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Abstract 

Docking is commonly used in drug discovery to predict how ligand binds to protein target. Best programs are gener-
ally able to generate a correct solution, yet often fail to identify it. In the case of drug-like molecules, the correct and 
incorrect poses can be sorted by similarity to the crystallographic structure of the protein in complex with refer-
ence ligands. Fragments are particularly sensitive to scoring problems because they are weak ligands which form 
few interactions with protein. In the present study, we assessed the utility of binding mode information in fragment 
pose prediction. We compared three approaches: interaction fingerprints, 3D-matching of interaction patterns and 
3D-matching of shapes. We prepared a test set composed of high-quality structures of the Protein Data Bank. We gen-
erated and evaluated the docking poses of 586 fragment/protein complexes. We observed that the best approach 
is twice as accurate as the native scoring function, and that post-processing is less effective for smaller fragments. 
Interestingly, fragments and drug-like molecules both proved to be useful references. In the discussion, we suggest 
the best conditions for a successful pose prediction with the three approaches.
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Introduction
Fragment-based screening approaches have emerged 
as effective and complementary alternatives to high 
throughput screening (HTS), opening new avenues for 
drug design [1]. A recent survey of fragment literature 
has outlined the growing interplay between industry and 
academia as well as between pharmaceutical sciences, 
chemistry, biology, physics and computing [2]. Computa-
tional approaches have a special place, as they have been 
pioneers in the mapping of sites by very small molecules 
[3, 4]. Methods developed to predict binding of a ligand 
to a target protein constitute a cost-effective way to virtu-
ally screen large chemical libraries. In addition they are 
not limited to the previously synthesized molecules, thus 
presenting the advantage of enabling the screening of 
new chemotypes [5].

Molecular docking is a method of choice for the search 
for original hit compounds. For example, in a discovery 

effort of the A2A adenosine receptor, virtual screening 
provided new fragments although many ligands were 
already reported for this target protein [6]. Other recent 
successful fragment-based drug discovery programs 
showed the successful contribution of docking to the 
design of fragment inhibitors of enzymes [7, 8]. Docking 
can also assist the growing of fragment hits by predict-
ing binding pose of the proposed compounds [9–11]. An 
accurate binding pose model is of prime importance to 
these two applications of the docking method.

Molecular docking can be thought of two separate but 
related phases. First is the “sampling” phase where the 3D 
pose of the ligand into the protein receptor is explored. 
Typically, many hundreds or thousands of potential poses 
are sampled. Phase two is the “scoring” phase in which a 
scoring function is used to order the sampled poses and 
ultimately produce the top set of predicted poses and 
their scores. These phases are interrelated, since the scor-
ing function is also used to drive the sampling, but can be 
thought of as two separate problems. Docking programs 
typically generate multiple possible ligand poses with an 
associated score, but identifying the correct binding pose 
out of the set of possibilities is still an issue. In a recent 
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example of fragment-based drug discovery, docking 
poses used to guide the design of PIM-1 kinase inhibitors 
have not been validated by X-ray crystallography (the 
predicted polar interactions were correct, but hydropho-
bic different contacts were different) [12].

Benchmarking studies have demonstrated that the use 
of experimental information on binding mode improves 
pose prediction of drug-like ligands [13–18]. Recent 
docking challenges revealed that experimental 3D-struc-
tures of ligand–protein complexes are widely used to 
re-rank docking solutions [19, 20]. For example, the par-
ticipants of Drug Design Data Resource (D3R) Grand 
Challenge had to blindly predict the conformation of 36 
drug-like ligands bound the farnesoid X receptor. Sev-
eral participants scored poses by similarity to reference 
3D-structures which were 3D-aligned based on shape, 
pharmacophoric features, or the interactions made 
between the ligand and the protein. Half of them made 
overall good predictions, with an average RMSD com-
puted between the native and predicted poses of ~ 3 Å.

Scoring by similarity is fast but requires the 
3D-structures of reference complexes. The power 
of the approach depends on the coverage of protein 

interactions by the reference molecules, and therefore 
it is desirable that the ensemble of reference molecules 
provides a comprehensive description of interactions 
made by the protein. Our recent analysis of the Protein 
Data Bank (PDB) suggested that fully mapping a pocket 
is achieved by nine different fragments or nine different 
drug-like ligands [21].

