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Abstract 

Chemical named entity recognition (NER) has traditionally been dominated by conditional random fields (CRF)-based 
approaches but given the success of the artificial neural network techniques known as “deep learning” we decided 
to examine them as an alternative to CRFs. We present here several chemical named entity recognition systems. The 
first system translates the traditional CRF-based idioms into a deep learning framework, using rich per-token features 
and neural word embeddings, and producing a sequence of tags using bidirectional long short term memory (LSTM) 
networks—a type of recurrent neural net. The second system eschews the rich feature set—and even tokenisa-
tion—in favour of character labelling using neural character embeddings and multiple LSTM layers. The third system 
is an ensemble that combines the results of the first two systems. Our original BioCreative V.5 competition entry was 
placed in the top group with the highest F scores, and subsequent using transfer learning have achieved a final F 
score of 90.33% on the test data (precision 91.47%, recall 89.21%).
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Introduction
At the Royal Society of Chemistry the data science group 
undertakes a variety of text mining tasks to enrich both 
our data offerings and our corpus. One common task 
is chemical named entity recognition, and the group 
has spent considerable time applying different machine 
learning algorithms to extract such information. This 
paper discusses one of these approaches, which uses 
structured deep learning.

The chemical entity mention in patents (CEMP) task 
of BioCreative V.5 [1–3] addresses recognition of chemi-
cal named entities in patent text, using a training set 
of 21,000 patent abstracts and a test set of 9000 patent 
abstracts. In the previous BioCreative V [4] competi-
tion the corresponding named entity recognition task 
was dominated by systems employing conditional ran-
dom fields (CRF)—with only two rule-based non-CRF 
machine learning approaches being used to address the 
sequence labelling problem. CRF-based systems, such as 
the highly successful tmChem system [5], treat a sentence 

or paragraph as a sequence of tokens, and assign a tag to 
each token to indicate whether it is part of and its posi-
tion in a chemical name.

A number of popular tagging schemes for named entity 
recognition (NER) exist. These include: BIO tags, indicat-
ing whether a token is at the Beginning, Inside or Outside 
a named entity; and SOBIE, which has additional tags 
to BIO tagging for the End of a named entity, and Sin-
gle token named entities. These systems first assign fea-
tures to the tokens—representation of what the suffix of 
the token is, what character n-grams it contains, whether 
it appears in various dictionaries, etc.—and often fea-
tures to represent features of neighbouring tokens, or 
combinations of features across multiple tokens. Having 
assigned features to tokens, the system then attempts to 
find the most likely tag sequence given the token features, 
taking into account both the probabilities of observing a 
tag given a set of features, and the probabilities of observ-
ing a tag given neighbouring tags.

The recent resurgence of artificial neural network 
techniques known as “deep learning” [6] suggest that 
these may provide an alternative or a complement to the 
ubiquitous CRFs. Recurrent neural networks offer an 
approach to sequence labelling, a common approach to 
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natural language processing (NLP) tasks such as part-of-
speech (POS) tagging and named entity recognition. One 
type of network—a variety of long short-term memory 
(LSTM) known as a bidirectional LSTM has achieved 
state-of-the-art performance on common natural lan-
guage processing (NLP) tasks [7]. In this paper we dem-
onstrate how Bidirectional LSTMs, implemented using 
the Keras toolkit [8], can be applied to chemical named 
entity recognition.

The neural network approach has numerous potential 
advantages. One potential advantage is that recurrent 
network can carry rich information from token to token 
(and not just a simple tag transition probability), poten-
tially removing the need for features that look at neigh-
bouring tokens. A second advantage is that deep network 
allows systems to learn good intermediate representa-
tions of tokens, potentially reducing the need for feature 
engineering. Finally, neural networks are suited to trans-
fer learning, where network components are trained on 
some task related to the main task which can result in 
them doing better than those that are randomly initial-
ised. All of these advantages could allow LSTM-based 
systems to improve upon traditional CRF-based systems.

