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Abstract 

Background:  Protein-ligand docking programs are routinely used in structure-based drug design to find the optimal 
binding pose of a ligand in the protein’s active site. These programs are also used to identify potential drug candidates 
by ranking large sets of compounds. As more accurate and efficient docking programs are always desirable, constant 
efforts focus on developing better docking algorithms or improving the scoring function. Recently, chaotic maps 
have emerged as a promising approach to improve the search behavior of optimization algorithms in terms of search 
diversity and convergence speed. However, their effectiveness on docking applications has not been explored. Herein, 
we integrated five popular chaotic maps—logistic, Singer, sinusoidal, tent, and Zaslavskii maps—into PSOVina2LS , a 
recent variant of the popular AutoDock Vina program with enhanced global and local search capabilities, and evalu-
ated their performances in ligand pose prediction and virtual screening using four docking benchmark datasets and 
two virtual screening datasets.

Results:  Pose prediction experiments indicate that chaos-embedded algorithms outperform AutoDock Vina and 
PSOVina in ligand pose RMSD, success rate, and run time. In virtual screening experiments, Singer map-embedded 
PSOVina2LS achieved a very significant five- to sixfold speedup with comparable screening performances to AutoDock 
Vina in terms of area under the receiver operating characteristic curve and enrichment factor. Therefore, our results 
suggest that chaos-embedded PSOVina methods might be a better option than AutoDock Vina for docking and 
virtual screening tasks. The success of chaotic maps in protein-ligand docking reveals their potential for improving 
optimization algorithms in other search problems, such as protein structure prediction and folding. The Singer map-
embedded PSOVina2LS which is named PSOVina-2.0 and all testing datasets are publicly available on https​://cbbio​.cis.
umac.mo/softw​are/psovi​na.
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Introduction
Small-molecule drugs exert their pharmacological effects 
through binding to their biological targets and subse-
quently modulating the activities that are associated with 
diseases to be treated. To rationally design new drugs 
for a target protein, specific interactions of the binding 
partners must be correctly predicted. This prediction 
can be achieved with a computational approach called 

protein-ligand docking  [1]. Given the three-dimensional 
structures of a target protein and a ligand, the main goal 
of protein-ligand docking is to dock the ligand at the 
active site of the protein and to score the different bind-
ing poses of the ligand. Then, through a virtual screening 
process, a large library of ligands can be docked, ranked 
and filtered according to their docking scores, enabling 
the rapid identification of lead candidates. Therefore, 
accurate and efficient docking tools are indispensable for 
reducing the cost and time in the drug discovery process.

From an algorithmic point of view, the docking prob-
lem is a conformational search problem, which is to find 
the combination of parameters that yields the optimal 
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ligand binding pose. Assuming fixed topologies of the 
protein and ligand, then the conformational parameters 
of the complex include the position and orientation of 
the ligand with respect to the protein and the angles of 
all rotatable bonds of the ligand (and even the protein 
if flexibility of the protein is considered). Assessment of 
a ligand binding pose is done by a scoring function of 
interaction types and distances of the atoms between 
the protein and ligand, which can be force field-based, 
empirical-based or knowledge-based [2].

Various optimization strategies have been proposed to 
solve the protein-ligand docking problem. For example, a 
Monte Carlo (MC)-based approach was implemented in 
AutoDock Vina [3], and a genetic algorithm (GA)-based 
approach was implemented in GOLD  [4] and Auto-
Dock [5]. Recently, swarm-intelligence-based approaches 
using particle swarm optimization (PSO) and other 
nature-inspired methods, such as artificial bee colony 
(ABC) and ant colony optimization (ACO), have become 
very popular for solving nonlinear and complex optimi-
zation problems. The advantages of these metaheuris-
tic algorithms are that they tend to find good solutions 
quickly, they are easy to implement, and there are many 
variants to allow easy customization of the algorithm fit-
ting the domain of interest. Some metaheuristic docking 
methods have been implemented, such as SODOCK [6], 
PSO@AutoDock  [7], FIPSDock  [8], PSOVina  [9] based 
on the PSO algorithm and variants, PLANTS [10] based 
on ACO and FlABCps  [11] based on ABC. All of these 
docking methods have been shown to improve the pose 
prediction accuracy and docking efficiency compared to 
traditional optimization methods. In these implementa-
tions, the metaheuristic algorithms were utilized as the 
global optimizer to quickly locate promising regions in 
the conformational search space. Some of these methods 
included a local search algorithm to refine the solution 
from the global search to the closest local minimum.

In this paper, we present an improvement of the 
PSOVina docking method that was previously developed 
in our group  [9]. The first version of PSOVina imple-
mented the canonical PSO algorithm with a convergence 
detection strategy to effectively reduce the execution 
time of AutoDock Vina docking by 51–60% [9]. The sec-
ond version of PSOVina, named PSOVina2LS [12], further 
enhanced the docking performance by incorporating a 
novel two-stage local search (2LS) algorithm to quickly 
examine the potential of the global search solutions. 
Only promising solutions will be refined by the expen-
sive full-length local search. Our experimental results 
showed that the 2LS achieved an approximate threefold 
acceleration in finding optimal docking solutions rela-
tive to the conventional one-stage local search. In this 
work, we investigate the use of chaotic maps in PSOVina 

in an attempt to further enhance the search capability 
of the algorithm. A chaotic map is a function to mimic 
the dynamics of some nonlinear systems. Previous stud-
ies  [13–15] indicated that using chaotic variables rather 
than the conventional random number generators might 
improve the search behavior of evolutionary algorithms 
in terms of search diversity and convergence speed. To 
evaluate the effectiveness of chaotic functions in dock-
ing applications, we implemented five chaotic functions 
in PSOVina2LS and analyzed their performances on four 
benchmark docking datasets and two virtual screening 
datasets. In our experiments, chaos-embedded methods 
outperformed AutoDock Vina and our previous PSOVina 
in both the success rate of ligand pose prediction and the 
speed of virtual screening.