Here, we explore the rescoring performance on frag-
ment pose prediction of three rescoring approaches 
based on the 3D-structure of  reference complexes: 
similarity of interaction fingerprints (IFP) [22], graph 
matching of interaction patterns (GRIM) [23] and rapid 
overlay of chemical structures (ROCS) [24] according 
to shape and pharmacophoric properties. We searched 
the PDB for proteins crystallized with both fragments 
and ligands. For every fragment, we performed all pos-
sible cross-dockings into its target protein site. Poses 
were rescored using structural information on all the 
other fragments and drug-like ligands of this pro-
tein site. Solutions were evaluated by considering the 
deviation to  the native pose (Fig.  1). In analysing the 
benchmarking results, we aim to answer the following 
questions: 

Fig. 1  General protocol of pose prediction and its evaluation
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•	 Do the three methods have comparable performance 
levels (as measured by the deviation to the crystallo-
graphic structure coordinates)?

•	 Are the fragments more appropriate references than 
drug-like ligands?

•	 Are molecules chemically similar to the docked frag-
ment better references?

Experimental section
Selection of PDB files
We defined a fragment as an organic molecule which is 
small but not a crystallization additive (such as buffer or 
precipitant). Size selection rules were a molecular weight 
(MW) below 300  Da and a number of non-hydrogen 
atoms between 2 and 18. We looked for drug-like ligands 
in the sc-PDB [25], keeping only those which follow the 
Rule of 5 [26] with up to one exception and which are 
heavier than fragments (MW > 300  Da). In a previous 
exploration of the publicly available data from the RCSB 
PDB web site, we retrieved 235 proteins in complex with 
at least one fragment and one drug-like ligand [21]. Only 
high quality 3D-structures were considered: resolu-
tion ≤ 3 Å; deposition date > 2000 and < 2016; no mutated, 
incomplete or missing residues in the protein binding 
site; no incomplete ligands; good fit of electron den-
sity map to the ligand and protein site structures using 
EDIAscorer v1.0 (median EDIA ≥ 0.8) [27]. In this study, 
we retained the proteins described by at least 3 PDB files 
representing three different complexes involving the 
same site.

Protein and ligand preparation
3D-structures were downloaded from the RCSB PDB 
web site [28] and prepared as previously described [21]. 
The complexes were automatically protonated using Pro-
toss v2.0 [29]. Importantly, water or cofactor molecules 
were not preserved in the protein site. In addition, all 
structures of the same protein were 3D-aligned to a refer-
ence structure using CE [30]. The reference protein struc-
ture was chosen as the centroid according to binding 
site similarity. Proteins and small molecules were saved 
in separate MOL2 files. A binding site includes all resi-
dues having at least one atom at less than 6.5 Å around 
the bound ligands. Here, we considered a consensus site 
where each residue is present in the binding site of at 
least 10% of its PDB complexes (more details in [21]).

If multiple structures were available for the same frag-
ment within the same protein site (if the PDB file con-
tains several biounits or if the same complex is described 
in two PDB files), different bound conformations were 
picked according to the root mean square deviation 
(RMSD) of the non-hydrogen atoms coordinates. In 

detail, duplicate fragments were identified by comparing 
canonical SMILES strings generated using the OpenEye 
Python2.7 API version 2017.Oct.1 (OpenEye Scientific 
Software, Santa Fe, NM. http://www.eyeso​pen.com). 
RMSD values were computed on non-hydrogen atom 
coordinates using Surflex-dock v3066 [31]. Conforma-
tions were distinguished using a hierarchical clustering 
(average linkage) based on the RMSD values with a 0.5 
Å cut-off. The same clustering procedure was applied to 
drug-like ligands to keep only diverse conformations of a 
drug-like ligand within a protein site. Importantly, a sin-
gle conformation was used as docking input. It was cho-
sen as the most representative structure (i.e., the cluster 
center).

Docking of fragments
Docking was performed with the PLANTS v1.2 program 
using the ChemPLP scoring function and the search 
speed 1 (highest accuracy) [32]. PLANTS is based on an 
ant colony algorithm to optimize the placement and the 
conformation of ligand as well as the positions of the pro-
tein hydrogen atoms that form hydrogen bonds with the 
ligand. PLANTS explores possible torsion angle values of 
the ligand but does not modify the conformation of rings.

