 
[48], and ChEMBL [42] have become leading cheminfor-
matics resources. The “Fully Automated” mode focus on 
ChEMBLdb by taking advantage of KNIME facility to 
access ChEMBL data. KNIME provides two built in nodes 
“ChEMBLdb Connector” and “ChEMBLdb Connector 
Input” to interact with RESTful and XML web services of 
ChEMBLdb. This facility for other chemical databases is 
not available yet. However, the ChEMBL database of more 
than 1.5 million bioactive compounds and 9000 biological 

targets is capable to provide an ample variety of problems. 
In KNIME, the “ChEMBL database” meta-node encap-
sulates a complete workflow to access data from ChEM-
BLdb, data processing, and descriptor and fingerprint 
calculation (Additional file 1: Figure S2). Hence, users can 
quickly access ChEMBLdb chemicals data for any target 
of interest by just a simple query of the desired UniProt ID 
and associated biological activity. The data obtained from 
ChEMBL may contain information related to all available 
biological activities extant for a given biological target (for 
example Ki, Kd, AC50, IC50, and EC50). This retrieved data 
is processed by retaining only the user’s requested biologi-
cal activity type records, and other relevant information 
related to chemical structures and assays. As the objec-
tive is to quantify a ligand–target interaction (activation 

Fig. 3 Input data set options. Overview of possible ways to submit input data to the automated QSAR modeling workflow
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or inhibition of the target), therefore any activity value can 
be utilized to count data related to the hypothesis. Over-
all data curation also includes the identification of missing 
data and duplicates (current year records are considered 
in two experimental records for same molecular struc-
ture) and dealing with several forms of the same molecule 
(including salt groups).

Descriptors calculation
The usage of descriptors and other computational repre-
sentations of molecular structures is one of the principal 
methods applied to screen the new active molecules. The 
current workflow automatically calculates several molec-
ular descriptors and structural characteristics for the 
retrieved molecules.

Along with this facility of online data access, users can 
also submit their fully prepared data file by using other 
input data set options with any types of descriptors cal-
culated elsewhere. The workflow is able to use RDKit for 
descriptor calculations and can compute as well nine dif-
ferent fingerprint types, including Morgan, FeatMorgan, 
AtomPair, Torsion, RDKit, Avalon, Layered, MACCS and 
Pattern [39].

Data transformation and data partitioning
Scaling/transformation of the response variables (asso-
ciated bioactivities) can be performed to standardize 
highly varying values in raw data for proper training of 
predictive model, where often data is transformed with a 
logarithmic function. This transformation can be skipped 
if data is already normalized. For the assessment of the 
applicability (prediction error) of the developed QSAR 
model, at this stage, the submitted data (either by auto-
mated retrieval from an online source, or by direct load-
ing from a private data set), is divided into training set 
and Independent Validation Set (IVS) through a random 
partition. The training set is further used in N-fold cross 
validation process for internal model evaluation and 
selection while the IVS data is used to perform an unbi-
ased model validation after the best model is built and 
selected. The latter is never used for any feature selection 
or model training procedure. So as not to bias the results.

Data set modelability estimation
Predictive performance of QSAR models highly depends 
upon different characteristics (e.g., size, chemical diver-
sity, activity distribution or presence of activity cliffs) of 
various data sets [49–51]. It may not be always possible to 
build reliable QSAR models for certain data sets. To iden-
tify difficult problems, recent studies have introduced the 
concept of “data set modelability” meaning a prior esti-
mate of the feasibility to obtain robust QSAR models by 
using a given descriptor space for data set of molecules 

[52–54]. The key idea behind this concept is based on the 
similarity principle that states that ‘similar compounds 
typically exhibit similar activity’ [55]. However, For every 
compound in a given data set, the nearest neighbors, i.e., 
compounds with the smallest distance from a given com-
pound should possess similar activity. If the target prop-
erty values for highly similar compounds are significantly 
different, then it means that the problem is probably hard 
to solve and most approaches will not be able to model it.

In the presented workflow, we followed a well estab-
lished k-nearest neighbors approach based criteria, 
the modelability index (MODI) [53]. Golbraikh et  al. 
[53] proposed several statistical criteria for estimat-
ing the feasibility of classification [e.g., data set diversity 
(MODI_DIV), activity cliff indices (MODI_ACI), correct 
classification rate (MODI_CCR)] and regression [similar-
ity search coefficient of determination (MODI_q2 and 
MODI_ssR2)]. MODI is calculated as the Leave-One-Out 
(LOO) cross validation coefficient of determination of 
a simple k-Nearest Neighbours approach for data clas-
sification or regression over the training set, where k is 
typically either 3 or 5. MODI is fast to compute and helps 
modelers to quickly evaluate whether any given chemical 
compound data set can be modelled, giving an estima-
tion of the predictability of the computed models before 
the actual modeling takes place. Data sets with very low 
MODI index are not recommended for model building, 
as a low MODI index informs the user that additional 
data processing and manual curation may be required. 
However, according to the suggested MODI score for 
regression problems [53], in the automated QSAR mod-
eling workflow (Additional file 1: Figure S1), we suggest 
a MODI score to be > 0.45 for reaching a model with 
acceptable predictability (PVE ≥ 0.60).