Methods
PSOVina and PSOVina2LS

PSOVina is a metaheuristic molecular docking program 
based on the AutoDock Vina software  [3]. In PSOVina, 
the fast converging PSO algorithm was used as the global 
optimizer integrated with the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) local search algorithm and the scor-
ing function of Vina. PSO is a population-based search 
method that is inspired by the social learning behaviors 
of bird flocking and fish schooling when searching for 
food  [16]. The population, called swarm, consists of N 
members, called particles. Each individual particle repre-
sents a potential solution and moves in a D-dimensional 
search space based on its current position and velocity. 
During the search process, each particle adjusts its posi-
tion according to its own experience and the swarm’s 
experience. The former is the best position that the 
particle has ever visited, called pbest, and the latter is 
the best position that the swarm has ever visited, called 
gbest. The velocity Vi and position Xi of the particle i are 
updated iteratively over time t according to the following 
equations:

where Vi = [vi1, . . . , viD] and Xi = [xi1, . . . , xiD] . w is a 
constant parameter called the inertia weight, and it deter-
mines the contribution of the current velocity of the 
particle to its new velocity. A large w encourages explora-
tion of the entire search space, and a small w facilitates 
local exploitation and convergence. Therefore, a suitable 
value of w (typically between 0.8 and 1.2) will help main-
tain a proper balance between the global and local search 
capabilities of the swarm. Rather than using a predefined 
constant value, many studies have proposed strategies to 

(1)
Vi(t + 1) = wVi(t)+ c1r1(pbesti(t)− Xi(t))

+ c2r2(gbest(t)− Xi(t)),

(2)Xi(t + 1) = Xi(t)+ Vi(t + 1),
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dynamically adjust w during the search process [17]. Two 
other coefficients c1 and c2 are the cognitive and social 
parameters, respectively. The former controls the parti-
cle’s movement toward the region where the best solution 
has been encountered by itself before, and the latter con-
trols its movement toward the best region that the swarm 
has collectively found thus far. A similar treatment to 
adaptively adjust c1 and c2 was also proposed [18]. Finally, 
r1 and r2 are two uniform random variables between 0 
and 1.

Although PSOVina has been improved in terms of 
global search efficiency, we found that each update step 
was still computationally expensive. The reason was 
that each particle update will undergo a local search 
step based on the BFGS algorithm to refine the solution 
to a local minimum. Since not all new solutions after 
the position update step of Eq.  2 are good solutions, 
we introduced the 2LS method into PSOVina to focus 
the computing resources on optimizing only promising 
solutions [12]. The first stage is to perform a short local 
search and decide the potential of a solution by compar-
ing it to the current pbest solution obtained from a short 
local search. Only if the solution has improved energy 
will it enter the second stage to perform a complete local 
search for full optimization. This improved method, 
called PSOVina2LS , yielded greater prediction accuracy 
and achieved at least a threefold acceleration in run time 
compared to AutoDock Vina.

Chaotic maps
Chaos is a bounded unstable dynamic behavior, and it 
has characteristics of randomness, ergodicity, initial 
value sensitivity, and regularity [19]. A chaotic sequence 
{xn : n = 0, 1, 2, . . .} is generated deterministically from a 
dynamical system of the form:

where f is a smooth nonlinear function. Generation of the 
sequence is fast and depends on only one ( x0 ) or a few 
initial parameters, making it easy to use and store. Apart 
from regularity, an important difference between random 
sequences and random-like chaotic sequences is their 
assurance of ergodicity. Under proper conditions, they 
can cover all values without repeat within a certain range. 
The sequence generation is also very sensitive to the ini-
tial parameters; thus, only a slight modification of the 
parameters will produce an entirely different sequence.

Chaotic maps have been found to be promising for 
enhancing search performance in various optimization 
algorithms  [13, 20, 21]. Generally, the selected chaotic 
function is used as a replacement of the conventional 
random number generator (mostly with a uniform 

(3)xn+1 = f (xn), n = 0, 1, 2, . . .

distribution) or to adaptively modify parameters in 
the metaheuristic optimization algorithm while the 
search evolves. In this way, it is to prevent the search 
from becoming trapped in local optima and intends 
to improve the balance between exploring the search 
space and exploiting the found solutions. Successes 
have been reported in applying chaotic optimization 
in machine learning tasks such as feature selection and 
clustering [22, 23] and in real-world applications in the 
fields of engineering  [24, 25], image processing  [26], 
and recently in bioinformatics  [27–29]. Well-known 
chaotic maps for these applications include logistic 
map  [30], Singer map  [31], sinusoidal map  [31], tent 
map  [32], Zaslavskii map  [33], Gauss map  [31], circle 
map  [34], Arnold’s cat map  [35], Sinai map  [36], and 
piecewise map. Each of these maps are different with 
respect to the density of the periodic orbits and ways 
of mixing topologies. In the following, we introduce the 
characteristics of the five most used chaotic maps.