In this paper we discuss three different approaches to 
LSTM-based chemical named entity recognition. The 
first LSTM approach (the “traditional approach”) works 
similarly to CRF approaches, the second (“minimal-
ist approach”) uses sequences of characters rather than 
words, and the third approach is an ensemble of both the 
traditional and minimalist systems. These approaches 
were used to produce entries for the BioCreative V.5 
challenge. We present these systems here, with minor 
modifications made to ensure that the system can be dis-
tributed in a form that produces repeatable results, does 
not depend upon proprietary datasets, and can make full 
use of graphical processing unit (GPU) acceleration for 
fast performance. The original unmodified implemen-
tation is presented in Ref. [9]. After the BioCreative V.5 
challenge, we improved the system further by making use 
of transfer learning.

The first system—the “traditional” system—works simi-
larly to traditional CRF-based systems, in that it assigns 
tags to a sequence of tokens, each token bearing features 
from a rich feature set. Our “traditional” system differs 
from those that are CRF-based in a number of ways—for 
example, our traditional system supplements the feature 
set with neural word embeddings, and does not include 
information about neighbouring tokens in the feature set, 
instead relying on the neural network structure to carry 
the information from neighbouring tokens to the right 
place.

The second system—the “minimalist” system—labels 
a sequence of characters, rather than words (i.e. it does 

not use a tokeniser), and does not use a rich feature set, 
instead using character embeddings and multiple LSTM 
layers in order to induce the equivalent of a feature set 
internally. In related work, character embeddings have 
been used in domains where word segmentation is diffi-
cult, for example Chinese NLP [10] and text containing 
programming language snippets [11]—suggesting that 
this may be particularly suitable for chemical text, where 
tokenization presents particular difficulties.

Finally, the ensemble system combines the out-
puts from both the traditional and minimalist sys-
tem to examine to what extent the two approaches are 
complementary.

After the competition, we augmented our models using 
transfer learning. Transfer learning is where a machine 
learning system is trained on one task, and then parts 
of the trained system are incorporated into a new net-
work which is then trained on a different task, with the 
aim of transferring some of the knowledge gained in the 
first task to the second task. In NLP systems, this can be 
done by training on “language modelling” tasks—i.e. pre-
dicting the probability of observing some token given a 
context for that token. There is also a variation, “negative 
sampling”, which looks at a context for a token, and either 
takes the token from that context (a “positive sample”) or 
randomly samples one (a “negative sample”), and trains a 
system to distinguish negative samples from positive.

A common application of transfer learning is the use of 
neural word embeddings. An embedding layer maps from 
tokens to n-dimensional vectors (often n = 300), and can 
be trained as part of a larger neural network. Often initial 
training is done using a negative sampling task. This was 
pioneered by Collobert et al. [12] as part of their SENNA 
(semantic/syntactic extraction using a neural network 
architecture) system. Later improvements were made by 
Mikolov et al. [13] in their word2vec system, and by Pen-
nington et al. [14] in the GloVe (global vectors for word 
representation) system. The GloVe system is useful, in 
that it provides both embedding vectors trained on cor-
pora including Wikipedia and the Gigaword corpus, and 
the software for users to train their own.

Transfer learning can also be used beyond a sin-
gle embedding layer. Collobert et  al. were able to show 
transfer between part of speech (POS) tagging, chunk-
ing, named entity recognition and semantic role labelling 
tasks in their SENNA system. Recently, we showed that a 
negative sampling transfer learning system could be used 
to improve performance in a chemical-protein interac-
tion detection system [15].

Another approach to transfer learning is to learn 
a character-level language model. Radford et  al. [16] 
trained a byte-level language model on product reviews, 
and were able to use this model to train a sentiment 
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analysis system with high data efficiency. One advantage 
of character-level models is that the number of possible 
characters in any given context is quite small, making it 
possible to generate probabilities for all possible charac-
ters and thus avoiding the need for negative sampling.

Based on these successes we decided to apply charac-
ter-level transfer learning to our minimalist system and 
custom embeddings to our traditional system.

Methods
ChemListem makes use of two NER systems that can be 
used independently, or as part of an ensemble.

The first system—the “traditional” system—works simi-
larly to traditional CRF-based systems, in that it assigns 
tags to a sequence of tokens, each token bearing features 
from a rich feature set. Our “traditional” system differs 
from those that are CRF-based in a number of ways—for 
example, our traditional system supplements the feature 
set with neural word embeddings, and does not include 
information about neighbouring tokens in the feature set, 
instead relying on the neural network structure to carry 
the information from neighbouring tokens to the right 
place.