Feature selection
The goal of QSPR/QSAR models is to correlate the 
molecular structures with their physiochemical/bio-
logical properties [20–22]. There are three main difficul-
ties to achieve this task: (1) how to quantify molecular 
structure; (2) identify which are the relevant structural 
descriptors (or structure derived) that are the most ade-
quate for the problem at hand; and (3) how to actually 
map the descriptors selected to the property being mod-
eled [20–22, 56, 57]. Molecular descriptors can approxi-
mate most structural properties and a huge corpus of 
literature is extant on this subject [58]. Currently the 
number of chemical descriptors is so large that one of the 
biggest problems is selecting the most adequate features 
for each problem [58, 59]. Several issues typically need 
to be addressed in feature selection when the number of 
available variables is very large [60–62]. Some of the typi-
cal problems are:
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(a) Some descriptors appear highly correlated.
(b) In several biological contexts no hypothesis is avail-

able about target structure for inferring binding 
activity.

(c) Having many descriptors many times just do not 
improve the model quality, as the number of fea-
tures advances, the number of spurious correla-
tions increases as well and adding redundant or 
irrelevant variables to the model do not increase the 
model predictive abilities.

(d) Sometimes the given descriptors are not, by them-
selves, able to contribute to modeling activity, but 
by combining them with other available descrip-
tors, may sometimes increase the model prediction 
capabilities.

(e) The identification of a limited set of descriptors 
from the available list is many times necessary to 
avoid over-fitting, allow the desired physicochemi-
cal property to be adequately predicted by the con-
structed model and to have a better understanding 
of the models and the factors involved.

For the purpose of feature selection, several statistical 
and non-linear machine learning methods have been 
employed in QSPR/QSAR modeling as filter techniques. 
Some direct feature filtering approaches includes cor-
relation matrix, Fisher’s weight, Principal Components 
Analysis or Weighted Principal Components Analysis 
or Partial Least Squares (PCA/WPCA/PLS) loadings, 
regression coefficients, variable importance in PLS pro-
jections [VIP]) and Random Forest (RF). Some other 
are iterative methods for example, Ordered Predictor 
Selection-Partial Least Squares (OPS-PLS), Sequen-
tial Forward/Backward Selection, randomized meth-
ods that combine PLS with Genetic Algorithms (GA) 
or Monte-Carlo algorithms [45, 63–66]. The direct fil-
ter methods are simpler and faster selecting variables, 
since they require only a metric calculation (a coef-
ficient or weight) and the application of a cut-off value 
to determine the rejection of some variables due to the 
low importance to the model construction. Iterative 
methods have high computational cost, since most of 
them use filter methods in iterative ways or in combi-
nation with machine learning techniques. However, to 
deal with high dimensional data, the best-optimized 
methodology is always required to select the minimum 
subset of descriptors to predict a certain property with 
a good performance, less computational/time cost and 
in a more robust way. The application of non-linear 
machine learning algorithms to explore the non-lin-
ear relationships between descriptors and biological 
activities is increasing within the QSAR community 
[67, 68]. For feature selection in predictive models, we 

implemented a RFs voting procedure that can be used 
for the variable rankings according to their importance 
in RFs models [45, 65, 69]. In this ensemble method, 
each variables importance score is calculated by sev-
eral available variable importance’s (VI) measures . One 
of the widely used VI measure in the regression prob-
lems is increase in mean of the error of a tree “Mean 
Squared Error (MSE)”, which explains how much pre-
diction error increases with the random permutation of 
given variable while keeping all others unchanged in a 
node of a tree [65, 69–71]. Moreover, RF provides two 
options to fetch the VI score, which includes scaled and 
unscaled importance score. The scaled importance (also 
called z-score) is the default output of the randomFor-
est function, which is obtained by division of the raw/
unscaled importance by its standard error.

However, some studies indicate that the unscaled 
importance VI (Xj) has better statistical properties and 
recommended for regression problems [72, 72, 73].

The current workflow followed the best performing 
RF based feature selection method, which is a hybrid 
approach [45]. The principle of this hybrid technique 
is to get: (1) possible set of variables, most relevant to 
the property of interest by using the variable impor-
tance (VI) function of RFs and (2) obtain the minimal 
set of features with a possibly best predictive perfor-
mance along with unfavorable ratio between the number 
of predictors and number of observations. Practically, 
this approach counts variable importance by calculat-
ing the average mean squared error (MSE) provided by 
RF from a series of runs as a tool to rank the predic-
tors. Hence, the VI based ranked variables can be feed 
to any machine learning algorithm to build the stepwise 
predictive models to find a better balance between the 
biologically relevant set of features and prediction error 
(RMSE).

Model building
Model without feature selection
To verify performance of the applied feature selection 
method, it is necessary to assess model predictive behav-
ior without any feature selection. Hence, developed 
QSAR modeling workflow, build a model with whole set 
of descriptors to confirm that elimination of irrelevant or 
non informative variables is improving predictive power 
of given model.

(1)Zj =
(VI(Xj))

σ̂√
ntree

(2)VI(Xj) =
∑ntree

t=1 VI (t)(Xj)

ntree
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Model with feature selection
Automated QSAR modeling workflow follows a RF based 
feature selection method and provide ranked order of 
variables without eliminating any variable. These ranked 
variables are sequentially added to the learning algorithm 
to find the most relevant set of predictors leading to the 
model of smallest error rates.

The most employed machine learning approaches 
used in in-silico drug design are artificial neural net-
works (ANN), support vector machines (SVM), decision 
trees (DT), random forests (RF) and k-nearest neighbors 
(KNN) [4, 63]. Among the mentioned methods, the use 
of SVM to build QSAR models has become very popu-
lar in the last years [74–77]. Moreover, many studies 
also explain the suitability of RF for high dimensional 
QSAR/QSPR datasets [45, 70, 78]. Hence, SVM [79] and 
RF [70], non-linear supervised learning methods are 
made available in the QSAR modeling workflow. This 
is mainly due to the fact that these methods are robust 
in finding good modeling approaches in complex situa-
tions where the number of variables is very large and the 
number of instances is typically small. In such situations, 
many other machine learning methods (decision trees, 
neural nets, or linear models) can easily over fit, pro-
ducing models unable to generalize outside the training 
space. Nonetheless, other algorithms can easily be used 
within KNIME, either through its customized nodes or 
by linking KNIME to R modules where most modeling 
approaches have been implemented.