The logistic map is one of the simplest and most 
popular maps describing the nonlinear dynamics of a 
biological population  [30]. This map is defined by the 
following equation:

where α is the control parameter. As shown in Additional 
file  1: Fig. S1, the dynamical behaviors in the logistic 
map systems will be either in the periodic regimes or in 
the chaotic regimes depending on the value of α . In the 
former, only a finite set of different values will be vis-
ited, whereas in the latter, the system evolves in a disor-
dered way and never repeats itself exactly. When α = 4 , 
x0 ∈ (0, 1) and x0 /∈ {0.25, 0.5, 0.75} , this function gener-
ates xn covering the entire range of (0, 1).

The Singer map  [31] is defined by the following 
equation:

with xn ∈ (0, 1) under the condition that x0 ∈ (0, 1) and 
µ ∈ [0.9, 1.08] . Similar to the logistic map, systems with 
larger µ values evolve in the chaotic regimes, as shown in 
Additional file 1: Fig. S2.

The sinusoidal map  [31] is defined by the following 
equation:

The systems clearly evolve in the chaotic regimes when 
α = 2.3 and 0.45 ≤ x0 ≤ 0.92 , as shown in Additional 
file 1: Fig. S3. Note that under these conditions, the cha-
otic values are > 0.4 ; thus, the generated states do not 
cover the entire range of (0, 1).

(4)xn+1 = αxn(1− xn),

(5)
xn+1 = µ(7.86xn − 23.31x2n + 28.75x3n

− 13.302875x4n),

(6)xn+1 = αx2nsin(πxn).



Page 4 of 13Tai et al. J Cheminform           (2018) 10:62 

The tent map  [32] and logistic map are topologically 
conjugate, and they have similar dynamical behaviors. 
The tent map is defined by the following equation:

where µ is a positive real constant. For optimization 
tasks, the following equation is mostly used  [13, 21, 23]:

The dynamical behavior of this system is shown in Addi-
tional file 1: Fig. S4.

The Zaslavskii map  [33] is defined by the following 
equation:

When v = 400 , r = 3 , a = 12 , and yn+1 ∈ [−1.0512, 1.0512] , 
the dynamical behaviors of Zaslavskii map systems are 
in a wide spectrum and very unpredictable, as shown in 
Additional file 1: Fig. S5.

Chaos‑embedded PSOVina
One of the main disadvantages of PSO is that it often 
suffers from becoming trapped in local optima, particu-
larly when dealing with functions that have multiple 
local extrema. The consequence is premature conver-
gence leading to suboptimal solutions. Previous stud-
ies on improving the global convergence of the PSO 
algorithm were largely focused on modifying the inertia 
weight w and acceleration coefficients c1 and c2 to prevent 
the swarm from becoming trapped in local optima. For 
example, Chuanwen and Bompard  [24] used a logistic 
map in PSO to decide w iteratively based on the evolu-
tion number t. Their result showed that a chaos-embed-
ded algorithm can achieve better performance in terms 
of efficiency and convergence rate. Recently, Alatas 
et  al.  [13] tested twelve chaos-embedded PSO meth-
ods and eight chaotic maps with different combinations 
of chaos-adapted sequences for coefficients w, c1 and c2 
and chaos-adapted sequences for random variables r1 

(7)xn+1 =

{

µxn xn < 0.5,
µ(1− xn) xn ≥ 0.5,

(8)xn+1 =

{

1

0.7
xn xn < 0.7,

10
3
(1− xn) xn ≥ 0.7.

(9)xn+1 =
(

xn + v + ayk+1

)

mod(1),

(10)yn+1 = cos(2πxn)+ e−ryn.

and r2 . They concluded that chaos-adapted w, r1 and r2 
performed the best in experiments on three benchmark 
mathematical functions. Both studies suggested that the 
use of chaotic maps as a replacement for the static param-
eters or the normal random sequences can improve the 
global search capability by more easily escaping the local 
minimum. In addition, it was hypothesized that chaotic 
maps add the ergodicity property in the search, which is 
lacking in random sequences [13].

To investigate the use of chaotic maps in protein-ligand 
docking, we embedded a chaotic map in PSOVina2LS as a 
means to generate random numbers. The inertia weight 
constant (w) and random variables ( r1 and r2 ) in the 
velocity update equation of Eq. 1 were replaced by cha-
otic variables:

where wcm and rcm are variables of two independent cha-
otic sequences; both of these variables were initialized 
with different random values and updated before the 
velocity update step was performed. A few alternatives 
of when to iterate the chaotic function and the number 
of chaotic variables used were tested. It was found that 
when the chaotic variables were updated once for each 
particle, the search could yield better solutions. In total, 
we implemented five chaos-embedded PSOVina2LS 
methods, including logistic, Singer, sinusoidal, tent, and 
Zaslavskii maps. Parameters of the chaotic maps used in 
the methods are listed in Table 1.

