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Abstract 

Named-entity recognition aims at identifying the fragments of text that mention entities of interest, that afterwards 
could be linked to a knowledge base where those entities are described. This manuscript presents our minimal 
named-entity recognition and linking tool (MER), designed with flexibility, autonomy and efficiency in mind. To anno-
tate a given text, MER only requires: (1) a lexicon (text file) with the list of terms representing the entities of interest; (2) 
optionally a tab-separated values file with a link for each term; (3) and a Unix shell. Alternatively, the user can provide 
an ontology from where MER will automatically generate the lexicon and links files. The efficiency of MER derives 
from exploring the high performance and reliability of the text processing command-line tools grep and awk, and a 
novel inverted recognition technique. MER was deployed in a cloud infrastructure using multiple Virtual Machines to 
work as an annotation server and participate in the Technical Interoperability and Performance of annotation Servers 
task of BioCreative V.5. The results show that our solution processed each document (text retrieval and annotation) 
in less than 3 s on average without using any type of cache. MER was also compared to a state-of-the-art dictionary 
lookup solution obtaining competitive results not only in computational performance but also in precision and recall. 
MER is publicly available in a GitHub repository (https ://githu b.com/lasig eBioT M/MER) and through a RESTful Web 
service (http://labs.fc.ul.pt/mer/).
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Introduction
Text has been and continues to be for humans the tra-
ditional and natural mean of representing and sharing 
knowledge. However, the information encoded in free 
text is not easily attainable by computer applications. 
Usually, the first step to untangle this information is to 
perform named-entity recognition (NER), a text mining 
task for identifying mentions of entities in a given text [1–
3]. The second step is linking these mentions to the most 
appropriate entry in a knowledge base. This last step is 
usually referred to as the named-entity linking (NEL) task 
but is also referred to as entity disambiguation, resolu-
tion, mapping, matching or even grounding [4].

State-of-the-art NER and NEL solutions are mostly 
based on machine learning techniques, such as Con-
ditional Random Fields and/or Deep Learning  [5–14]. 
These solutions usually require as input a training corpus, 
which consists of a set of texts and the entities mentioned 
on them, including their exact location (annotations), 
and the entries in a knowledge base that represent these 
entities  [15]. The training corpus is used to generate 
a model, which will then be used to recognize and link 
entities in new texts. Their effectiveness strongly depends 
on the availability of a large training corpus with an accu-
rate and comprehensive set of annotations, which is usu-
ally arduous to create, maintain and extend. On the other 
hand, dictionary lookup solutions usually only require as 
input a lexicon consisting in a list of terms within some 
domain [16–21], for example, a list of names of chemical 
compounds. The input text is then matched against the 
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terms in the lexicon mainly using string matching tech-
niques. A comprehensive lexicon is normally much easier 
to find or to create and update than a training corpus, 
however, dictionary lookup solutions are generally less 
effective than machine learning solutions.

Searching, filtering and recognizing relevant informa-
tion in the vast amount of literature being published is 
an almost daily task for researches working in Life and 
Health Sciences  [22]. Most of them use web tools, such 
as PubMed  [23], but many times to perform repetitive 
tasks that could be automatized. However, these repeti-
tive tasks are sometimes sporadic and highly specific, 
depending on the project the researcher is currently 
working on. Therefore, in these cases, researchers are 
reluctant to spend resources creating a large training cor-
pus or learning how to adapt highly complex text min-
ing systems. They are not interested in getting the most 
accurate solution, just one good enough tool that they 
can use, understand and adapt with minimal effort. Dic-
tionary lookup solutions are normally less complex than 
machine learning solutions, and a specialized lexicon is 
usually easier to find than an appropriate training corpus. 
Moreover, dictionary lookup solutions are still competi-
tive when the problem is limited to a set of well-known 
entities. For these reasons, dictionary lookup solutions 
are usually the appropriate option when good enough is 
what the user requires.