To evaluate models predictability, data is split into 
training and test set to generate and validate stepwise 
estimation model by sequentially feeding ranked vari-
ables. The best features based internally validated model 
is finally presented for external validation.

External validation and model applicability domain
It is crucial to define the applicability domains of devel-
oped models by a critical step of external validation by 
using an IVS, which is not used in any part of the training 
process. In the developed workflow, a stringent protocol 
[22] of model validation is followed to ensure robustness 
and predictive power of the constructed models. The 
evaluation of the models’ fitness is performed by com-
paring the proportion of the variance explained (PVE) by 
the predictive model, and the root mean squared error 
(RMSE) [80] (see Eqs. 1 and 2). Externally evaluated final 
models can be used as a tool for external prediction and 
virtual screening.

(3)PVE = 1−
∑n

i=1

(
yi − ŷi

)2
∑n

i=1

(
yi − ȳi

)2

In Eqs.  3 and  4, yi and ŷi are the measured and pre-
dicted biologically associated values for compound i, 
respectively, and ȳ is the mean of all activities from the 
compounds in the data set.

Nevertheless, in external predictions, the new data has 
molecules not present in the training set, therefore some 
predictions made with the model can be unreliable. This 
issue may be addressed by training models with a larger 
size and increased diversity, which many times is not an 
option in QSAR studies, or to circumscribe the model 
by defining its applicability domain (AD) in the chemi-
cal space [81, 82]. In the model AD, a similarity threshold 
between the training and validation set is established to 
flag the newly encountered compounds for which pre-
dictions may be unreliable. If the similarity between the 
training and validation set or new chemical is beyond 
the defined similarity threshold, the new compound 
is accounted to be outside the AD and the prediction 
is considered unreliable [81, 82]. In this QSAR mod-
eling workflow, a well-established method [82] is used 
to define the domain of applicability of the built models 
based on the Euclidean distances among the training data 
and IVS.

Extensibility
The main modeling workflow is subdivided into several 
tasks. Each subtask is performed by small workflows 
that are developed and encapsulated within meta-nodes 
to establish independent processing and analysis (Addi-
tional file 1: Figure S1). The subdivision of the complete 
modeling process in QSAR modeling workflow architec-
ture provides several advantages including (a) it reduces 
the complexity of modeling framework (b) improves the 
understanding of the implemented machine learning 
procedure and (c) increases the flexibility for future mod-
ification of the workflow. Hence, users can easily modify 
and further extend the presented workflow by domain-
specific interests to add new features.

Results
Workflow implementation
Each task during drug designing from data preparation to 
model development and validation is critical to the accu-
racy of the predictive power of QSAR models [22]. The 
first stage of data preparation includes data collection, 
data cleaning by removing unwanted data, and appro-
priate molecular representation of underlying chemi-
cal compounds. In the second step the curated data is 

(4)RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)2
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evaluated by data modelability criteria to check either 
given data set is reasonable to generate a QSAR model 
with significant predictive power. The third step includes 
extraction of more relevant biological features entitles as 
feature selection. Finally, model development and vali-
dations emphasize on a standardized process of internal 
and external model validation. QSAR modeling work-
flow is developed especially focusing on these mentioned 
major tasks to develop best-established methodology 
based framework.

Input data parameters
To run automated QSAR modeling workflow, simple 
settings of “Input Parameter” meta-node (Fig.  4), like 
the choice of the target protein (name and UniProt ID), 
molecular fingerprints, nfold value, working directory 
path and the type of activity measures are required to 
build the best possible predictive model in very short 
time. No parameter is required to get RDKit descrip-
tors for the given target; these are calculated by using 
the RDKit nodes embedded inside “ChEMBL Database” 
meta-node (Additional file 1: Figure S2). Optional param-
eters node “Machine learning algo” provide the choice of 
machine learning algorithm (by default =  SVM) (Addi-
tional file 1: Figure S1).

Input data set options
Automated QSAR modeling workflow provides three 
options to take input data files (Fig.  3). The first option 
provides a “Fully Automated” mode, which directly 
accesses data from ChEMBL database with a simple 
query of UniProt accession number of a target protein 
and associated bioactivity type. No deep understanding 
of data is required for the first option.

There are two other alternatives for modelling within 
“Customized” mode, if the user wants to work with per-
sonal data sets, and none of them requires ChEMBL data 
retrieval. Within “Customized” mode, the two alterna-
tives deal with different available structural and descrip-
tors-based information within the data sets, as the user 
is able to provide most of the data. Users with prelimi-
nary knowledge of their understudy problems can choose 
option 1 of “Customized” mode to process the known list 
of curated molecules. In the case of a thorough under-
standing of given modeling problem, where the user has 
previously computed the necessary molecular repre-
sentation (with chemical descriptors or other structural 
information) the “Customized” mode option 2 bypasses 
all the descriptor computation phases and proceeds 
directly to model building. Hence, by adding flexibil-
ity in the way the user is able to provide input data, this 

Fig. 4 Input parameters. Input configurations required before to run the workflow
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constructed framework is able to cover some of the most 
common needs of modelers.