The cavity center of a protein site was defined from the 
centroid of all the fragments and drug-like ligands bound 
to this protein. The cavity radius was set as the maximum 
distance between the cavity center and the atoms of all 
the ligands crystallized in the binding site (fragments and 
ligands), plus 2  Å. On average, the radius was equal to 
11.2 Å. Ten poses were saved per docking run.

The input conformation of docked fragment came from 
the crystal structure of a parent complex (see the above 
paragraph for the selection of coordinates when the frag-
ment is present in more than one complexes). Of note, 
PLANTS “sampling” performances were not changed if 
fragment structures were generated ab initio (Additional 
file 1: Figure S1). The docking of a fragment into its pro-
tein site was repeated in all the structures of this protein 
(≥ 3 structures per protein site, see the above mentioned 
selection rules).

Rescoring
Each docking pose was then rescored using the IFP, 
GRIM and ROCS methods which are described below.

IFPs are bitstrings which encode the binding mode 
of a ligand to its protein site (Fig.  2a). Every site resi-
due defines a substring of the fingerprint where each 
bit represents a different interaction type (hydropho-
bic contact, hydrogen bond, ionic bond, face-to-face π 
stacking, face-to-edge π stacking, π-cation, and metal 
interaction) and “1” means that the interaction is 
detected between the ligand and the residue. Substrings 

http://www.eyesopen.com
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are ordered according to site residues numbering. If a 
protein contains one or more metal cofactors, we con-
sider as many metal residues as different coordination 
spheres in the crystallographic structures of the pro-
tein. The similarity between two IFPs is evaluated with 
the Tanimoto coefficient. In this study, we ensured that 
polar interactions contribute to similarity by nullifying 
it if the Tanimoto coefficient computed on polar inter-
actions only was < 0.2. IFPs were generated using IChem 
v5.2.9 with an extended representation (-extended) and 
the maximum π–π interaction threshold set to 5.0 Å.

In the GRIM approach, the binding mode of a ligand 
to its protein is encoded into Interaction Pseudo Atoms 
(IPA, Fig. 2b). Each interaction is represented by a triplet 
of IPA: the first is located on the protein atom, the second 

on the ligand atom and the third in the middle of the 
interaction. IPA are labelled by interaction type (hydro-
phobic contact, hydrogen bond, ionic bond, face-to-face 
π stacking, face-to-edge π stacking and metal interac-
tion). The similarity between two IPA maps is deduced 
from their graph alignment matching (only identical 
IPAs are paired). In this study, we checked that at least 
four IPA pairs, including at least a polar one, superim-
pose. If the condition was not fulfilled, the similarity was 
nullified. IPA were generated using the ints module in 
IChem v5.2.9. All hydrophobic points were considered 
(-noMerge option) and the maximum π–π interaction 
distance was set to 5.0 Å. The similarity was computed 
using the grim module of IChem v5.2.9 (default settings).

Fig. 2  Overview of the rescoring methods. IFP Tc denotes Tanimoto coefficient. In the GRIM score Nlig is the number of aligned ligand points, 
Ncenter the number of aligned centered points, Nprot the number of aligned protein points, SumCl the sum of clique weights over all weights, RMSD 
the root-mean square deviation of the matched clique and DiffI the difference between the number of interaction points in the query and the 
reference. ROCS score is based on Tversky coefficient
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Last, docking poses were rescored using ROCS v3.2.0.4 
(OpenEye Scientific Software, Santa Fe, NM. http://www.
eyeso​pen.com), which evaluates the overlap of shape and 
pharmacophore features (-scoreonly option) (Fig.  2c). 
The pharmacophore features are described in the Implicit 
Mills Dean color force field files and include hydrogen-
bond donors, hydrogen-bond acceptors, anions, cations 
and hydrophobic groups. Similarity was measured using 
the Tversky combo score, with α = 0.95 on the docking 
pose and β = 0.05 on the reference crystal structure.

Results
Description of the benchmark set
We selected from the PDB 2376 high-quality structures 
representing 64 proteins which accommodate both frag-
ments and drug-like ligands within the same ligandable 
cavity. On average, there are 10.3 fragments (2 to 110 
HET codes) and 13.3 drug-like ligands (1 to 136 by HET 
codes) per protein (Fig. 3a, Additional file 1: Table S1). A 
total of four proteins have been crystallized with more 
than 50 different small molecules. Cyclin-dependent 
kinase (P24941), Carbonic Anhydrase (P00918), Beta-
secretase (P56817) and Heat shock protein HSP 90-alpha 
(P07900) show the highest number of molecules (156, 
155, 152 and 106 respectively).