This manuscript proposes a novel dictionary lookup 
solution, dubbed as minimal named-entity recognizer 
(MER), which was designed with flexibility, autonomy, 
and efficiency in mind. MER only requires as input a lexi-
con in the form of a text file, in which each line contains 
a term representing a named-entity to recognize. If the 
user also wants to perform entity linking, a text file con-
taining the terms and their respective Unique Resource 
Identifiers (URIs) can also be given as input. Therefore, 
adding a new lexicon to MER could not be easier than 
this. MER also accepts as input an ontology in Web 
Ontology Language (OWL) format, which it converts to 
a lexicon.

MER is not only minimal in terms of the input but also 
in its implementation, which was reduced to a minimal 
set of components and software dependencies. MER is 
then composed of just two components, one to process 
the lexicon (offline) and another to produce the annota-
tions (online). Both were implemented as a Unix shell 
script  [24], mainly for two reasons: (1) efficiency, due 
to its direct access to high-performance text and file 
processing tools, such as grep and awk, and a novel 
inverted recognition technique; and (2) portability, since 
terminal applications that execute Unix shell scripts 
are nowadays available in most computers using Linux, 
macOS or Windows operating systems. MER was tested 

using the Bourne-Again shell (bash)  [25] since it is the 
most widely available. However, we expect MER to work 
in other Unix shells with minimal or even without any 
modifications.

We deployed MER in a cloud infrastructure to work 
as an annotation server and participate in the Technical 
Interoperability and Performance of annotation Serv-
ers (TIPS) task of BioCreative V.5 [26]. This participa-
tion allowed us to assess the flexibility, autonomy, and 
efficiency of MER in a realistic scenario. Our annotation 
server responded to the maximum number of requests 
(319k documents) and generated the second highest 
number of total predictions (7130k annotations), with an 
average of 2.9 seconds per request.

To analyze the statistical accuracy of MER’s results we 
compared it against a popular dictionary lookup solu-
tion, the Bioportal annotator  [27], using a Human Phe-
notype Ontology (HPO) gold-standard corpus [28]. MER 
obtained the highest precision in both NER and NEL 
tasks, the highest recall in NER, and a lower processing 
time. Additionally, we compared MER with Aho-cora-
sick  [29], a well-known string search algorithm. MER 
obtained a lower processing time and higher evaluation 
scores on the same corpus.

MER is publicly available in a GitHub repository  [30], 
along with the code used to run the comparisons to other 
systems.

The repository contains a small tutorial to help the user 
start using the program and test it. The remainder of 
this article will detail the components of MER, and how 
it was incorporated in the annotation server. We end by 
analyzing and discussing the evaluation results and pre-
sent future directions.

MER
Figure 1 shows the generic workflow of MER. The offline 
and online modules were implemented in two shell script 
files, namely produce_data_files.sh and get_entities.sh, 
respectively. Both scripts are available in the GitHub 
repository. The remainder of this section will explain 
their methodology in detail.

Input
Before being able to annotate any text, MER requires as 
input a lexicon containing the list of terms to match. The 
user can provide the lexicon as text file (.txt) where each 
line represents a term to be recognized. Additionally, to 
perform NEL a tab-separated values file (.tsv) is required. 
This links file has to contain two data elements per line: 
the term and the link. Alternatively, the user can provide 
an ontology (.owl) and MER will automatically parse it to 
create the lexicon and links files. So if, for example, we 
want to recognize terms that are present in ChEBI [31], 
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the user can provide the whole ontology (chebi.owl) or 
just collect the relevant labels and store them in a text 
file, one label per line. Figure  2 presents an example 
where four ChEBI compounds are represented by a list of 
terms based on their ChEBI’s name.

If the user provides an ontology, MER 
starts by retrieving all the values of the tags 
rdfs:label, oboInOwl:hasRelatedSynonym and 
oboInOwl:hasExactSynonym inside each top-level 
owl:Class. The values are then stored in two files: a regu-
lar lexicon with a label (term) per line; and a tab-sepa-
rated values file with a pair term and respective identifier 
(URI) per line. The links file is then sorted and will be 
used by MER to perform NEL. Figures 3, 4 and 5 show 
a snippet of the links files generated for ChEBI ontol-
ogy  [32], HPO  [33, 34], and Human Disease Ontology 
(DOID) [35, 36], respectively.