Data set retrieval and data pre‑processing
In the “Fully Automated” mode to fetch data from 
ChEMBL the “ChEMBL Database” meta-node is devel-
oped in a given workflow (Fig.  4 and Additional file  1: 
Figure S2). This meta-node can automatically pre-
pare standard input data sets to explore a ChEMBLdb 
reported compounds–chosen receptor interaction by 
quantification of bioactivity of molecules.

In ChEMBLdb, different measures for binding affinities 
have been standardized, some of them remain more used 
like the half-maximal effective concentration (EC50 ), the 
half-maximal inhibitory concentration (IC50) and the 
inhibitory constant (Ki). EC50 value represents the molar 
concentration (M = mol/L) of an agonist that produces 
half of the maximal possible effect of that agonist. The 
simple definition of IC50 is a molar concentration of an 
antagonist that reduces the response to an agonist by 
50%. Moreover, it can be explained as the molar con-
centration of an unlabeled agonist or antagonist that 
inhibits the binding of a radio-ligand by 50%; or can be 
considered as the molar concentration of an inhibitory 
agonist that reduces a response by 50% of the maximal 
attainable inhibition [83, 84]. Ki value is used to quantify 
a ligand-receptor interaction based on the equilibrium 
dissociation constant (K). Hence, smaller the Ki value is 
associated with higher ligand-receptor binding affinities 
[68, 85].

In this machine leaning pipeline, the focus is to set a 
standard protocol of regression problem based on any 
measure to predict the tendency of chemical molecules 
to either activate (Ki, Kd, AC50, or EC50) or inhibit (e.g., 
those with IC50 values/Ki values) a selected target. The 
“ChEMBL Database” meta-node returns ChEMBL 
retrieved data (ChEMBL ID., reference, bioactivity type, 
assay description, activity value, and smiles strings), the 
calculated descriptors, and fingerprints data sets. Both 
the data sets of descriptors and the fingerprints can be 
used for further processing and modeling.

From data to validated models
Data pre-processing occupies a large time cost in QSAR 
modeling process. Many nodes are available in KNIME 
for data manipulation including row/column filtration, 
merging, splitting, concatenation and joining, type con-
version and data transformation, row groping and aggre-
gation, and data table pivoting. Moreover, to process and 
handle large amount of data on a standard computer, 
KNIME also provides efficient memory management 
architecture. Hence, developed automated QSAR mod-
eling workflow incorporates these all advantages of 

data processing and handling. It automatically fetches 
and processes data in an efficient way with the com-
binations of KNIME built in nodes with in this work-
flow (Additional file 1: Figure S2). Data processing time 
depends upon the size of problems, while hardly one 
minute is required for small problems with less then 500 
observations.

After data preparation, the next important task is fit-
ting an appropriate machine learning algorithm to build 
a predictive model. For this purpose KNIME contains 
model building nodes for almost all options of machine 
learning and predictive models including most popu-
lar algorithms such as Bayes models, fuzzy rules, fuzzy 
c-means, k-means, neural networks, decision tree mod-
els, hierarchical and the self-organizing tree algorithms, 
linear and polynomial regression models, support vector 
machines, and supervised machine learning.

Nonetheless, along with simple statistical analysis and 
mathematical operations facilities, nodes to perform 
cross validation and bagging are also available. In addi-
tion, to integrate large number of statistical and graphical 
libraries, R [86] package is supported by KNIME to cover 
advanced data manipulation and modeling.

Automated QSAR modeling workflow can easily be 
customized to embed any of the mentioned algorithms. 
The implemented methodology in the current workflow 
combines series of R nodes to read data (R Source node), 
to draw plots (R View node), to train and build model (R 
Learner and R Predictor nodes) to perform additional 
tasks by personalized code (R Snippet node). However, 
major tasks of feature selection by RF (Additional file 1: 
Figure S3 and Additional file  1: Figure S4) and model 
building by SVM (Additional file  1: Figure S5) are per-
formed with the help of inter-connected R nodes. Finally, 
the developed models are saved by model writer node 
in the user defined directory that can easily be read by 
model read node to make new predictions.

Real world cases
Data sets description
We tested the proposed QSAR modeling workflow on 
datasets of different members of protein families. These 
proteins include glutamate [NMDA] receptor, sigma non-
opioid intracellular receptor (Sigma), beta-adrenergic 
receptor (ADRB), alpha-adrenergic receptor, histamine 
receptor (HRH), Potassium voltage-gated channel subfam-
ily H member, dopamine (DA-Rs) and serotonin (5-HT) 
receptors (Table 1). The selection of these thirty different 
target proteins is independent of any hypothesis. Here, 
our emphasis is to examine the performance of applied 
strategy of QSAR modeling to solve diverse issues rather 
than to produce the best predictive model for each prob-
lem. To run the workflow, an initial configuration of “Input 
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Parameter” meta-node is required to set the values of given 
parameters including number of folds for cross-validation 
(nfold), target protein name and UniProt accession num-
ber, working directory path, fingerprints and associated 
bioactivity. Hence, to prepare datasets for given problems 
“Input Parameter” meta-node was configured by providing 
name and UniProt accession number (Homo sapiens spe-
cific) of selected receptors, the associated bioactivity type 
(Table 1), Morgan fingerprints and “nfold” value was speci-
fied to perform tenfold cross validation (nfold = 10).