Datasets for pose prediction test
Four datasets were used to evaluate the ligand pose 
predictions of the docking methods: PDBbind, Astex, 
GOLD, and SB2010. PDBbind [37] is a manually curated 
database of 3D protein-ligand structures with experi-
mentally obtained ligand binding affinities. We used 
the core-set complexes from PDBbind version 2014, 
which contains 195 protein-ligand complexes. These 
complexes were representatives of protein clusters gen-
erated from the PDBbind 3446 refined-set complexes. 
The selection was performed carefully to ensure that 
strong, medium, and weak binding cases were included 
in the core set. Both Astex  [38] and GOLD  [39] are 
widely used benchmark datasets for comparing dock-
ing methods. Astex contains 85 diverse protein-ligand 
structures with a resolution better than 2.5 Å. The set 
was derived from different drug discovery studies, and 
therefore, all ligands are drug-like samples. Among 
them, 23 of the ligands are approved drugs, and some 
are in clinical trials  [38]. The GOLD dataset contains 
77 protein-ligand complexes. This dataset was used 

(11)

Vi(t + 1) = wcmVi(t)+ c1rcm(pbesti(t)− Xi(t))

+ c2(1− rcm)(gbest(t)− Xi(t)),

Table 1  The parameters of chaotic maps used in this study

Chaotic map Parameter

Logistic map α = 4

Singer map µ = 1.07

Sinusoidal map α = 2.3

Zaslavskii map v = 400 , r = 3 , a = 12
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for assessing state-of-the-art docking programs such 
as Surflex, Glide, MolDock and the more recent FIPS-
Dock [38]. The fourth dataset is SB2012 from the Rizzo 
Lab [40]. It is an updated release of the SB2010 docking 
validation database containing a large dataset of 1043 
crystallographic protein-ligand complexes. As a sum-
mary, information of the four datasets used for pose 
prediction tests are listed in Table 2.

All datasets were prepared by converting structure 
files into PDBQT format using the Python scripts pre-
pare_receptor4.py and prepare_ligand4.py 
provided in the MGLTools package with the parameters 
‘-A hydrogens’ and -U ‘nphs_lps_waters’. With these 
options, missing hydrogens were added, but nonpo-
lar hydrogens were merged to the neighboring carbon 
based on the united-atom model scheme. As the ligand 
is treated as flexible in docking, this preprocessing 
step establishes torsion tree of the ligand that contains 
a fixed set of atoms (the root) and rotatable groups of 
atoms (the branches). All non-ring torsions are consid-
ered rotatable except bonds that only rotate hydrogens. 
For both protein and ligand, the default AD4 atom type 
and Gasteiger partial charges were used. Atoms such 
as Au and Ce that cannot be recognized by the conver-
sion tools were removed. For each PDBbind receptor, 
the docking box was calculated based on the pocket 
residues given in the dataset for each complex, i.e., the 
geometrical center of all pocket atoms as the center 
of the box and the largest distances between pocket 
atoms in the X-, Y-, Z-dimensions as the box lengths. 
For the Astex diverse set, the prepared PDBQT files 
were kindly provided by the author of rDock  [41]. For 
the GOLD benchmark set, the coordinates of the pro-
tein and ligand atoms were extracted from the PDB 
files, which were downloaded from RCSB PDB, whereas 
for the SB2012 docking validation set, structure files in 
MOL2 format were obtained from the Rizzo Lab page. 
Following the procedure in Ref. [8, 11], a default dock-
ing box size of 22.5 Å  in all three dimensions was cre-
ated for receptors in the Astex, GOLD, and SB2012 
datasets. The center of the docking box was defined as 

the geometric center of the bound ligand in the crystal 
structure.

Datasets for virtual screening test
The Database of Useful Decoys-Enhanced (DUD-E) [42] 
was used in the virtual screening experiments. The entire 
dataset consists of 102 protein targets with known active 
ligands and computationally generated inactive ligands. 
The inactive ligands, called decoys, were made to have 
similar physicochemical properties such as molecular 
weight, number of rotatable bonds, calculated log P, and 
hydrogen bond acceptors and donors, but dissimilar 2D 
topologies from the active ligands such that it is challeng-
ing for docking programs to identify real positives from 
the positive-like ligands. Smaller subsets of four protein 
classes (G protein-coupled receptors, kinases, nuclear 
receptors, and proteases) are also available in DUD-E for 
family-specific virtual screening sets. In this study, due 
to the limited computing power, a diverse subset that 
contains 8 representative targets from different protein 
families (herein named DIV8) was employed to assess 
the screening performance of different docking methods. 
In addition, the nuclear receptor subset (herein named 
NR11) was also evaluated as a comprehensive test of one 
of the major drug target classes.

The sets of actives and decoys were preprocessed using 
the LigPrep module of Schrödinger 2017-1. In LigPrep, 
each ligand was first generated from the given isomeric 
SMILES string, and it was subsequently subject to 6 steps 
of preprocessing: (1) add hydrogen atoms to make all 
hydrogen explicit; (2) remove unwanted atoms such as 
counter ions; (3) neutralize functional groups, if possible, 
by adding or removing protons; (4) find low-energy con-
formations of flexible ring systems in the ligand; (5) filter 
distorted conformations by performing energy minimi-
zation; and (6) generate energy-minimized structure by 
performing a series of Monte Carlo multiple minimum 
(MCMM) searches. Finally, only one structure coordi-
nate was retained. For the target receptor structures, 
they were preprocessed using the Protein Preparation 
Wizard of Schrödinger. It includes checking the structure 
for correct bond orders and correct protonation states 

Table 2  Four datasets for the pose prediction test

Name Description Number 
of complexes

References

PDBbind v2014 (core-set) Representatives of protein clusters of high-quality structures selected from Protein Data 
Bank

195 [37]