Fig. 1 Workflow of MER depicting its inverted recognition technique

α−maltose
n i c o t i n i c ac id
n i c o t i n i c ac id D−r i b onuc l e o t i d e
n i c o t i n i c acid−adenine d i nuc l e o t i d e phosphate

Fig. 2 Example of the contents of a lexicon file representing four 
compounds

IBEHC/obo/gro.yrarbilobo.lrup//:pttheninedagyz 10130
IBEHC/obo/gro.yrarbilobo.lrup//:ptthloretsomyz 18252
IBEHC/obo/gro.yrarbilobo.lrup//:ptthretseloretsomyz 52322

zymostero l in te rmed iate 1a http :// pur l . obo l i b ra ry . org /obo/CHEBI 52388
zymostero l in te rmed iate 1b http :// pur l . obo l i b ra ry . org /obo/CHEBI 52615

Fig. 3 A snippet of the contents of the links file generated with ChEBI
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The links file can also be created manually for a specific 
lexicon not generated from an ontology. Figure 6 presents 
the links file created for the lexicon file of Fig. 2.

Inverted recognition
To recognize the terms, a standard solution would be 
to apply grep directly to the input text. However, the 
execution time is proportional to the size of the lexicon, 
since each term of the lexicon will correspond to an inde-
pendent pattern to match. To optimize the execution 
time, we developed the inverted recognition technique. 
The inverted recognition uses the words in the processed 
input text as patterns to be matched against the lexicon 
file. Since the number of words in the input text is much 
smaller than the number of terms in the lexicon, grep 
has much fewer patterns to match. For example, finding 
the pattern nicotinic acid in the two-word chemical lexi-
con created for TIPS is more than 100 times faster than 
using the standard solution.

To perform the inverted recognition technique, MER 
splits the lexicon into three files containing the terms 
composed by one (one-word), two (two-word) and three 
or more words (more-words). The second step creates 
a fourth file containing the first two words (first-two-
words) of all the terms in the more-words file. During the 
above steps, MER makes the following minor modifica-
tions to the terms: convert all text to lowercase; contig-
uous white spaces are replaced by one white space; full 
stops are removed; leading and trailing white spaces are 
removed; and all special characters are replaced by a full 
stop. Since some special characters may cause matching 
problems, MER assumes that all the special characters 

(characters that are not alphanumeric or a whitespace, 
for example, hyphens) can be matched by any other char-
acter, so these characters are replaced by a full stop, like 
in regular expressions. Figure 7 presents the contents of 
each of the four files created using the terms shown in 
Fig. 2. Note that the word acid-adenine was replaced by 
acid.adenine, and the last file presents the first two words 
of each entry in the third file. Note also that all the above 
steps are performed offline and only once per lexicon.

The online module of MER starts when the user pro-
vides a new input text to be annotated with a lexicon 
already pre-processed. The goal is to identify which 
terms of the lexicon are mentioned in the text. The first 
step of MER is to apply the same minor modifications 
to the input text as described above, but also remove 
stop-words, and words with less than a given number of 
characters. The file with the list of stop-words and the 
minimum entity length are parameters that the user can 
easily modify in the scripts. The list of stop-words used 
in this study are in the stopwords.txt file of the GitHub 
repository. For this study, we selected 3 as the minimum 
entity length because two-character acronyms are not so 

PH/obo/gro.yrarbilobo.lrup//:ptthslianwolley 0011367
ye l low nodule http :// pur l . obo l i b ra ry . org /obo/HP 0025554
ye l low papule http :// pur l . obo l i b ra ry . org /obo/HP 0025507

PH/obo/gro.yrarbilobo.lrup//:ptthnikswolley 0000952
ye l low sk in plaque http :// pur l . obo l i b ra ry . org /obo/HP 0031360

