
Guha J Cheminform (2019) 11:12
https://doi.org/10.1186/s13321-019-0333-z

EDITORIAL

Implementing cheminformatics
Rajarshi Guha*

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Content
Computational characterization of chemical structures
originated before the advent of digital computers [1].
However, the ability to represent and manipulate large
collections of molecules and their associated information
was enabled by the rise of cheminformatics algorithms
and their implementions on digital computers. Willett
[2] has suggested the work of Ray and Kirsch [3] on sub-
structure searching as the first description of a computer
implementation (on punched cards) of a cheminformat-
ics algorithm.

Programming language research blossomed during the
1950’s and 60’s and saw the development of high level
programming languages (such as FORTRAN [4], LISP [5]
and ALGOL [6]). Cheminformatics research took advan-
tage of these efforts, to move beyond punched cards. One
of the earliest cheminformatics applications in a high
level language was DENDRAL [7], written in LISP in
1963 [8]

Since the 1960’s, a plethora of languages have come
into existence. Each language has its distinct features
(directly memory manipulation in C, code as data in LISP
[9], automated memory management in Java, lazy evalu-
ation [10] in Haskell), but useful features from one lan-
guage tend to show up in others (e.g., automated memory
management initially appeared in LISP, but is now found
in Java, Ruby, Python, C# and others). Furthermore, all
modern languages are Turing equivalent [11] (i.e., capa-
ble of performing any arbitrary computation). One might
then ask, what does it matter what language one uses to
implement cheminformatics?

A number of factors go into deciding what language
to use in a given setting. These include the suitability
for a specific task (web development versus statistical

modeling), prior knowledge of the language, the availabil-
ity of supporting tools & frameworks and their licensing
requirements and of course, performance.

A key consideration is the availability of external librar-
ies such as cheminformatics toolkits (e.g., CDK [12] or
JChem for Java applications). Many libraries (especially
those written in C or C++) can be wrapped and made
accessible to other languages (e.g., OpenBabel [13],
RDKit and OEChem which are written in C++ provide
SWIG wrappers enabling their use in Python and Java).
Finally, for many projects, the choice of language is dic-
tated by historical development (such as the use of For-
tran for much of scientific computing).

At a more fundamental level, there are different pro-
gramming models, which require conceptually different
approaches to designing an application. For example,
Khomtchouk et al. [14] suggest that the functional para-
digm is best suited for scientific software development.
On the other hand, Ray et al. [15] show that projects
using functional languages do not necessarily show bet-
ter software quality. One must consider others aspects,
ranging from performance issues to the availability of
programmers with sufficient skills to develop and then
maintain applications written in functional languages.
It is useful to note that some languages such as Scala
are a hybrid, supporting both functional and procedural
paradigms.

In this thematic series we have invited authors to pre-
sent their views on a variety of programming languages.
The series is rolling, and starts of with contributions from
Thiesen [16], Berenger [17], and Höck [18] discussing
JavaScript, OCaml and Scala respectively. We anticipate
contributions covering Scala, C/C++, Tcl and noSQL.

The intended audience for this series are practition-
ers of cheminformatics who are already familiar with
one programming language and would like to learn what
other languages may offer in terms of language features
and supported tooling.

Open Access

Journal of Cheminformatics

*Correspondence: rajarshi_guha@vrtx.com
Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA 02210, USA

http://orcid.org/0000-0001-7403-8819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0333-z&domain=pdf

Page 2 of 2Guha J Cheminform (2019) 11:12

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

We do not intend this to be a head to head comparison.
Rather, the contributions are structured to address one or
more of the following aspects

• How that language (or model of programming)
affects scientific software development

• How a language may enable the development of new
approaches to solving a problem in cheminformatics
or computational chemistry

• Specific approaches to overcome language limita-
tions when dealing with chemical of biological data
types

• Comments on performance and it’s relevance to the
languages goals

• Educational aspects of the language (is it easier for
newcomers?)

• Development environments and frameworks that
make a language easier to use and deploy (e.g., RStu-
dio for R and Jupyter notebooks for Python)

The goal of this issue is to highlight features of differ-
ent languages that the authors have employed to build
applications as well as their views on the benefits (and
downsides) of the language that has driven them to invest
effort in building capabilities in their chosen language.
We do not expect that this will identify any single lan-
guage as the “chosen one”. Rather, we hope that the arti-
cles in this issue will be a useful guide for the community
to assess which languages may be appropriate for their
next project.