Data preparation and variable scaling
A subset of any data set from ChEMBL Database is 
passed through the R Snippet node (Data Transforma-
tion) (Fig. 4). Variables scaling/transformation is impor-
tant to standardize the range of independent feature 

to normalize the highly varying values in raw data for 
proper functionality of many machine learning algo-
rithms. Recently, ChEMBLdb introduced pChEMBL 
value, which is an approach to standardize different activ-
ity types/values/units. pChEMBL is defined as a nega-
tive logarithm of molar IC50, XC50, EC50, AC50, Ki, Kd or 
Potency [42]. Some other methods to normalize widely 
varying ranges of activity values are also reported in the 
literature. For example, pKi values are the negative loga-
rithm to base 10 of the equilibrium dissociation constant, 
which allows an easier comparison of binding affinities. 
Thus, standard deviations are symmetrical for pKi values 
but not for Ki values [84]. A generic formula was applied 
to convert values into scaled values (sp(Activity value)) 
within “Data Transformation” node (Additional file  1: 
Figure S1) according to the following rules:

Table 1 Description of selected problems

Uniprot ID Target protein name Associated bio-
activities (Y)

Total number 
of observations 
(N-retrieved)

Total number 
of observations 
(N-processed)

Q05586 Glutamate [NMDA] receptor IC50 512 320

Q99720 Sigma non-opioid intracellular receptor 1 (Sigma1R) IC50 1895 762

Q99720 Sigma non-opioid intracellular receptor 1 (Sigma1R) Ki 2584 1465

CHEMBL613288 
(Uniprot ID NA.)

Sigma non-opioid intracellular receptor 2 (Sigma2R) Ki 553 497

P08588 Beta-1 adrenergic receptor (ADRB1) IC50 1471 599

P07550 Beta-2 adrenergic receptor (ADRB2) IC50 1424 554

P13945 Beta-3 adrenergic receptor (ADRB3) EC50 1478 1227

P35348 Alpha-1A adrenergic receptor Ki 1650 1260

P35368 Alpha-1b adrenergic receptor Ki 1567 1260

P25100 Alpha-1D adrenergic receptor Ki 2076 1060

P35367 Histamine H1 receptor (HRH1) Ki 2239 1222

P25021 Histamine H2 receptor (HRH2) Ki 1218 385

Q9Y5N1 Histamine H3 receptor (HRH3) Ki 3799 3101

Q9H3N8 Histamine H4 receptor (HRH4) Ki 1486 1095

Q12809 Potassium voltage-gated channel subfamily H member 2 (HERG) Ki 2539 1481

P21728 D(1A) dopamine receptor (DRD1) Ki 2244 1087

P14416 D(2) dopamine receptor (DRD2) IC50 1667 725

P35462 D(3) dopamine receptor (DRD3) IC50 1174 326

P21917 D(4) dopamine receptor (DRD4) Ki 3409 1900

P21918 D(1B) dopamine receptor (DRD5) Ki 529 341

P47898 5-Hydroxytryptamine receptor 5A Ki 382 302

P50406 5-Hydroxytryptamine receptor 6 Ki 4084 2632

P46098 5-Hydroxytryptamine receptor 3A Ki 517 432

P28222 5-Hydroxytryptamine receptor 1B Ki 1129 938

P41595 5-Hydroxytryptamine receptor 2B Ki 2034 1149

P28335 5-Hydroxytryptamine receptor 2C Ki 3433 2157

P28221 5-Hydroxytryptamine receptor 1D Ki 1153 973

P08908 5-Hydroxytryptamine receptor 1A Ki 4008 3244

Q13639 5-Hydroxytryptamine receptor 4 Ki 540 422

P34969 5-Hydroxytryptamine receptor 7 Ki 1753 1438
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where sp(Activity value) represents the scaled activity 
value.

Finally, after normalization of response variables (bio-
activities) data is divided by random sampling into 75% 
training set and 25% independent validation set that will 
not be used in any training process (Fig. 4).

Data set modelability measure
As stated, before the modeling phase of the thirty 
selected problems, the “modelability index” (MODI) is 
calculated [53] (Additional file  1: Figure S1 and Table 
S1). MODI requires that the activities of compounds in 
all data sets and their distribution in the descriptor space 
(predictors) must range in the interval [0,  1]. Biological 
activities were scaled according to Eq.  5, while descrip-
tors were processed using a simple [0, 1] scaling (Eq. 6).

where x is the original descriptor and x′ is the scaled 
result of that variable.

Feature ranking by Random Forest
Data sets of all descriptors (descriptors and fingerprints) 
was used to consider high dimensional data sets for unbi-
ased implementation of developed workflow to build an 
robust model based on best relevant features from highly 
redundant data.

This framework identify the most important features 
the ones that are responsible for the relevant molecular 
activity. Feature selection is a crucial step to reduce com-
putation time and storage, improve model interpretabil-
ity, understanding, performance, and remove irrelevant 
features (noisy data) to avoid over fitting [87]. Hence, 
we followed a strong method of RF based feature selec-
tion with a particular emphasis to generate more reliable, 
predictable, and generalized QSAR models [45]. QSAR 
modeling workflow finds the ranked ordered list of vari-
ables (descriptors and fingerprints) according to both 
scaled ((VI)1) and unscaled ((VI)2) importance scores 
(Additional file 1: Figure S3 and Figure S4).