The second system—the “minimalist” system—labels 
a sequence of characters, rather than words (i.e. it does 
not use a tokeniser), and does not use a rich feature set, 
instead using character embeddings and multiple LSTM 
layers in order to induce the equivalent of a feature set 
internally. In related work, character embeddings have 
been used in domains where word segmentation is diffi-
cult, for example Chinese NLP [10] and text containing 
programming language snippets [11]—suggesting that 
this may be particularly suitable for chemical text, where 
tokenization presents particular difficulties.

Finally, the ensemble system combines the out-
puts from both the traditional and minimalist sys-
tem to examine to what extent the two approaches are 
complementary.

After the competition, we augmented our models using 
transfer learning. Transfer learning is where a machine 
learning system is trained on one task, and then parts 
of the trained system are incorporated into a new net-
work which is then trained on a different task, with the 
aim of transferring some of the knowledge gained in the 
first task to the second task. In NLP systems, this can be 
done by training on “language modelling” tasks—i.e. pre-
dicting the probability of observing some token given a 
context for that token. There is also a variation, “negative 
sampling”, which looks at a context for a token, and either 
takes the token from that context (a “positive sample”) or 
randomly samples one (a “negative sample”), and trains a 
system to distinguish negative samples from positive.

A common application of transfer learning is the use of 
neural word embeddings. An embedding layer maps from 
tokens to n–dimensional vectors (often n = 300), and can 
be trained as part of a larger neural network. Often initial 
training is done using a negative sampling task. This was 
pioneered by Collobert et al. [12] as part of their SENNA 
(semantic/syntactic extraction using a neural network 
architecture) system. Later improvements were made by 
Mikolov et al. [13] in their word2vec system, and by Pen-
nington et al. [14] in the GloVe (global vectors for word 
representation) system. The GloVe system is useful, in 
that it provides both embedding vectors trained on cor-
pora including Wikipedia and the Gigaword corpus, and 
the software for users to train their own.

Transfer learning can also be used beyond a sin-
gle embedding layer. Collobert et  al. were able to show 
transfer between part of speech (POS) tagging, chunk-
ing, named entity recognition and semantic role labelling 
tasks in their SENNA system. Recently, we showed that a 
negative sampling transfer learning system could be used 
to improve performance in a chemical-protein interac-
tion detection system [15].

Another approach to transfer learning is to learn 
a character-level language model. Radford et  al. [16] 
trained a byte-level language model on product reviews, 
and were able to use this model to train a sentiment 
analysis system with high data efficiency. One advantage 
of character-level models is that the number of possible 
characters in any given context is quite small, making it 
possible to generate probabilities for all possible charac-
ters and thus avoiding the need for negative sampling.

Based on these successes we decided to apply charac-
ter-level transfer learning to our minimalist system and 
custom embeddings to our traditional system.

For each of our approaches there was a three step pro-
cess, involving pre-processing, a neural network step, and 
finally post-processing. These steps are detailed below, 
additionally details of extensions we have applied to our 
original Biocreative entry are also given.

Pre‑processing
Tokenisation in the traditional system was performed 
using a modified version of a Python translation of the 
Oscar4 tokeniser [17]. On the training data only, when 
an entity boundary was in the middle of a token, the 
token was split in two. The minimalist system does not 
use tokenization—however individual characters can 
be treated as tokens. Tokens in the training data were 
assigned SOBIE (sometimes known as BIOES) tags—”O” 
marking a token not part of an entity, “S” marking a token 
that is the whole of an entity (a “singleton”), “B” mark-
ing a token at the beginning of an entity, “I” marking one 
inside an entity, and “E” marking one at the end.
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For both systems the data was split 80:20 for training 
and testing.

The traditional system starts with finding those 
tokens in the corpus that occur more than two times, 
and assigning initial embedding vectors based on the 
publically available GloVe embeddings [14]—tokens 
not found in GloVe are given initial embedding vectors 
full of zeros. Tokens that occur two times or less are all 
given a single “unknown token” vector, again initialized 
to zeros.