Author’s contributions
RG conceived and designed the thematic issue and wrote this manuscript.
The author read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 6 December 2018 Accepted: 14 January 2019

References
 1. Wiener H (1947) Structural determination of paraffin boiling points. J Am

Chem Soc 69(11):2636–2638
 2. Willett P (2011) Chemoinformatics: a history. WIREs Comput Mol Sci

1(1):46–56
 3. Ray LC, Kirsch RA (1957) Finding chemical records by digital computers.

Science 126:814–819
 4. McJones P (2018) History of FORTRAN and FORTRAN II (2018). http://

www.softw arepr eserv ation .org/proje cts/FORTR AN Accessed Nov 2018
 5. Stoyan H (1984) Early lisp history (1956–1959). In: Proceedings of the

1984 ACM symposium on LISP and functional programming. LFP ’84, pp
299–310. ACM, New York. https ://doi.org/10.1145/80005 5.80204 7

 6. McJones P (2018) History of ALGOL (2018). http://www.softw arepr eserv
ation .org/proje cts/ALGOL /. Accessed Nov 2018

 7. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg JA (1993) DEN-
DRAL: a case study of the first expert system for scientific hypothesis
formation. Artif Intell 61(2):209–261

 8. Sutherland G (1963) Letter from Georgia Sutherland to R. Shirley. https ://
exhib its.stanf ord.edu/feige nbaum /catal og/qc171 fk540 6

 9. McIlroy D (1960) Macro instruction extensions of compiler languages.
Commun ACM 3(4):214–220

 10. Watt DA, Findlay W (2004) Programming language design concepts.
Wiley, Hoboken

 11. Brainerd WS, Landweber LH (1974) Theory of computation. Wiley,
Hoboken

 12. Willighagen EL, May JW, Alvarsson J, Berg A, Carlsson L, Duhrkop K, Jeliaz-
kova N, Kuhn S, Pluskal T, Rojas-Cherto M, Spjuth O, Torrance G, Evelo CT,
Guha R, Steinbeck C (2017) The chemistry development kit (cdk): atom
typing, rendering, molecular formulas, and substructure searching. J
Cheminform 9:33

 13. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison
GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33.
https ://doi.org/10.1186/1758-2946-3-33

 14. Khomtchouk BB, Weitz E, Karp PD, Wahlestedt C (2018) How the
strengths of lisp-family languages facilitate building complex and flexible
bioinformatics applications. Brief Bioinform 19(3):537–543. https ://doi.
org/10.1093/bib/bbw13 0

 15. Ray B, Posnett D, Devanbu P, Filkov V (2017) A large-scale study of
programming languages and code quality in github. Commun ACM
60(10):91–100

 16. Theisen KJ (2019) Programming languages in chemistry: a review
of HTML5/JavaScript. J Cheminform. https ://doi.org/10.1186/s1332
1-019-0331-1

 17. Berenger F, Zhang KYJ, Yamanishi Y (2019) Chemoinformatics and struc-
tural bioinformatics in OCaml. J Cheminform. https ://doi.org/10.1186/
s1332 1-019-0332-0

 18. Höck S, Riedl R (2012) chemf: a purely functional chemistry toolkit. J
Cheminform 4(1):38. https ://doi.org/10.1186/1758-2946-4-38

http://www.softwarepreservation.org/projects/FORTRAN
http://www.softwarepreservation.org/projects/FORTRAN
https://doi.org/10.1145/800055.802047
http://www.softwarepreservation.org/projects/ALGOL/
http://www.softwarepreservation.org/projects/ALGOL/
https://exhibits.stanford.edu/feigenbaum/catalog/qc171fk5406
https://exhibits.stanford.edu/feigenbaum/catalog/qc171fk5406
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1093/bib/bbw130
https://doi.org/10.1093/bib/bbw130
https://doi.org/10.1186/s13321-019-0331-1
https://doi.org/10.1186/s13321-019-0331-1
https://doi.org/10.1186/s13321-019-0332-0
https://doi.org/10.1186/s13321-019-0332-0
https://doi.org/10.1186/1758-2946-4-38

	Implementing cheminformatics
	Content
	Author’s contributions
	References