Due to the stochastic nature of the RF algorithm, nfold 
cross validation was performed to fit RF models, and the 
importance of variables was recorded for each run. In 
the end, variables were ranked by sorting average vari-
able importance scores in descending order. The process 

(5)

If Activity value ≥ 10,000, sp(Activity value) = 0

If 10,000 > Activity value > 1,

sp(Activity value) = (4 − log 10(Activity value))

4

If 1 ≥ Activity value, sp(Activity value) = 1

(6)x′ = x −min(x)

max(x)−min(x)

of features ranking is performed by two kinds of meta-
nodes including “Model Validation” and “mean(%MSE) 
Calculator” (Additional file  1: Figure S3 and Figure S4). 
Hence, the output of these two meta-nodes is a processed 
input data rearranged by two kinds of variable rank-
ings methods, first by scaled variable importance based 
ranked order, and second by unscaled importance based 
variables ranking.

Stepwise estimation models and feature selection
The produced ordered training data with more relevant 
to less important variables was further processed by 
meta-node “Build Model by Adding Ranked Variables”, 
which firstly splits data into training and test set and 
introduces each ranked variable into a new SVMs fitted 
models (Additional file 1: Figure S5). Each new model is 
validated by test set, and the statistical results of these 
stepwise estimation models are recorded to find the best 
set of features with minimum predictive error (RMSE). 
The results of the selected features based models (SF-
models) of all target proteins clearly indicate large reduc-
tion of the total number of features (F) into more relevant 
features (SF) in all data sets. In the given problems, the 
maximum reduction of the features is 1037–9 variables 
ranked by scaled importance approach and 1079–29 vari-
ables in the case of unscaled importance. Similarly, the 
minimum reduction is 1134–470 variables and 1132–432 
variables by scaled and unscaled importance methods 
respectively. Hence, on average applied methodology 
of feature selection performs adequate dimensionality 
reduction that is an important task to improve the quality 
of the predictive model.

Model results
After selecting the predictive model with best set of fea-
tures (SF-model), the model’s final assessment was per-
formed using of the IVS. External validation is a critical 
step to make sure unbiased evaluation of developed 
model [20, 22, 44]. The IVS considered for external vali-
dation was never used in feature reduction and model 
training processes . On average, the difference between 
predictive performance of internally and externally vali-
dated SF-models is not large with optimally fitted models 
(Table  2). SF-models of three receptors including Sig-
ma1R (bioactivity dataset of IC50), 5-HT2B and 5-HT4 
showed poor generalization due to over-fitting in both 
methods of feature selection. In the other cases some SF-
models like Sigma1R (bioactivity data set of Ki), 5-HT1A, 
5-HT3A, 5-HT5A, 5-HT1D, ADRB1, DRD4 and DRD5 
performed even better for external predictions.

To validate the efficiency of the implemented meth-
odology, a model was also developed without feature 
selection (full-model). The external validation score 
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of full-model is also calculated to compare the perfor-
mance with final predictive model with selected fea-
tures (SF-model). The comparison of the performance of 
externally validated full model and externally validated 
final SF-model clearly confirms the effectiveness of the 
feature selection method. The results from all thirty dif-
ferent data sets show a significant increase in predictive 
power (PVE) and reduction in prediction error (RMSE) 
by removing the noisy data and considering the most rel-
evant features (Table 3).

In the developed QSAR models of selected problems, 
the PVE score of the full-model ranges 0.13–0.59 while in 
the SF-model PVE ranges between 0.32–0.87 and 0.33–
0.84 from scaled importance ((VI)1) and unscaled impor-
tance ((VI)2) methods respectively. However, an average 
PVE increase in both methods, ((VI)1) and ((VI)2) is 
almost 49% of the PVE of the full-model. The number 
of features in SF-models ranges between 0.0079–16% 
of the total number of processed features considered in 
full models, which contain 1135 variables. The average 
reduction in the number of features is 83% of the total 
number. Moreover, error analysis of all predictive models 
shows an average RMSE of the full-model is 0.21 and in 
the case of SF-model the average RMSE is 0.17 in both 
methods. Hence. an average error decrease is 19% of the 
RMSE of the full-model. The large improvement of SF-
models predictive performance and decrease in error rate 
exhibit the strength of unbiased methodology followed in 
automated QSAR modeling workflow.

All intermediate results can be visualized by interactive 
tables and graphical outputs from data visualization lay-
ers (Additional file 1: Figure S1). After completion of the 
QSAR model building workflow, outputs of each task are 
saved in the user’s defined working directory (Additional 
file  1: Figure S6). The availability of these intermediate 
data in the end of each task is useful to restore histori-
cal predictions and the given processed data with filtered 
features can further be used in any other application.

Model applicability domain analysis
For all thirty problems, feature selection and model 
development was carried out using the training set; how-
ever, model applicability to external compounds depends 
on the structural similarity between the chemicals in the 
IVS and the training set molecules. Model predictabil-
ity is considered more reliable if the IVS chemicals fall 
within the AD. We used a KNIME node “Domain-Simi-
larity” (Additional file 1: Figure S1) [82, 88] to analyze the 
AD of the models developed by the presented workflow. 
“Domain-Similarity” node uses similarity measurements 
to define the AD using Euclidean distances among all 
training compounds and the test or IVS compounds. The 
prediction may be unreliable if the distance of an external 

set compound to its nearest neighbor in the training set 
is higher than defined AD (out of AD).

In majority of the thirty selected problems compounds 
within the IVS were inside the AD, with the exception 
of six problems where some instances were outside the 
AD. These are the D(1A) dopamine receptor (3 molecules 
outside the AD), D(2) dopamine receptor (2 molecules), 
D(3) dopamine receptor (2 molecules), Sigma non-opi-
oid intracellular receptor 1 with activity Ki (1 molecule), 
HRH2 (1 molecule), and 5-hydroxytryptamine receptor 
1D (1 molecule). As the IVS should be a data set not con-
trolled by the modellers, this QSAR modeling workflow 
does not remove these molecules and the decision is left 
to the users on how to handle the more prediction-error 
prone instances of the IVS.