The traditional system uses a “preclassifier” [18] to 
judge how likely a token is to be chemical—i.e. assigned 
an S, B, I or E tag as opposed to O. To train this, the pre-
classifier subsystem first finds tokens only ever tagged O 
or only ever tagged SBIE, then generates binary features 
for each of these, then selects the 1000 binary features 
with highest mutual information with O-only vs SBIE-
only, and finally uses those to train a random forest (using 
scikit-learn [19]) with 100 trees. This “preclassifier” is 
used for producing scores (probability predictions) for 
tokens it was not trained on. The system trains an addi-
tional 5 preclassifiers each using four fifths of the avail-
able tokens, and uses each to produce a score for the 
remaining one fifth. The features for the preclassifier are: 
word shape, character 4-, 3-, 2- and 1-grams (including 
start and end markers, so this gets prefixes and suffixes), 
tests against various regular expressions, and tests to 
see if the token is in various lexicons (a list of chemicals 
derived from ChEBI (chemical entities of biological inter-
est) [20], a list of chemical elements, and a standard Eng-
lish word list).

Additionally, there are two sets of features that are 
sent directly to the neural network. One set includes 
length-based measures (including the number of all non-
lowercase characters, the number of all non-letter char-
acters and the number of digit characters) as numerical 
features, and binary features for the lexicons and regu-
lar expressions above. This set is passed to the network 
in its entirety. The second set of features consists of the 
100 most common binary features selected from 2- and 
3-character suffixes and word shapes. The features for 
each token in a sentence (excluding the embeddings) 

consist of the score from the preclassifier and the two 
sets of features from the paragraph above.

The minimalist system uses only character embed-
dings—a set of 90 characters (letters, digits, common 
punctuation) is used, with an “unknown character” char-
acter acting as the 91st character.

Neural network
The traditional network is as shown in Table  1. It has 
two inputs—input ti1 is a sequence of integers, one per 
token, indicating which token is at which point, whereas 
input ti2 contains the other features as described above. 
The output layer td1, a time-distributed dense layer, with 
5 outputs per token (corresponding to S, O, B, I and E 
tags), with a softmax activation function—this ensures 
that the outputs for each token sum to 1.

The embedding layer te1 was initialised using a set of 
embeddings that had been produced by the GloVe project 
[14]—these 300-dimensional vectors had been trained on 
Wikipedia 2014 and the Gigaword 5 corpus.

The system was trained for 20 epochs, with the model 
being saved after each epoch, and evaluated against the 
remaining 20% of the data. Each epoch was trained in 
mini-batches, drawn from batches of sentences all the 
same length. The model from epoch that gave the best F 
score was selected.

The minimalist network as shown in Table 2 has a sin-
gle input (mi1)—a sequence of integers, one per charac-
ter in the input (with 91 possible characters). The output 
layer is md1, and works in the same manner as td1 in the 
traditional system.

This system was trained for 30 epochs. As before, the 
model from the highest-scoring epoch was selected. The 
same mini-batch training procedure was used, except 
that for the first four epochs, the system was trained in 
order of sequence length, with the shortest sequences 
first.

Both networks were trained with the root mean square 
propagation (RMSProp) optimizer, using the categorical 
cross-entropy loss function. The code was migrated onto 
GPUs, for speed improvements, which has some limita-
tion when using CuDNNLSTM (CUDA (compute unified 

Table 1 The layers used in the traditional network

Layer Type Input(s) No. of output neurons Notes

te1 Embedding ti1 300

tc1 Conv1D ti2 256 Width = 3, activa-
tion = relu, drop-
out of 0.5

tm1 Concatenate te1, tc1 556

tb1 Bidirectional LSTM tm1 64 per direction, total 128 Dropout of 0.5

td1 TimeDistributed Dense tb1 5 Activation = softmax
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device architecture) Deep Neural Network LSTM) as it 
does not allow the use of recurrent dropout. Further tests 
are detailed below to show how such a migration affects 
the performance of the systems.