For most of the proteins, the fragments constitute a 
diverse set of chemical structures. The median Tanimoto 
index computed on ECFP4 fingerprints is lower than 
0.3 for 93% of fragments pairs (Fig.  3b). The similarity 
between the fragments and drug-like ligands is also low 
(median ECFP4 Tc < 0.3 for 90.6% of pairs). Nevertheless, 
18% of the fragments are highly similar to another one 
(max ECFP4 Tc > 0.6). This proportion increases to 20% 
when considering fragment/drug-like pairs.

The 64 proteins cover a wide range of activities with 
18 transferases, 16 hydrolases, 10 oxidoreductases, three 
ligases, two receptors, two ion channels, two isomer-
ases,  two activators, one chaperone, one chromatin reg-
ulator, one toxin, one signal transduction inhibitor, one 
lyase and  four miscellaneous proteins (Additional file  1: 
Table S1). Binding sites are of various size and composi-
tion (Fig. 3c). The number of residues ranges from 25 for 
the smallest site in the bromodomain-containing protein 
4 to 78 for the largest site in the β-1 adrenergic receptor. 
The majority of sites expose both  hydrophobic and polar 
groups to  the protein surface (median hydrophobic-
ity equal to 36%). The most hydrophobic site is found in 
the oestrogen receptor β, whereas the most polar site is 
found in the methionine aminopeptidase.

Binding sites are mostly rigid (Fig. 3c). The RMSD com-
puted on all non-hydrogen atoms of the amino acids in 
the binding site is lower than 1.0 Å in about three quar-
ters of the 3D-structures pairs. Only one site shows 

an important variation of the backbone conformation. 
This is  the metallothionein-2 with a maximal RMSD 
computed on Cα atoms of 2.4  Å. For the sake of com-
parison, the second most flexible protein in the set  (the 
ketohexokinase) shows a maximal RMSD computed on 
Cα atoms of 1.5 Å (1.7 Å if all non-hydrogen atoms are 
considered).

Quality and diversity of the docking poses
For all the 586 fragment/protein complexes, the crystal-
lographic structure of the fragment was docked into all 
the structures of the protein except that of the native 
crystal complex (non-native or cross-docking). The num-
ber of poses generated for a fragment ranges from 20 
to 1400 depending on the number of protein site struc-
tures. In about one third of the fragment/protein com-
plexes studied, a docking solution close to the native 
pose is ranked first by the ChemPLP scoring function 
(First pose in Fig.  4a). More precisely,  in 64% of com-
plexes, the RMSD between the docked and native poses 
is above the 2  Å threshold which is commonly used to 
evaluate docking accuracy. Nevertheless, a correct dock-
ing solution is found in almost all ensembles of poses 
(see Best pose in Fig. 4a), indicating that the problem is 
not the “sampling” phase of the docking, it is the “scor-
ing” phase. Good poses are being produced, but they are 
not being identified by the scoring function. We distin-
guished three rescoring scenarios. In the first one, the 
scoring function generally selects a correct solution and 
thus rescoring is useless. In the second one, by contrast, 
most of the docking solutions are wrong and thus rescor-
ing exercise is hardly possible. The third scenario corre-
sponds to the most interesting cases, where the correct 
docking pose is predicted in the ensemble of poses (20 to 
1400, depending on the number of protein input struc-
tures), but it is not the top scored pose. We defined that 
a protein site experiences the first scenario if the scoring 
function retrieves a correct top  scored pose for 50% or 
more of the fragments and that it experiences the second 
scenario if 50% or less of the fragments show a minimal 
RMSD < 2 Å. About one half of the proteins do not meet 
these two definitions. These 35 proteins correspond to 
389 fragments. Their docking yielded scoring issues in 
about 80% of the pose predictions (Compare First and 
Best in Fig. 4b). By comparison, in the 24 proteins in sce-
nario 1, the native scoring function ChemPLP retrieves 
a correct top scored pose for more than 80% of the pose 
predictions (Additional file  1: Figure S2A). Conversely, 
virtually no correct poses are selected for the 5 proteins 
in scenario 2, where docking failures predominate (no 
correct solutions at all for a majority of fragments, Addi-
tional file 1: Figure S2B).