Astex diverse set Proteins are pharmaceutical or agrochemical targets; ligands are approved drugs or in 
clinical trials

85 [38]

GOLD benchmark set Selected diverse complexes which were checked to be free from structural errors 77 [39]

SB2012 docking validation set Ligands with a wide range of flexibilities 1043 [40]



Page 6 of 13Tai et al. J Cheminform           (2018) 10:62 

(at pH 7.0), deleting far waters, optimizing the hydrogen 
bonding network, and performing energy minimization 
using the OPLS2005 force field. The optimized struc-
tures were then converted into PDBQT format using the 
prepare_ligand4.py and prepare_receptor4.
py programs without any additional parameters; this 
ensures the programs that no repairs on the structures 
were required. For each receptor, size of the docking box 
was determined based on the co-crystallized ligand using 
the eBoxSize script. As shown in Ref. [43], eBoxSize 
can improve ranking accuracy in virtual screening exper-
iments for about two-third of target proteins. The final 
virtual screening datasets with the numbers of generated 
actives and decoys are listed in Table 3. 

Performance analysis
When the structure of the co-crystallized ligand is given, 
the standard root-mean-square deviation (RMSD) can 
be used to evaluate the accuracy of the predicted ligand 
binding pose. RMSD is a measure of the difference 
between the predicted position of each ligand atom and 
its actual position in the experimental structure with 

respect to the target protein. In this work, a predicted 
ligand pose with an RMSD of 2 Å  or less was considered 
successful.

Being a stochastic algorithm, PSOVina (also AutoDock 
Vina) can provide different solutions in repeated runs. 
For pose prediction experiments, we performed docking 
of each complex 10 times and reported the performance 
measured from the best-scoring pose over all repeated 
runs (i.e., the docking pose found with the lowest binding 
affinity in 10 runs). We also measured the average per-
formance of each run. For fairness, the same repetitive 
experiment was executed for all methods to be compared.

The performance of a docking method in virtual 
screening was evaluated based on the list of the screened 
compounds ranked by the predicted binding affinity. 
The more actives that are ranked high in the list, the 
more effective is the docking method for virtual screen-
ing. Two metrics were used in this study: the area under 
the receiver operating characteristic curve (AUC-ROC) 
and the enrichment factor (EF). The former is the global 
performance measure of a method from the ratios of 
true positive fraction over the false positive fraction at 

Table 3  Number of actives and decoys in the DUD-E datasets for virtual screening test after preprocessing

aActives and decoys which failed to pass all the preprocessing steps were not included in the virtual screening experiments

Target Type Active Decoy Failed activea Failed decoya

(a) DIV8: Diverse target subset

 akt1 Kinase 293 16,448 0 2

 ampc Enzyme 48 2850 0 0

 cp3a4 Cytochrome 170 11,798 0 2

 cxcr4 G protein-coupled receptor 40 3414 0 0

 gcr Nuclear receptor 258 14,996 0 4

 hivpr Protease 536 35,743 0 7

 hivrt Enzyme 337 18,887 1 4

 kif11 Other 116 6847 0 3

 Total 1794 110,983 1 22

 Target Type Active Decoy Failed activea Failed decoya

(b) NR11: Nuclear receptor target subset

 andr Androgen receptor 269 14,349 0 1

 esr1 Estrogen receptor alpha 383 20,685 0 0

 esr2 Estrogen receptor beta 367 20,199 0 0

 gcr Glucocorticoid receptor 258 14,996 0 4

 mcr Mineralocorticoid receptor 94 5150 0 0

 ppara Peroxisome proliferator-activated receptor alpha 373 19,399 0 0

 ppard Peroxisome proliferator-activated receptor delta 240 12,250 0 0

 pparg Peroxisome proliferator-activated receptor gamma 484 25,298 0 2

 prgr Progesterone receptor 293 15,814 0 0

 rxra Retinoid X receptor alpha 131 6950 0 0

 thb Thyroid hormone receptor beta-1 103 7450 0 0

 Total 2995 162,540 0 7
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Table 4  Docking performance comparison of  AutoDock Vina, PSOVina, PSOVina2LS , and  chaos-embedded PSOVina2LS 
methods on four pose prediction datasets

a The best-scoring pose is the pose with the lowest binding affinity in docking repeats. Thus, best-scoring pose RMSD and success rate are the average RMSD and 
success rate of the best-scoring poses of all complexes in the dataset
b No. of iterations and run time were averaged from all docking instances

Best results are shown in italics

Best-scoring 
pose RMSD (Å)a

Average RMSD (Å) Best-scoring pose 
success rate (%)a

Average 
success rate 
(%)