Post‑processing
The neural network assigns five scores to each token or 
character—one for each of the S, O, B, I and E tags. To 
convert this to a list of entities, the system scans for pos-
sible entities, looking up the value for each tag in each 
possible entity in each position, taking the minimum 
value, and, if this is above a threshold, accepting the 
entity and assigning it that value as a score. The thresh-
olds were 0.5 for both systems.

The ensemble system works by running both systems 
with a lower threshold, and generating two lists of enti-
ties. If an entity appears in only one list, its score is the 
score from that list, otherwise it is the sum of the scores 
from the two lists. This score is then divided by 2, and 
a threshold of 0.475 is applied. This low threshold below 
0.5 was chosen to ensure that an entity detected by only 
one system—e.g. an entity that starts or ends inside a 
token, and is thus undetectable by the traditional sys-
tem—can still be detected by the ensemble.

The BioCreative challenge did not allow for overlapping 
entities to be submitted, therefore checks were done and 
in the runs where this was a possibility, the lower-scoring 
entities were discarded.

Extensions
We have applied further extensions using transfer learn-
ing to our original entry to the Biocreative NER competi-
tion. We augmented our chemical NER systems after the 
BioCreative challenge to study improvements that could 
be gained using transfer learning techniques. Details of 
these improvements are outlined below, with the findings 
being detailed in the results and discussion section.

Extensions to traditional system
We have improved the traditional system by replacing the 
publicly-available GloVe embedding file with a custom-
compiled version made using the software based on a 
more relevant corpus. To do this, we prepared a corpus 
of patent titles and abstracts from United States Patent 
and Trademark Office (USPTO) patents with cooperative 
patent classification (CPC) codes A61K31 or A61P, from 
2006 and 2016. The corpus file had one title or abstract 
per line. Each line was tokenised, with one space charac-
ter between tokens (so “acetone-based” became “acetone-
based”). It was used to train a set of 300-dimensional 
word embeddings (the “custom embeddings”) using the 
GloVe software [14].

Extensions to minimalist system
The minimalist system was improved by the use of two 
transfer learning systems. The first system was called 
“predictive transfer”, and the second system was called 
“dictionary transfer”.

The predictive transfer system, shown in Table 3, uses 
a corpus file prepared in a similar manner to the one for 

Table 2 Layers in minimalist network

Layer Type Input(s) No. of output neurons Notes

ml1 LSTM mi1 128

ml2 LSTM mi1 128 Reversed

mm1 Concatenate ml1, ml2 Dropout of 0.5

mb1 Bidirectional LSTM mm1 64 per direction, total 128 Dropout of 0.5

mb2 Bidirectional LSTM mb1 64 per direction, total 128 Dropout of 0.5

md1 TimeDistributed(Dense) mb2 5 Activation = soft-
max

Table 3 “Predictive transfer” network

Layer Type Input(s) No. of output neurons Notes

ml1 LSTM mi1 128

ml2 LSTM mi1 128 Reversed

md2 TimeDistributed(Dense) ml1 91 Activation = softmax

md3 TimeDistributed(Dense) ml2 91 Activation = softmax
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the traditional system, but without the tokenisation stem. 
The system reads in one line at a time, creating an input 
mi1 as in the main minimalist system. The outputs md2 
and md3 contain one-high encodings of the character 
sequence represented by mi1, but shifted one character 
to the left or to the right. The system thus attempts to 
predict each character in the sequence based on either all 
of the characters previous to it, or all the characters after 
it. The training of this transfer network was fully com-
pleted prior to training the main network, using each line 
from the corpus once.

A second transfer system—which we call “diction-
ary transfer”—worked on a list of words, drawn from a 
list of chemical names found in ChEBI, a list of element 
names and an English dictionary. The network is shown 
in Table 4. The output md4 is a three-dimensional vector 
saying whether the word appears in the chemical name 
list, the element name list and/or the dictionary—essen-
tially, it trains the embedding and LSTM layers of the 
main minimalist network to recognise whether single 
words are chemical or not. With this system, training was 
interleaved with training the main network—training was 
alternated between mini-batches of transfer training and 
main-system training, until all of the words used in trans-
fer learning had been used.