http://www.eyesopen.com
http://www.eyesopen.com
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Fig. 3  Description of the dataset. a Number of fragments and drug-like ligands HET codes per protein. The figure on the right zooms to the most 
populated area of the figure on the lower-left. b Molecular diversity of protein ligands. For every protein, ligands are compared with each other 
(D–D), fragments are compared to each other (F–F) and fragments are compared to drug-like ligands and fragments (F-DF). The distribution of 
similarity values is given for all pairs (left) and  considering the maximal value only (right). c Properties of protein sites. From left to right: number 
of residues (N residues), relative hydrophobicity (Hydrophobicity), structure variations in the backbone (Cα RMSD) and structure variations in the 
backbone and the side chains (All atom RMSD). Distributions are shown for the complete set of structures. Boxplot whiskers represent the 1st and 
the 9th deciles
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Rescoring with IFP, GRIM and ROCS
Comparative evaluation of the methods
The three rescoring methods improved the pose predic-
tion of fragments, however, with variations in the level 
of improvement (Fig. 4). On the whole dataset, IFP per-
forms better than ChemPLP in pose ranking. When con-
sidering the  top ChemPLP score, the RMSD between 
the docked pose and the native pose is lower than 2  Å 
in 37% of docking experiments. This value reaches 44 
to 46% if the docked pose is selected based on IFP Tc 
rank. IFP shows better performance on the 35 proteins 
with frequent scoring issues (scenario 3). In those cases, 
the proportion of good poses selected by IFP is  twice 
higher than that selected by ChemPLP. By contrast, IFP 
deteriorates fragment pose prediction in the 24 pro-
teins of scenario 1 (Additional file 1: Figure S2A). GRIM 
is more efficient than IFP on both the entire set and the 
35 proteins with frequent scoring issues, by enabling the 
retrieval of good poses in 9% to 18% additional cases, 
depending on the reference molecule type (see below). In 

addition, GRIM is able to perform as well as ChemPLP 
in scenario 1. The best results are obtained using ROCS, 
which yields a success rate exceeding 60% on the entire 
dataset. Interestingly, the same success rate is obtained 
with the combo-Tc and combo-Tv scores, suggesting that 
ROCS rescoring performance is not affected by size dif-
ferences between the docked and the reference molecules 
(Additional file  1: Figure S3). By contrast, IFP rescoring 
performance is slightly decreased when the Tversky coef-
ficient is used instead of the Tanimoto coefficient (Addi-
tional file 1: Figure S3).

Reference molecules type
Independent of the method, we observed that rescor-
ing is more efficient if the reference molecules are frag-
ments (Compare F and D in Fig. 4 and Additional file 1: 
Figure S2). The success rates obtained with the reference 
drug-like ligands are 5% to 15% lower. Combining the 
two reference sets yields the best performance of GRIM 
and ROCS, but not IFP. GRIM uses both fragment and 

Fig. 4  IFP, GRIM and ROCS performance in pose prediction. The proportion of correct predictions is based on the RMSD between the predicted and 
native poses of fragment, considering five threshold values. Proportions are calculated by considering a single pose within the ensemble generated 
for a complex, as follows: First denotes the top scored pose; Best denotes the closest to the native pose; D, F and DF denote the poses selected 
by comparison to, respectively, reference drug-like ligands, reference fragments and both. a All protein sites. b The 35 protein sites with frequent 
scoring issues (scenario 3)
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drug-like ligand references to select the best docking 
solution (Fig.  5). A similar trend is found when using 
ROCS with the Tv-combo score while ROCS maximal 
Tc-combo score almost exclusively picks fragment ref-
erences. Overall, the chemical similarity between the 
docked fragment and the reference molecule used to pre-
dict the best pose is slightly higher when using ROCS Tv-
combo than when using GRIM (Fig. 6). GRIM especially 
picks a higher proportion of dissimilar references (35% 
vs. 25% of pairs with TvECFP4 < 0.3). 