Predictive performance comparison with published QSAR 
model
In the above analysis of the selected thirty problems, 
“Fully Automated” mode was tested where all processes 
from data retrieval to model building are completely 
automated (Fig. 3). We further used “Customized” mode, 
of the workflow (Fig. 3), to demonstrate the efficiency of 
implemented methodology in the developed automated 
QSAR model by comparing its performance to the pub-
lished solutions of scientific problems. For this purpose, 
we selected one very recent example on antiviral binding 
affinity data for non-nucleoside analogue reverse-tran-
scriptase inhibitors (NNRTIs) from the QsarDB reposi-
tory [89]. The same training (31 molecules) and external 
validation (8 molecules) datasets of chemical compounds 
with their corresponding scaled bioactivity (pKi) were 
taken from the published work [90] for model building in 
this workflow. The curated dataset of NNRTIs with the 
39 ligands in SMILES format and their computed pKi 
was submitted in “Customized” mode option 1 (Fig.  3). 
As Ki values were already scaled [90], so we skipped the 
“Data Transformation” node and adjusted the data parti-
tioning node for the simple division of reported 31 train-
ing and 8 IVS molecules (Fig. 4). RDKit descriptors and 
fingerprints were computed automatically for this given 
input dataset of NNRTIs. MODI scores for the first three 
options of fingerprints (Morgan, FeatMorgan, AtomPair) 
in the “Input Parameter” meta-node (Fig. 4) were lower 
than the threshold (MODI > 0.45). Thus, we skipped 
these 3 fingerprints and continued the modeling pro-
cess using RDKit descriptors and torsion fingerprints for 
which MODI score was greater than the threshold (for 
K3, MODI = 0.46 and for K5, MODI = 0.48).

Performance of automated QSAR modeling workflow 
based SF-models in antiviral binding affinity prediction 
on external validation set or IVS for NNRTIs was mark-
edly better in both options (scaled and unscaled variable 
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importance) of feature selection than the published [90] 
QSAR model. The PVE score of the SF-model((VI)1) is 
0.81 and for SF-model((VI)2) is 0.82 while the published 
solution showed 0.725 scores of the squared coefficient of 
correlation (R2) for the same IVS. In the same way, the 
RMSE score of the SF-model((VI)1) is 0.34 and for SF-
model((VI)2) is 0.33 while the published solution showed 
0.2230 (RMSE= 0.47) score of squared standard error of 
the regression (S2) for the same IVS. All the molecules of 
the IVS were found within the AD; thus predictions can 
be considered reliable.

Discussion
In the current work, an extendable platform was 
designed that can be used as a QSAR modeling pipeline 
to get an optimized predictive model. The performance 
of the presented automated QSAR modeling workflow 
was assessed for thirty different data sets of size rang-
ing from 300 to 3200 molecules and the features set of 
1141 descriptors (RDKit descriptors and fingerprints). 
We have further compared the results obtained from our 
workflow with a published QSAR modeling problem and 
the results obtained were significantly better than the 
original authors efforts, even though the approach fol-
lowed was mostly unsupervised.
Comparison of all constructed full-models and SF-mod-
els revealed improved predictive power with a small set 
of biologically relevant variables (Fig.  5). Hence, feature 

selection methodology was found efficient to deal with 
high dimensional data by selecting adequate features for 
each problem to predict a certain property with a good 
performance, less computational/time cost. For regres-
sion problems, compelling evidences exists for the 
robustness of RF unscaled variable importance meas-
ure VI(Xj) because of its statistical properties [72, 72, 
73]. Consistent with literature, overall performance of 
selected sub-set of variables by RF unscaled importance 
measure ((VI)2) was better than scaled importance meas-
ure ((VI)1).

To explore the role of the training data sets size in 
determining the performance of predictive models, PVE 
for each model was compared with data set size (Fig. 6). 
Models trained with data sets less then 1500 molecules 
showed quite diverse predictive performance. The dat 
set size of the best performing model of the receptor 
5-HT5A with PVE value 0.87 is 302 molecules and least 
performing model of the receptor HRH2 with PVE value 
0.32 has 385 molecules. The models performance was 
stable in larger data sized problems. Possible reasons 
for these variations in performance is may be the com-
plex nature of the problem and the size limitations [44]. 
Hence, availability of more data may help to find real 
trends in data with a satisfactory solution.

In regression modeling, one of the most critical prob-
lem is over-fitting of a model which results into poor 
generalization and reduced performance on unseen data. 

Fig. 5 Comparison of models with and without feature selection. Pink color represents the full-model without feature selection [with all variables 
(F)], green color is for SF-model ((VI)1) contains predefined set of features (SF) identified by scaled permutation importance, and blue color repre-
sents SF-model ((VI)2) having selected features (SF) by unscaled variable importance measure
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One widely accepted measure for testing over-fitting is to 
observe performance over independent validation data 
set [4, 22]. Hence, SF-model’s final assessment was per-
formed using of the independent validation set (IVS). The 

internal (test set) and external (IVS) prediction results of 
the SF-models were compared to identify the over-fitted 
models (Fig. 7) in both methods of feature selection like 
the scaled (Fig.  7a) and unscaled importance (Fig.  7b). 