We also examined the effects of using different com-
binations of transfer learning schedules—for each trans-
fer learning system, either completing transfer learning 
before training the main system, interleaving transfer 
learning with main-system training, or leaving out that 

training altogether. When both transfer systems were 
trained before main-system training began, we tried 
three variations—training the “predictive transfer” sys-
tem first, training the “dictionary transfer” system first, or 
interleaving training the two, a mini-batch at a time.

Results and discussion
The results of the systems evaluated in the BioCreative 
V.5 event, as described in [9] are shown in Table 5. In the 
competition our ensemble system entry gave the third 
best F score, with the judges stating that the top three 
scores were statistically indistinct [2, 3].

As mentioned in the introduction, the systems 
described here differ slightly from those used to create 
the BioCreative V.5 entries—there were some changes to 
remove dependencies on proprietary datasets, allow the 
use of the GPU, and to ensure that the systems could be 
distributed as open source. These changes mean that the 
systems now available give slightly different scores to the 
originals using BioCreative—these differences are attrib-
uted to making speed improvements to the code (e.g. 
ensuring the code runs on GPUs).

To demonstrate the performance of our systems we 
present here two evaluations. The first evaluation, called 
“internal style”, uses our 1/5 of the training data not used 
for training as in the table above. The second evalua-
tion, called “official style”, replicates the evaluation done 
during BioCreative V.5, by using those abstracts from 
the official test set that contained at least one chemical 

Table 4 “Dictionary transfer” network

Layer Type Input(s) No. of output neurons Notes

ml1 LSTM mi1 128

ml2 LSTM mi1 128 Reversed

mm1 Concatenate ml1, ml2 Dropout of 0.5

mb1 Bidirectional LSTM mm1 64 per direction, total 128 Dropout of 0.5

mb2 Bidirectional LSTM mb1 64 per direction, total 128 Dropout of 0.5

mp1 GlobalMaxPooling1D mb2 128

md4 Dense mp1 3 Activation = sigmoid

Table 5 Results of official BioCreative V.5 submissions

The official test was part of the BioCreative competition, and the internal evaluations were performed by ourselves using 1/5 of the training data not used for training

Entries in italics are the best results in that column

System Official test Internal evaluation

F (%) Precision (%) Recall (%) F (%) Precision (%) Recall (%)

Traditional 89.19 88.67 89.71 87.03 86.48 87.58

Minimalist 89.01 88.65 89.36 86.64 84.79 88.58

Ensemble 90.32 90.02 90.62 88.07 86.46 89.76
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entity in the gold standard annotations. The results are in 
Table 6.

As noted above the traditional and minimalist do not 
perform quite as well as their counterparts used for the 
original BioCreative entry. The reason for this change in 
score, we believe, is largely due to the LSTM implemen-
tation for the original implementation (which ran on a 
CPU) using recurrent dropout—a feature not available 
with the fast GPU-based LSTM implementation later 
used. The original submission also had used some propri-
etary datasets, which may have boosted performance.

The custom embeddings on the traditional system 
do have a positive effect, with a 0.15 to 0.16 percent-
age point improvement to F score. The transfer learn-
ing appears to have boosted the minimalist system by 
0.53 to 0.61 percentage points, with the ensemble being 
improved by 0.15 to 0.22 percentage points.

For completeness we also looked at the impact of 
using the CuDNNLSTM without recurrent dropout 
versus using a default LSTM with recurrent dropout. 
The results are shown in Table 7.

Training system 1 took 23  min for the parts that 
involved the neural network (and an additional five 

Table 6 Results of systems described in this paper

Entries in italics are the best results in that column

System Official test Internal evaluation

F score (%) Precision (%) Recall (%) F score (%) Precision (%) Recall (%)

1: Traditional 89.04 89.57 88.52 86.75 86.03 87.49

2: Minimalist 88.71 88.04 89.38 86.85 85.10 88.68

3: Ensemble of 1 and 2 90.11 88.69 88.02 88.02 86.89 89.18

4: Traditional with custom embeddings 89.19 90.05 87.93 86.91 87.10 86.72

5: Minimalist with transfer training 89.32 90.49 88.18 87.18 87.58 87.38

6: Ensemble of 4 and 5 90.33 91.47 89.21 88.17 87.99 88.17

Table 7 Results of training using different LSTM implementations

Entries in italics are the best results in that column

System Official test Internal evaluation

F score (%) Precision (%) Recall (%) F score (%) Precision (%) Recall (%)