Fig. 4 A snippet of the contents of the links file generated with the Human Phenotype Ontology

DIOD/obo/gro.yrarbilobo.lrup//:ptthygrellahsifarbez 0060517
DIOD/obo/gro.yrarbilobo.lrup//:ptthemordnysregewllez 905
DIOD/obo/gro.yrarbilobo.lrup//:ptthrevefakiz 0060478

z ika v i ru s congen i t a l syndrome http :// pur l . obo l i b ra ry . org /obo/DOID 0080180
DIOD/obo/gro.yrarbilobo.lrup//:ptthesaesidsurivakiz 0060478

Fig. 5 A snippet of the contents of the links file generated with the Disease Ontology

α IBEHC/obo/gro.yrarbilobo.lrup//:ptthesotlam 18167
IBEHC/obo/gro.yrarbilobo.lrup//:ptth

−
dicacinitocin 15940

n i c o t i n i c ac id d− IBEHC/obo/gro.yrarbilobo.lrup//:pttheditoelcunobir 15763
n i c o t i n i c acid−adenine d i nuc l e o t i d e phosphate http :// pur l . obo l i b ra ry . org /obo/CHEBI 76072

Fig. 6 Example of the contents of the links file representing compounds CHEBI:18167, CHEBI:15940, CHEBI:15763 and CHEBI:76072

== one−word ( . . . word1 . txt ) =====================
α . maltose
== two−word ( . . . word2 . txt ) =====================
n i c o t i n i c ac id
== more−words ( . . . words . txt ) ===================
n i c o t i n i c ac id d . r i b onuc l e o t i d e
n i c o t i n i c ac id . adenine d i nuc l e o t i d e phosphate
== f i r s t −two−words ( . . . words2 . txt ) ============
n i c o t i n i c ac id
n i c o t i n i c ac id . adenine

Fig. 7 Each block represents the content of each of the four files 
created after pre-processing the input file shown in Fig. 2
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common, and we empirically found that most of the two-
character matches were errors.

This will result in a processed input text derived from 
the original one. Note that MER only recognizes direct 
matches, if lexical variations of the terms are needed, 
then they have to be added in the lexicon, for example by 
using a stemming algorithm. MER will then create two 
alternation patterns: (1) one-word pattern, with all the 
words in the input text; and (2) two-word pattern, with 
all the consecutive pairs of words in the input text. Fig-
ure 8 shows an example of these two patterns.

Next, MER creates three background jobs to match the 
terms composed of: (1) one word, (2) two words, and (3) 
three or more words. The one-word job uses the one-
word pattern to find matching terms in the one-word file. 
Similarly, for the two-word job, that uses the two-word 
pattern and file. The last job uses the two-word pattern to 
find matches in the two-first-word file, and the resulting 
matches are then used as a pattern to find terms in the 
more-words file. The last job is less efficient since it exe-
cutes grep twice, however, the resulting list of matches 
with the two-first-word file is usually small, so the second 
execution is negligible. In the end, each job will create a 
list of matching terms that are mentioned in the input 
text.

Since the processed input text cannot be used to find 
the exact position of the term, MER uses the list of 
matching terms to find their exact position in the original 
input text. MER uses awk to find the multiple instances 
of each term in the original input text. The awk tool has 
the advantage of working well with UTF-8 characters 
that use more than one byte, in opposition to grep that 
just counts the bytes to find the position of a match. MER 
provides partial overlaps, i.e. a shorter term may occur 
at the same position as a longer one, but not full over-
lapping matches (same term in the same position). We 
also developed a test suite to refactor the algorithm with 
more confidence that nothing is being done incorrectly. 
The test suite is available in the GitHub repository branch 
dedicated to development [37].

Figure 9 shows the output of MER when using as input 
text the sentence in Fig. 8, and the lexicon of Fig. 2. Note 
that nicotinic acid appears twice at position 14 and 65, as 
expected, without affecting the match of nicotinic acid 
D-ribonucleotide.