Reference molecules diversity
Are the reference molecules which are chemically simi-
lar to docked fragments more suitable for rescoring? 
Both GRIM and ROCS tend to select a correct pose 
when the similarity between the docked fragment and 
the picked reference molecule is high (TvECFP4 > 0.6, 
Fig.  6 and Additional file  1: Figure S4). However, we 
observed several rescoring failures. One example is the 
docking of 2-Amino-1,2,3,4-tetrahydronaphthalen-1-ol 
in phenylethanolamine N-methyltransferase. The pose 
selected by ChemPLP is more accurate than the one 
selected by GRIM (Fig. 7a). In both cases, the similarity 
between the fragment and reference molecule is maximal 
(TvECFP4 = 1.00), however, they are stereoisomers and 
therefore their 3D-structures do not superimpose [33]. 
Another example of a rescoring failure is the docking of 
3-phenyl-5-(1H-pyrazol-3-yl)isoxazole in hematopoi-
etic prostaglandin D synthase (Fig. 7b). The ROCS pose 
superimposes on the native pose, yet head to tail. The 
native pose shows only one directional interaction, an 
aromatic interaction between the fragment central isoxa-
zole ring and a tryptophan. The reference molecule also 

stacks onto the tryptophan via its phenyl ring, and forms 
an additional directional interaction, a hydrogen bond 
between the pyrazole group and a tyrosine. The docked 
fragment contains a pyrazole group too, however it does 
not form a polar interaction with the protein.

The number of rescoring failures only slightly increases 
when the similarity between the docked fragment and 
the picked reference molecule decreases. But, most 
importantly, the number of rescoring successes is about 
twice higher than the number of rescoring failures when 
the picked reference structure and docked fragment are 
dissimilar (TvECFP4 < 0.3 on Fig. 6 and Additional file 1: 
Figure S4). In the example shown on Fig.  7c, the native 
and GRIM poses of the N-(phenylcarbonyl)-beta-alanine 
as well as that of the drug-like ligand UBTLN26 used 
as GRIM reference make the same polar interactions 
with the thermolysin binding site despite a limited over-
lap of the fragment and drug-like ligand atoms.

Discussion
IFP, GRIM or ROCS, what is the best choice?
In this benchmark exercise, we compared the perfor-
mance of interaction fingerprints (IFP), interaction 
graphs (GRIM) and shape comparisons (ROCS). Statis-
tics on the success rate in pose prediction suggest that 
the IFP method shows inferior performance than GRIM, 
which in turn is inferior to ROCS. This ranking coin-
cides with the granularity of the encoding of the struc-
tural information used for the rescoring. IFP are based on 
the comparison of binding modes, but do not encode the 
geometry of interactions, nor their arrangement in space. 
In addition, the encoding per residue does not capture 
the number of interactions of the same type being estab-
lished between the ligand and a protein residue. Like IFP, 
GRIM is based on the interactions between the ligand 
and the protein, but with a detailed encoding of their 
position  and geometry. Moreover, GRIM is able  to find 
the same  motif   in two different binding modes while 
tolerating variations in the position of the protein atoms 
involved in the common  interactions. ROCS uses only 
the information provided by the ligand atoms and there-
fore does not explicitly encode the interactions made 
with the protein. Nevertheless, the superposition of 
the  pharmacophoric properties  of the docked fragment 
and the reference molecule implies not only that interac-
tions of the same type are formed, but also that the ligand 
atoms involved in these interactions occupy strictly the 
same position in the protein site.

The three rescoring approaches have different strengths 
and weaknesses, and are therefore not necessarily appli-
cable in the same situations. IFP requires consistent 
numbering of residues in all the  protein structures, 
precluding comparison of binding modes involving 

Fig. 5  Type of reference molecules picked by GRIM and ROCS 
Tv-combo. D and F denote drug-like ligand and fragment, 
respectively
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incomplete or mutated binding sites. However, IFP is the 
fastest of those three methods. Moreover, IFP also has 
the advantage of being able to find the interactions which 
are conserved when the protein undergoes important 

conformational changes. It is important to note that in 
the work described here, this situation does not occur. 
On the other hand, GRIM allows the comparison of any 
complexes, including mutated or even homologous pro-
teins. Again, this has not been investigated here. ROCS 
is the most restrictive method since all the reference 
complexes have to be 3D-aligned onto the input protein 
structure before rescoring. The quality of the alignment 
determines the rescoring efficiency, so that the approach 
is more suitable for rigid sites.