1: Traditional 89.04 89.57 88.52 86.75 86.03 87.49

4: Traditional with custom embeddings 89.19 90.05 87.93 86.91 87.10 86.72

7: As 1, with default LSTM, and recurrent dropout 89.11 89.23 88.98 86.93 85.86 88.01

8: As 4, with default LSTM, and recurrent dropout 89.26 89.19 89.34 86.96 85.86 88.09

Table 8 Results of internal evaluation of minimalist system with different transfer learning strategies

Entries in italics are the best results in that column

Predictive transfer Dictionary transfer F score (%) Precision (%) Recall (%)

None None 86.85 85.10 88.68

None At start 86.40 85.20 87.64

None Interleaved 86.80 85.74 87.88

At start None 87.14 85.47 88.88

At start After predictive 87.08 86.16 88.07

After dictionary At start 87.24 86.09 88.42

At start Interleaved with dictionary 87.03 85.46 88.66

At start Interleaved 87.38 87.18 87.58

Interleaved None 87.30 85.90 88.75

Interleaved At start 86.88 85.59 88.20

Interleaved Interleaved 87.30 86.36 88.27
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minutes of preparation) whereas the corresponding 
parts of system 7 took 163  min—giving a sevenfold 
speedup. The speedup came at a cost of 0.05–0.18 per-
centage points of F score.

A breakdown of the transfer learning approaches is 
shown in Table 8. All scores are for the “internal” test set.

These scores show that predictive transfer shows a 
clear advantage—all of the F scores involving predictive 
transfer are higher than all of the F scores not involv-
ing predictive transfer. The benefit of dictionary transfer 
is less clear—in many cases dictionary transfer worsens 
performance.

This phenomenon of attempted transfer learning 
actually reducing performance is known as “negative 
transfer”. Here, we have mitigated the negative transfer 
effects from the dictionary transfer by interleaving that 
transfer learning with training on the main task, and 
by including predictive transfer learning as well—the 
best combination uses a block of transfer learning at 
the start. Two recent reviews of transfer learning [21, 
22] have both noted that the area of negative transfer 
has not been widely researched, and we are not aware 
of other demonstrations of this interleaving technique 
being used to prevent negative transfer.

Despite the different methods involved, the tradi-
tional and the minimalist system performed similarly. 
Combining them into an ensemble gives a substantial 
advantage; about 1 percentage point of F score, giving 
our best system a final F score of 90.33%, slightly higher 
than the ensemble submitted to BioCreative V.5. The 
improvements we have made to the system, and have 
made available as open source, show a strong increase 
in training speed, while holding the F score nearly 
constant.

Conclusions
We have shown here that using deep learning techniques 
can give state-of-the-art performance on the chemical 
named entity recognition problem. Our system scored 
well in the BioCreative V.5 CEMP evaluation [2], giv-
ing the third highest F score—the difference with the 
two higher-scoring systems [23, 24] was not statistically 
significant. All three of these systems made use of bidi-
rectional LSTMs, whereas the lower-scoring systems 
did not—this highlights the importance of LSTM-based 
methods.

The use of transfer learning has shown to improve the 
minimalist system by a substantial amount (0.5–0.6 per-
centage points of F score), with the best transfer learning 
approach combining multiple transfer learning tasks. The 
application of similar transfer learning strategies to the 
traditional system is a possible area for improvement. In 

[15] we have presented an application of transfer learning 
in token-based bidirectional LSTMs to the problem of 
chemical-protein interaction recognition, and are inves-
tigating applying the techniques developed there to the 
named entity recognition problem.

Our best system has achieved an F score of 90.33%—
above the symbolic “90% barrier”, which is approaching 
human-level performance—for example an inter-anno-
tator agreement study of chemical named entity annota-
tion found that an F score of 93% is possible [25]. Further 
improvements may be possible, and we are investigating 
ways to do this.

The software used is available as open-source software, 
at https ://bitbu cket.org/rscap plica tions /cheml istem .
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