Linking
If the links file is provided, then MER will try to find the 
recognized term in that file. This step is basically a grep 
at the beginning of each line in the file, and only returns 
the first exact match of each term. Figure  10 shows the 
output of MER when using the links file of Fig. 6 that was 
missing in Fig. 9. Figure 11 shows the output of MER for 
two abstracts using the Human Disease Ontology. Note 
that this functionality was implemented after our TIPS 
participation [38].

Annotation server
TIPS is a novel task in BioCreative aiming at the evalu-
ation of the performance of NER web servers, based on 
reliability and performance metrics. The entities to be 
recognized in TIPS were not restricted to a particular 
domain.

The web servers had to respond to single docu-
ment annotation requests. The servers had to be able to 
retrieve the text from documents in the patent server, the 
abstract server and PubMed, without using any kind of 
cache for the text or for the annotations. The annotations 
had to be provided in, at least, one of the following for-
mats: BeCalm JSON, BeCalm TSV, BioC XML or BioC 
JSON.

Lexicons
The first step to participate in TIPS was to select the data 
sources from which we could collect terms related with 
the following accepted categories: Cell line and cell type: 
Cellosaurus [39]; Chemical: HMDB [40], ChEBI [32] and 
ChEMBL  [41]; Disease: Human Disease Ontology  [35]; 
miRNA: miRBase  [42]; Protein: Protein Ontology  [43]; 
Subcellular structure: cellular component aspect of Gene 
Ontology [44]; Tissue and organ: tissue and organ subsets 
of UBERON [45].

α−maltose and n i c o t i n i c ac id was found , but not
n i c o t i n i c ac id D−r i b onuc l e o t i d e

α . maltose | n i c o t i n i c | ac id | found | n i c o t i n i c | ac id |d . r i b onuc l e o t i d e

α . maltose n i c o t i n i c | ac id found | n i c o t i n i c ac id
| n i c o t i n i c ac id | found n i c o t i n i c | ac id d . r i b onuc l e o t i d e

Fig. 8 Example of a given sentence to be annotated (first line), and its one-word and two-word patterns created by MER

0 9 α−maltose
14 28 n i c o t i n i c ac id
48 62 n i c o t i n i c ac id
48 79 n i c o t i n i c ac id D−r i b onuc l e o t i d e

Fig. 9 Output example of MER for the sentence in Fig. 8 and the 
lexicon in Fig. 2 without any links file
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A post-extraction processing was applied to these data 
files, which consisted in lowercasing all terms, deleting 
leading and trailing white spaces and removing repeated 
terms. Since repeated annotations of different types were 
not allowed, we created another lexicon containing terms 
that appeared on more than one of the other lexicons. 
The terms matched to this lexicon were categorized as 
Unknown, as suggested by the organization. The software 
to extract the list of terms from the above data sources 
can be found in the GitHub repository branch dedicated 
to TIPS [37].

Figure  12 shows the number of terms, number of 
words, and number of characters of each lexicon cre-
ated. Our Annotation Server was then able to recog-
nize more than 1M terms composed of more than 2M 
words and more than 25M characters. All lexicons are 
available for reuse as a zip file in the TIPS branch of our 
repository [37].

Input and output
We adapted MER to provide the annotations in the 
BeCalm TSV format. Thus, besides the input text and the 
lexicon, MER had also to receive the document identifier 
and the section as input. In Fig. 13, the document identi-
fier is 1 and section is A. The score column is calculated 
by 1− 1/ ln(nc) , where nc represents the number of char-
acters of the recognized term. This assumes that longer 

terms are less ambiguous, and in that case, the match 
should have a higher confidence score. Note that MER 
only recognizes terms with three or more characters, so 
the minimum score is 0.08976 and the score is always 
lower than 1.

We used jq  [46] a command-line JSON processor to 
parse the requests. The retrieval of each document was 
implemented using the popular curl tool, and we devel-
oped a specific parser for each data source to extract the 
text to be annotated. The parsers are also available at the 
TIPS branch [37].