No. of iterationsb Run time (s)b

(a) PDBBind v.2014 dataset

 AutoDock Vina 2.68393 2.70336 62.56 61.33 22777 21.46

 PSOVina 2.27188 2.50727 68.21 64.67 892 8.97

 PSOVina2LS 2.14915 2.79023 70.77 61.03 957 3.43

 Chaos-embedded PSOVina2LS

  Logistic map 1.95241 2.61573 72.82 63.49 1053 3.75

  Singer map 1.98661 2.52277 72.82 64.26 1069 3.75

  Sinusoidal map 1.90650 2.73205 74.36 61.33 1105 3.82

  Tent map 2.07797 2.77287 69.23 60.92 981 3.54

  Zaslavskii map 1.98789 2.65951 72.31 62.00 1015 3.67

(b) Astex diverse dataset

 AutoDock Vina 1.90681 1.92633 71.76 71.53 20086 18.53

 PSOVina 1.82160 1.71506 74.12 76.35 1392 8.21

 PSOVina2LS 1.58374 1.87782 75.29 72.59 885 2.63

 Chaos-embedded PSOVina2LS

  Logistic map 1.63183 1.90169 76.47 71.65 951 2.82

  Singer map 1.61686 1.88862 77.65 72.35 1097 3.05

  Sinusoidal map 1.50551 1.99939 80.00 71.06 1234 3.30

  Tent map 1.54835 1.91905 78.82 72.12 968 2.85

  Zaslavskii map 1.54228 1.84950 78.82 72.12 928 2.72

(c) GOLD benchmark set

 AutoDock Vina 2.78586 2.91744 64.94 63.25 20071 19.91

 PSOVina 2.59811 2.58979 66.23 66.75 1289 7.64

 PSOVina2LS 2.41496 2.85823 71.43 60.91 897 2.75

 Chaos-embedded PSOVina2LS

  Logistic map 2.32352 2.71251 75.32 64.42 1002 2.97

  Singer map 2.50710 2.73068 71.43 62.73 990 2.97

  Sinusoidal map 2.27549 2.61833 74.03 64.81 1065 3.15

  Tent map 2.23369 2.69675 70.13 62.60 916 2.72

  Zaslavskii map 2.45169 2.80725 72.73 62.73 866 2.69

(d) SB2012 docking validation dataset

 AutoDock Vina 2.64185 2.77003 63.47 61.79 22977 20.33

 PSOVina 2.38248 2.64763 65.68 62.78 1372 12.77

 PSOVina2LS 2.29462 2.91399 66.06 58.12 1036 3.04

 Chaos-embedded PSOVina2LS

  Logistic map 2.41665 2.91596 66.25 57.94 1112 3.31

  Singer map 2.11773 2.94298 70.95 57.48 1138 3.25

  Sinusoidal map 2.16409 3.08916 70.09 54.67 1133 3.03

  Tent map 2.17928 2.99936 69.22 56.74 1066 3.21

  Zaslavskii map 2.35440 2.94977 66.06 57.17 1081 3.27



Page 8 of 13Tai et al. J Cheminform           (2018) 10:62 

different classification thresholds. Ligands in the list 
above the threshold are classified as actives, whereas 
those below the threshold are classified as decoys. An 
AUC-ROC value of 1.0 indicates perfect classification, 
whereas a value of   0.5 indicates random prediction. 
Because drug discovery research will mainly consider the 
top-ranked ligands from the virtual screening result for 
further investigation, a measure of how good is the pre-
dicted top-x% ranked ligands is more indicative about the 
effectiveness of the docking method for virtual screening. 
The value of EFx% is computed as:

(12)EFx% =
actives at x%

total actives

/

ligands at x%

total ligands
.

Program efficiency, i.e., the run time, was measured as 
the elapsed time (or referred to as the real time) used 
by the docking program with the Linux command time.

Pose prediction tests were performed on a Dell XPS 
8700 desktop with an Intel i7 quad-core 3.6 GHz proces-
sor and 24 GB of memory running Ubuntu 15. Virtual 
screening tests were run on a high-performance comput-
ing (HPC) cluster, where each node was equipped with 
a 24-core Intel Xeon E5-2690 GHz CPU and 256 GB of 
memory.

Results and discussion
To evaluate the effectiveness of chaotic maps in protein-
ligand docking, two types of experiments were per-
formed: ligand pose prediction and virtual screening.

Comparison of ligand pose prediction accuracy 
and docking speed
We conducted experiments using four independent 
datasets, namely, PDBbind, Astex, GOLD, and SB2012, 
to evaluate the docking performances of chaos-embed-
ded PSOVina2LS methods and compare them to Auto-
Dock Vina and our previous versions of PSOVina. For 
PSOVina and PSOVina2LS , the following PSO param-
eters were used: N = 8 , w = 0.36 , and c1 = c2 = 0.99 . 
For PSOVina2LS , two additional parameters, R = 0.1 and 
Cr = 18 , for the 2LS were used. For each complex in the 
dataset, 10 docking repetitions were performed, and the 
binding pose with the lowest binding affinity among the 
predicted poses was taken as the final docking solution.

Table 5  Overall pose prediction performance of AutoDock 
Vina, PSOVina, PSOVina2LS , chaos-embedded PSOVina2LS 
methods

Best results are shown in italics

Best-scoring 
pose RMSD (Å)

Best-scoring pose 
success rate (%)

Run time (s)

AutoDock Vina 2.50 (0.40) 65.68 (4.17) 17.56 (5.24)

PSOVina 2.27 (0.33) 68.56 (3.86) 9.40 (2.31)

PSOVina2LS 2.11 (0.37) 70.89 (3.79) 2.96 (0.36)

Chaos-embedded PSOVina2LS

 Logistic map 2.08 (0.36) 72.72 (4.57) 3.21 (0.41)

 Singer map 2.06 (0.37) 73.21 (3.06) 3.26 (0.35)

 Sinusoidal map 1.96 (0.34) 74.62 (4.08) 3.33 (0.35)

 Tent map 2.01 (0.31) 71.85 (4.67) 3.08 (0.37)

 Zaslavskii map 2.08 (0.41) 72.48 (5.21) 3.09 (0.47)