Fig. 6 Size of the problems and predictive power of fitted models. Blue dots represent externally validated models with feature selection by scaled 
importance, and golden yellow color denotes externally validated models with feature selection by unscaled importance measure

Fig. 7 Models over-fitting analysis. Models with a predefined set of features identified by scaled variable importance (a) and unscaled variable 
importance (b)
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In both feature selection methods, none of both is com-
pletely superior to the other one. For example, problem 
Histamine H2 receptor (HRH2) is a worst generalized 
model constructed by unscaled importance based feature 
selection, but was optimally fitted by the scaled impor-
tance based set of features. Hence, our focus was on the 
problems that were failed in both feature selection meth-
ods. Out of thirty problems, three models were found 
over-fitted in both methods.

Worst cases include 5-hydroxytryptamine receptor 2B 
(5-HT2B), 5-hydroxytryptamine receptor 4 (5-HT4) and 
Sigma non-opioid intracellular receptor 1 (Sigma1R) that 
are over-fitted in both variable selection processes. Com-
parison of experimental and predicted activity values 
was carried out to analyze poor prediction of particular 
activity value points (Additional file  1: Figure S7). The 
over-fitted models were unable to accurately predict the 
response variable at extreme values and large errors were 
observed near the upper and lower extreme of the experi-
mental range. These mispredictions may result from data 
sets with very few measured instances with values near 
the experimental range. However, insufficient patterns 
of predictors may reduce the model coverage and lead to 
poor generalization [44].

In the end, PVE scores (QSAR_PVE(IVS)) of full-
models and final SF-models were compared with their 

corresponding MODI_ssR2 scores (Fig.  8 and Addi-
tional file  1: Table S1). Results showed significant cor-
relation between the PVE for the IVS in SF-models and 
MODI_ssR2 (correlation  =  0.76 for MODI_ssR2 with 
K = 3 and correlation = 0.78 for MODI_ssR2 with K = 5) 
(Fig.  8a, b). This is consistent with the published work 
[53], which suggests that the MODI_ssR2 score should 
be ≥ 0.46 for 3 nearest neighbors and ≥ 0.47 for 5 near-
est neighbors.The correlation between the full-models 
PVE and MODI_ssR2 was not as significant. This weaker 
correlation was expected as full-models may contain 
irrelevant and highly correlated variables which directly 
influence the models predictive power by causing them 
to over fit the training sets. Hence, the implemented fea-
ture selection approach has an efficient role for achieving 
robust models with reliable predictive performance.

Conclusion
The developed QSAR modeling workflow is a fully auto-
mated QSAR pipeline to assist all users including those 
are not expert in machine learning and have less knowl-
edge of available data. Creation of an optimal predic-
tive model demands many critical and time-consuming 
steps, including data collection and processing, appro-
priate data representation (descriptors and fingerprints 
calculation), evaluation of the data set modelability, best 

Fig. 8 MODI_ssR
2 versus QSAR_PVE for 30 datasets. K is the number of nearest neighbors. a K = 3 and b K = 5. QSAR_PVE(IVS) is PVE score of exter-

nally validated models without feature selection (Full-model) and with selected features (SF-model). High correlation with SF-models QSAR_PVE 
suggests MODI_ssR

2 is good modelability criteria. Weaker correlation between Full-model QSAR_PVE and MODI_ssR
2 emphasize the importance of 

feature selection to obtain actual and reliable predictive performance of QSAR model
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predictors selection, machine learning models fitting and 
validation. QSAR modeling workflow completely auto-
mates the laborious and iterative process of modeling to 
tackle different problems. Following are the key advan-
tages of proposed QSAR modeling workflow:

  • It automatically fetches high-quality compounds 
data set from continuously improving and growing 
curated databases (e.g. ChEMBL). Hence, the poten-
tial of direct access of the online data sets enables to 
this fully automated framework a widely used plat-
form for QSAR model building.

  • Important aspects of the data processing by select-
ing only the bioactivity type of interest, dealing with 
duplicates, removing missing data and salt groups, 
descriptors calculation, and data normalization are 
handled in a very flexible and consistent manner.

  • Prior estimate of data set modelability can reduce 
modelers efforts by focusing in the most promising 
problems or identifying the challenging ones that 
may require more data, more descriptor variability or 
different strategies.

  • Best practice feature selection and an exhaustive vali-
dation procedure are followed in the presented work-
flow in order to ensure minimal bias in model devel-
opment and evaluation. The analysis of the obtained 
results of thirty different target–drug interaction 
predictive models concludes that the developed fea-
ture selection methodology performs consistently 
well for high-dimensional data by removing 62–99% 
redundant data. This large reduction of irrelevant 
variables minimizes the computational/time cost, 
improves the predictive power of model and provides 
a better understanding of the underlying relationship 
between the property of interest and the relevant fea-
tures.

  • The automated QSAR modeling framework is not a 
black-box prediction system, rather it is an extensible 
and highly customizable tool to develop the robust 
predictive models and provide the output of all mod-
eling task for the diverse application and reproduc-
tion of historical predictions. Moreover, it ensures 
that the same protocol is used for updating models 
with new molecules as they become available.

  • It is worth mentioning that the generated workflow 
feeds the selected feature-matrix to SVM models but 
these variables can be used as input for any other 
non-linear machine learning method which can be 
easily implemented in the framework.

In conclusion, with the above mentioned adopted fea-
tures of the presented open source automated QSAR 

modeling framework, it is hoped to guarantee that the 
most important aspects of QSAR modeling are addressed 
and consistently applied. This framework has been tested 
against thirty data sets, some very difficult, and generally 
as produced robust results; this has been achieved with-
out any need of users thorough understanding of data, 
computer programming and/or machine-learning knowl-
edge and complex parameterization to customize the 
complex modeling algorithms and procedures.
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