Infrastructure
Our annotation server was deployed in a cloud infra-
structure composed of three Virtual Machines (VM). 
Each VM had 8 GB of RAM and 4 Intel Core CPUs at 
1.7 GHz, using CentOS Linux release 7.3.1611 as the 
operating system. We selected one VM (primary) to pro-
cess the requests, distribute the jobs, and execute MER. 
The other two VMs (secondary) just execute MER. We 
installed the NGINX HTTP server running CGI scripts 
given its high performance when compared with other 
web servers [47]. We also used the Task Spooler [48] tool 
to manage and distribute within the VMs the jobs to be 
processed.

The server is configured to receive the REST API 
requests defined in the BeCalm API documentation. 
Each request is distributed to one of the three VMs 
according to the least-connected method of NGINX. 
When a getAnnotations request is received, the server 

0 9 α− IBEHC/obo/gro.yrarbilobo.lrup//:ptthesotlam 18167
IBEHC/obo/gro.yrarbilobo.lrup//:ptthdicacinitocin8241 15940
IBEHC/obo/gro.yrarbilobo.lrup//:ptthdicacinitocin2684 15940

48 79 n i c o t i n i c ac id D−r i b onuc l e o t i d e http :// pur l . obo l i b ra ry . org /obo/CHEBI 15763

Fig. 10 Output example of MER for the sentence in Fig. 8, the lexicon in Fig. 2, and the links file of Fig. 6

DIOD/obo/gro.yrarbilobo.lrup//:ptthenca 6543
DIOD/obo/gro.yrarbilobo.lrup//:ptthamhtsa 2841
DIOD/obo/gro.yrarbilobo.lrup//:ptthsitihcnorb 6132

chron ic ob s t ru c t i v e pulmonary d i s e a s e http :// pur l . obo l i b ra ry . org /obo/DOID 3083
DIOD/obo/gro.yrarbilobo.lrup//:ptthDPOC 3083
DIOD/obo/gro.yrarbilobo.lrup//:ptthesaesid 4
DIOD/obo/gro.yrarbilobo.lrup//:ptthsitiretneortsag 2326
DIOD/obo/gro.yrarbilobo.lrup//:ptthogitepmi 8504
DIOD/obo/gro.yrarbilobo.lrup//:ptthaidemsitito 10754
DIOD/obo/gro.yrarbilobo.lrup//:ptthnoitcefnitcartyraniru 13148

Fig. 11 Output example of MER for the abstracts with PubMed identifiers: 29490421 and 29490060, and the Human Disease Ontology

#terms #words #char #f i l ename
116616 137702 1027369 CELL LINE AND CELL TYPE. txt
332167 446423 10397574 CHEMICAL. txt
26216 92688 808366 DISEASE . txt
73954 73954 991012 MIRNA. txt

597867 1372326 11863642 PROTEIN. txt
8146 26117 228167 SUBCELLULAR STRUCTURE. txt
5238 16283 126024 TISSUE AND ORGAN. txt

1160204 2165493 25442154 t o t a l

Fig. 12 Number of terms, words, and characters in the lexicons used 
in TIPS, obtained by using the following shell command: wc -lmw 
*.txt 

1 A 0 9 0.54488 α− 1nocixelesotlam
1nocixeldicacinitocin770126.08241A1
1nocixeldicacinitocin770126.02684A1

1 A 48 79 0.708793 n i c o t i n i c ac id D−r i b onuc l e o t i d e l e x i c on 1

Fig. 13 Output example of MER using BeCalm TSV format for the 
sentence in Fig. 8 and the lexicon in Fig. 2
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first downloads the documents from the respective 
sources and then processes the title and abstract of each 
document in the same VM. Two jobs are spawned in 
background, corresponding to the title and abstract. Each 
annotation server handles all the entity types mentioned 
in Fig.  12, spawning a separate job for each entity type. 
The name of the entity type is added as another column 
to the output of Fig. 9. These jobs can run in parallel since 
they are independent from each other and the output of 
each job can be easily merged into a final TSV output 
file. When a job finishes processing, a script checks if the 
other jobs associated with the same requests have also 
finished processing. If that is the case, then the results 
of every job are concatenated and sent back to BeCalm 
using the saveAnnotations method.