Fig. 1  ROC curves of virtual screening the DUD-E diverse targets using AutoDock Vina, PSOVina, and chaos-embedded PSOVina2LS with Singer and 
sinusoidal maps
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Fig. 2  Run time (in seconds) of virtual screening the DUD-E diverse targets. Text annotations in the violin plot indicate the maximum (top), median 
(text in blue, location of the median shown as a black dot), and minimum (bottom) run times by each method
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The docking performances of five chaotic maps are 
compared in Table 4. Using the best-scoring pose among 
ten repeats as the final solution for each complex, the 
RMSDs and success rates of PSOVina and PSOVina2LS 
are consistently better than those of AutoDock Vina. 
When a chaotic map was employed as a random number 
generator, variants of chaos-embedded PSOVina2LS show 
a further improvement in success rate and in most cases 
also in RMSD. Regarding the average RMSD and success 
rate, there are more variations, presumably due to the 
stochastic nature of the docking algorithms. In all cases, 
PSOVina2LS has the shortest run time. Replacing random 
numbers with chaotic sequences only introduced minor 
additional computing cost.

We summarize the overall pose prediction perfor-
mances of the docking methods in Table 5. PSOVina2LS 
with sinusoidal map yielded the highest best-scoring 
pose success rate of 74.62%, followed by Singer map with 
a rate of 73.21% and logistic map with a rate of 72.72%. 
AutoDock Vina only achieved a 65.68% success rate, 
and PSOVina2LS achieved 70.89%. The fastest method is 
PSOVina2LS , which gained an almost sixfold acceleration 
with respect to AutoDock Vina, while chaos-embedded 
methods in general achieved a fivefold acceleration in 
docking.

Therefore, the experimental results presented in 
this section are strong evidence that chaotic maps can 
improve the global exploration capability of the PSO 

Table 6  Results of area under ROC curves (AUC-ROC) and enrichment factor (EF) of virtual screening the DUD-E diverse 
targets (DIV8) using AutoDock Vina, PSOVina, and chaos-embedded PSOVina2LS with Singer and sinusoidal maps

Target AutoDock Vina PSOVina Singer Sinusoidal

AUC​ EF1% EF20% AUC​ EF1% EF20% AUC​ EF1% EF20% AUC​ EF1% EF20%

akt1 0.55 0.00 1.52 0.47 1.71 1.31 0.40 1.37 0.75 0.42 2.05 0.84

ampc 0.60 0.00 1.25 0.59 0.00 1.46 0.62 2.08 1.56 0.63 2.08 1.56

cp3a4 0.58 0.60 1.65 0.59 1.19 1.62 0.57 1.19 1.53 0.58 1.79 1.53

cxcr4 0.52 0.00 0.87 0.54 0.00 0.75 0.59 0.00 0.25 0.59 0.00 0.87

gcr 0.53 10.43 1.98 0.53 10.82 1.88 0.53 11.59 1.90 0.53 11.98 1.88

hivpr 0.71 4.10 2.31 0.71 3.17 2.38 0.71 2.98 2.34 0.69 3.17 2.17

hivrt 0.66 4.77 2.20 0.65 4.77 2.17 0.65 4.77 1.93 0.64 4.77 1.92

kif11 0.84 23.15 3.66 0.85 25.73 3.71 0.87 24.87 3.92 0.86 18.87 3.71

Average 0.62 5.38 1.93 0.62 5.92 1.91 0.61 6.11 1.77 0.62 5.59 1.81

Table 7  Results of area under ROC curves (AUC-ROC) and enrichment factor (EF) of virtual screening the DUD-E nuclear 
receptor targets (NR11) using AutoDock Vina, PSOVina, and  chaos-embedded PSOVina2LS with  Singer and  sinusoidal 
maps

aAveraged without ppara, ppard and pparg

Target AutoDock Vina PSOVina Singer Sinusoidal

AUC​ EF1% EF20% AUC​ EF1% EF20% AUC​ EF1% EF20% AUC​ EF1% EF20%

andr 0.57 11.54 1.93 0.57 11.17 1.90 0.57 11.17 1.84 0.57 10.79 1.88

esr1 0.75 13.82 2.74 0.74 13.56 2.60 0.74 11.73 2.62 0.73 12.77 2.69

esr2 0.77 11.70 3.09 0.76 10.88 3.04 0.76 12.51 3.00 0.76 13.06 3.05

gcr 0.53 10.43 1.98 0.53 10.82 1.88 0.53 11.59 1.90 0.53 11.98 1.88

mcr 0.53 3.22 1.54 0.53 3.22 1.54 0.53 3.22 1.60 0.53 3.22 1.54

ppara 0.85 4.55 3.65 0.80 2.68 2.98 0.75 2.14 2.60 0.73 1.07 2.24

ppard 0.81 2.50 3.33 0.79 2.08 2.75 0.72 0.83 2.06 0.74 1.67 2.17

pparg 0.79 5.57 3.11 0.76 3.30 2.52 0.72 2.89 2.13 0.70 2.68 2.02

prgr 0.61 9.56 2.25 0.61 9.56 2.24 0.61 9.56 2.22 0.60 9.90 2.25

rxra 0.83 33.50 3.55 0.83 32.74 3.47 0.81 33.50 3.51 0.81 32.73 3.44

thb 0.81 26.05 3.35 0.81 25.09 3.40 0.81 27.02 3.25 0.80 25.08 3.25

Average 0.71 12.04 2.78 0.70 11.37 2.57 0.69 11.47 2.43 0.68 11.36 2.40

Averagea 0.67 14.98 2.55 0.67 14.63 2.51 0.67 15.04 2.49 0.67 14.94 2.50
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algorithm in protein-ligand docking and predict higher-
quality docking poses than nonchaotic methods in a 
shorter amount of time. Specifically, sinusoidal map and 
Singer map appear to be the best options for the pose 
prediction considering the tradeoff between accuracy 
and run time.

Comparison of virtual screening accuracy and screening 
speed
To assess the screening performances of the chaos-
embedded docking methods, we performed virtual 
screening experiments using the DUD-E diverse tar-
get subset (DIV8) and the nuclear receptor target sub-
set (NR11). Four docking methods, namely, AutoDock 
Vina, PSOVina, Singer map-embedded PSOVina2LS , 
and sinusoidal map-embedded PSOVina2LS , were com-
pared with respect to the values of AUC-ROC, EF, and 
run time. Only one docking was performed per complex. 
PSO parameters were the same as in the pose predic-
tion experiments except that more particles were used 
( N = 16).

The DIV8 results are presented in Figs.  1 and   2 and 
Table 6, while the NR11 results are presented in Table 7 
and Additional file  1: Figs. S6 and S7. The ROC curves 
show that all docking methods generated very similar 
ranking lists except for a few targets (DIV8’s akt1 and 
NR11’s ppara, ppard, and pparg). For DIV8, the AUC-
ROCs averaged across targets are 0.62, 0.62, 0.61 and 0.62 
for Vina, PSOVina, Singer, and sinusoidal, respectively. 
Singer has the largest mean EF1% of 6.11, followed by 
PSOVina (5.92), sinusoidal (5.59) and finally Vina (5.38), 
whereas Autodock Vina has the largest mean EF20% of 
1.93, followed by PSOVina (1.91), sinusoidal (1.81) and 

Singer (1.77). However, these differences are statistically 
indistinguishable as suggested by paired Student’s t-test 
between pairs of the docking methods at the significance 
level of α = 0.05 (see Additional file  1: Table  S1). Simi-
larly, for NR11 the screening performance of Singer is 
comparable to AutoDock Vina and PSOVina in terms of 
AUC-ROC and EF1%. It performs only slightly worse than 
AutoDock Vina in EF20% with a p-value of 0.04199. In 
contrast, sinusoidal performs slightly worse than Auto-
Dock Vina in both AUC-ROC and EF20% with p-values 
of 0.04996 and 0.04755. Therefore, in terms of screening 
accuracy Singer map-embedded PSOVina2LS is preferable 
to sinusoidal-map embedded method.

After confirming the screening accuracies of choas-
embedded methods, we evaluated their screening speed. 
Figure  2 and Additional file  1: Fig. S7 show the violin 
plots of run time used by different methods in screening 
all compounds in the DIV8 and NR11 datasets, respec-
tively. Notably, while the median run times varied in a 
wide range of approximately 6–23 s for AutoDock Vina 
and 6–17 s for PSOVina, the chaos-embedded meth-
ods varied in a small range of only approximately 1–3 s 
in screening the DIV8 dataset. The same observation 
can be obtained from the run time analysis of the NR11 
virtual screening experiments. Taken together two data 
sets, sinusoidal has the shortest average run time of 2.51 
s, followed by Singer of 2.81 s, PSOVina of 12.06 s and 
AutoDock Vina of 14.93 s. As indicated by the paired 
Student’s t-test (see Additional file  1: Table  S1), the 
speed improvements of the chaos-embedded methods 
over AutoDock Vina and PSOVina are very significant at 
α = 0.01 , achieving an average of five- to sixfold accelera-
tion, where sinusoidal seems slightly faster than Singer 

Fig. 3  Average run time (in seconds) versus number of ligand rotatable bonds
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at α = 0.05 . As the docking run time is proportional to 
the number of rotatable bonds of the ligand and the size 
of the receptor pocket, we further analyzed the median 
run time with respect to the number of ligand rotatable 
bonds using the DIV8 and NR11 datasets. As shown in 
Fig.  3 docking run time of chaos-embedded methods is 
only minimally affected by the increase of the number of 
torsions.

Conclusion
In this work, we explored the use of chaotic maps to 
enhance the search capability and speed in docking appli-
cations. Based on our previous version of PSOVina2LS , 
chaos-embedded docking algorithms of five popular 
chaotic maps were implemented. These algorithms were 
tested using four docking benchmark datasets for ligand 
pose prediction performance and two DUD-E subsets for 
virtual screening performance. The results of our analy-
sis showed that chaos-embedded methods are superior 
in terms of ligand pose RMSD and docking success rate. 
In particular, Singer-embedded PSOVina2LS gained a sig-
nificant five- to sixfold acceleration in virtual screening 
experiments with similar screening accuracies to Auto-
Dock Vina in terms of AUC-ROC and EF. Taken together, 
our results suggest that chaos-embedded PSOVina2LS 
methods might be better alternatives than AutoDock 
Vina in virtual screening. The success of chaotic maps in 
protein-ligand docking reveals their potential for improv-
ing optimization algorithms in other molecular con-
formational search problems, such as protein structure 
prediction and folding.

Additional file

Additional file 1.  Dynamical behaviors of chaotic maps, virtual screening 
results of the DUD-E NR11 subset, and statistical test results of virtual 
screening performances.
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