To test MER outside of the scope of the TIPS com-
petition, we implemented a different REST API which 
accepts as input raw text and the name of a lexicon. This 
way, the document does not have to be retrieved from 
external sources, and we can evaluate the performance of 
MER independently. This alternative API can be accessed 
online, along with a simple user interface shown in 
Fig. 14 [49].

Results and discussion
Computational performance
Table  1 shows the official TIPS evaluation data of our 
system  [50]. These results refer to the whole period 

of the competition, from February 5, 2017 to March 
30, 2017. The evaluation process and metrics used are 
described in the workshop article  [26]. Each request 
consisted of one document that the server had to 
retrieve either from PubMed or a repository hosted by 
the organization. Our server was able to handle all 319k 
requests received during the evaluation period, gener-
ating a total of 7.13M annotations (second best) with an 
average of 22.5 predictions per document (MAD) (third 
best). In average, each prediction has been generated 
in 0.129 s (MTSA). Our average processing time value 
(ART) was 2.9 s, and the processing time per docu-
ment volume (MTDV) was 0.00238 bytes/s. The Mean 
time between failures (MTBF) and Mean time to repair 
(MTTR) metrics were associated with the reliability of 
server, and our team obtained the maximum scores on 
those metrics.

MER was able to efficiently process the documents by 
taking less than 3 s on average without using any type of 
cache. We note that all documents, irrespectively of the 
source, were annotated using all the entity types pre-
sented in the previous Lexicons section. Furthermore, 
the time to process each document is affected by exter-
nal sources used to retrieve the document text. If the 
text is provided with the request, then the processing 
time should be considerably shorter. Another factor is 
the latency between our server and the TIPS server. As 
we were not able to measure this latency, it is difficult to 

Fig. 14 Screenshot of the MER web graphical user interface
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measure the impact on the response times, and it was not 
taken into consideration for the evaluation metrics.

We compared the time necessary to process the same 
sentence on the same hardware using MER and a more 
complex machine learning system, IBEnt  [11], using the 
sentence of Fig. 8. While IBEnt took 8.25 s to process the 
sentence, MER took only 0.098 s. Although IBEnt is opti-
mized for batch processing, therefore reducing the time 
per document as the number of documents increases, 
MER is still 84 times faster than IBEnt in this experiment. 
Thus, besides being easy to install and configure, MER is 
also a highly efficient and scalable NER and NEL tool.

Part of the optimization of MER is due to the four files 
that are generated by the offline module. These files are 
generated from the lexicon file, which contains one entity 
per line. For NEL, there is another necessary step, which 
consists in converting an OWL file in a lexicon. This pro-
cess took around 15 min for each ontology. However, 
processing a lexicon file is quite faster, taking 0.746 and 
3.671 s for the HPO and ChEBI ontologies, respectively.

Precision and recall
We compared the performance of MER with the Bio-
Portal annotator, which is a popular dictionary lookup 
NER solution. To perform this comparison, we adapted 
our server to directly receive as input free text, instead 
of requiring another request to retrieve the documents. 
We used the HPO corpus to compare the two tools. This 
corpus is composed by 228 scientific abstracts annotated 
with human phenotypes, associated with the HPO. We 
used an updated version of this corpus, which aimed at 

improving the consistency of the annotations [51]. A total 
of 2773 textual named entities were annotated in this 
corpus, corresponding to 2170 unique entity mentions. 
We compared the quality of the results produced by each 
tool using the standard precision, recall and F1-score 
measures, as well as the time necessary to process each 
document on average (ART) and time per annotation 
(MTSA).

Table  2 shows the results of this comparison, where 
NER refers to matching the offsets of the automatic 
annotations with the gold standard, and NEL refers 
to matching the URI annotated automatically with 
the gold standard. As expected, combining both tasks 
(NER+NEL) results in lower scores than perform-
ing only NER. Using MER, the F1-score obtained was 
0.5544, while BioPortal obtained an F1-score of 0.5408 
on the NER task. Considering the NEL task too, BioPor-
tal obtained a better F1-score than MER, indicating that 
some entities were linked to incorrect URIs. Bioportal 
annotator employs a semantic expansion technique that 
could lead to more accurate URIs, using the relations 
defined in the ontology [52]. An approach to improve the 
results would be to incorporate semantic similarity meas-
ures, so MER could also consider related classes in the 
NEL task [53].

However, MER obtained lower response times than 
BioPortal, in terms of time per document and per anno-
tation. To account for the difference in latency between 
the two servers, we used the ping tool to calculate the 
round-trip time of each server, averaged over 10 pack-
ets. MER obtained a round-trip time of 6.72E−03 s while 

Table 1 Official evaluation results of the TIPS task (time values are in seconds)

MER Best

# Requests 3.19E+05 3.19E+05

# Predictions 7.13E+06 2.74E+07

Mean time seek annotations (MTSA) 1.29E−01 s 1.37E−02 s

Mean time per document volume (MTDV) 2.38E−03 bytes/s 8.58E−04 bytes/s

Mean annotations per document (MAD) 2.25E+01 1.01E+02

Average response time (ART) 2.90E+00 s 1.07E+00 s

Mean time between failures (MTBF) 4.58E+06 s 4.58E+06 s

Mean time to repair (MTTR) 0.00E+00 s 0.00E+00 s

Table 2 Comparison between MER and BioPortal on the HPO gold-standard corpus

NER NER+NEL ART MTSA

P R F P R F

BioPortal 0.6862 0.4463 0.5408 0.6118 0.3979 0.4822 1.15E+00 s 1.45E−01 s

MER 0.7184 0.4514 0.5544 0.6155 0.3868 0.4751 7.32E−01 s 9.59E−02 s
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BioPortal obtained 1.86E−01 s, representing a difference 
of 1.79E−01 s. This means that MER had a better con-
nection to the machine we used to run the experiments, 
but this had minimal impact when comparing to a differ-
ence of 4.18E−01 s in both response times (ART).

We also compared MER with a well-known string 
search algorithm, Aho-corasick using the HPO cor-
pus [29]. In this experiment, we did not attempt to match 
entities to ontology concepts as this would require addi-
tional enhancements to the Aho-corasick algorithm. We 
used the same HPO lexicon for both methods, as well as 
the same documents. Unlike the comparison to BioPor-
tal, the experiment was done using local installations of 
MER and of the Makefast tool  [54], which provides an 
implementation of the Aho-corasick algorithm. Table  3 
shows the results of this comparison. MER obtained 
higher precision, recall and F1-score, as well as a lower 
processing time per document and per annotation. MER 
obtained better evaluation scores since it was developed 
specifically for NER, while Aho-corasick is a generic 
string search algorithm. The processing time was also 
shorter, due to the lexicon pre-processing done by the 
offline module of MER. However, this pre-processing is 
quick (3.671 s for the HPO ontology) and only has to be 
done once.

Conclusions
We presented MER, a minimal named entity recognition 
and linking tool that was developed with the concepts 
of flexibility, autonomy, and efficiency in mind. MER is 
flexible since it can be extended with any lexicon com-
posed of a simple list of terms and its identifiers (if avail-
able). MER is autonomous since it only requires a Unix 
shell with awk and grep command-line tools, which are 
nowadays available in all mainstream operating systems. 
MER is efficient since it takes advantage of the high-per-
formance capacity of grep as a file pattern matcher, and 
by proposing a novel inverted recognition technique.

MER was integrated in an annotation server deployed 
in a cloud infrastructure for participating in the TIPS task 
of BioCreative V.5. Our server was fully developed in-
house with minimal software dependencies and is open-
source. Without using any kind of cache, our server was 
able to process each document in less than 3 s on average. 

Performance and quality results show that MER is com-
petitive with state-of-the-art dictionary lookup solutions.
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