Rescoring success and protein‑fragment complex 
properties
Although IFP, GRIM as well as ROCS were able to 
recover the correct pose in a docking pose ensemble in 
many cases, rescoring failures also occurred. We thus 
wondered whether the rescoring performance depends 
on the physico-chemical properties of the fragment and 
protein binding site. Firstly, the performance of IFP, 
GRIM and ROCS are the same on the flexible and rigid 
binding sites. All the three methods are thus able to pick 
the correct pose in the appropriate protein conforma-
tion. The data also do not  show a  relationship between 
rescoring performance and the size of the binding site, or 
its surface polarity. By contrast, rescoring performance 
seems to change with fragment size. GRIM scoring accu-
racy increases when the fragment number of  non-hydro-
gen atoms increases but the variation is not significant 
(Fig.  8a, left panel and Additional file  1: Table  S2A). In 
addition, this trend diminishes when the scoring accu-
racy is adjusted by considering docking accuracy (Fig. 8a, 
central panel), i.e., when correcting the increase of 
RMSD between the native and the docking poses for the 
increase of the proportion of correct poses in the docking 
ensemble (Fig. 8a, right panel). Focusing on the number 
of nitrogen and oxygen atoms which approximates the 
maximal number of  hydrogen bonds the fragment can 
form with the protein site, we found that GRIM rescor-
ing success rate is significantly lower if fragments contain 
only one or two nitrogen and/or oxygen atoms (Fig.  8b 
and Additional file 1: Table S2A). The proportion of cor-
rect poses is nearly one third smaller as compared to 
that of fragments containing three or more nitrogen and 
oxygen atoms. The same trend is observed using ROCS 

Fig. 6  Rescoring performance versus chemical similarity between 
the fragment and the reference molecule. a GRIM. b ROCS Tv-combo. 
RMSD is computed between the predicted and native poses of a 
fragment. Chemical similarity between the docked fragment and 
the reference molecule is evaluated using ECFP4 Tversky similarity 
(α = 0.95 on the docking pose and β = 0.05 on the reference). Colors 
indicate whether rescoring improves (green), worsens (red) or has 
no effects on pose prediction (grey), as compared to ChemPLP and 
considering that docking is successful if RMSD < 2 Å)

Fig. 7  Examples of rescoring failures and successes. On the left: the docked fragment (green) and the reference molecule (magenta). On the right: 
comparison of the native pose (transparent cyan sticks), the pose selected by rescoring (green) and that of the corresponding reference (magenta). 
a Docking of 2-Amino-1,2,3,4-tetrahydronaphthalen-1-ol (HET ID: TTL, PDB ID: 2AN5) in the phenylethanolamine N-methyltransferase (P11086; PDB 
ID: 3KQT). GRIM rescoring uses a fragment reference (HET ID: CTL; PDB ID: 2AN3). b Docking of 3-phenyl-5-(1H-pyrazol-3-yl)isoxazole (HET ID: D25; 
PDB ID: 2VCQ) in the hematopoietic prostaglandin D synthase (O60760; PDB ID: 2VCZ). ROCS rescoring uses a fragment reference (HET ID: VC3; PDB 
ID: 2VCZ). c Docking of N-(phenylcarbonyl)-beta-alanine (HET ID: BYA; PDB ID: 3FGD) in the thermolysin (P00800; PDB ID: 4H57). GRIM rescoring uses 
a drug-like ligand reference (HET ID: UBT; PDB ID: 3T8G)

(See figure on next page.)
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(Additional file 1: Figure S5 and Table S2B) but not using 
IFP, whose results seems to be independent of the frag-
ment size (Additional file 1: Figure S6 and Table S2C).

A high‑quality benchmarking set for fragment docking
Since the first comparisons of docking methods in the 
early 2000 [34, 35], benchmarking studies have regu-
larly been published in the literature. Both pose predic-
tion and virtual screening are generally discussed, with 
a focus on the scoring issue or on new developments 

such as flexible or covalent docking [36, 37]. Several 
studies have also aimed at providing guidelines for fair 
benchmarking, suggesting good practices in the design 
of benchmarking datasets and in data analysis [38–40]. 
Crystallographic structure quality is commonly accepted 
as an essential criterion, especially in pose prediction. 
Here, we verified the integrity of the fragment (or drug-
like ligand) as well as any residues of its binding site. We 
validated the quality of the crystallographic structures 
by scoring the fit between electronic density and ligand 

Fig. 8  GRIM rescoring performance versus fragment properties. The reference molecules include both fragments and drug-like molecules (DF). 
Numbers in red indicate the number of fragments in the interval. The scoring performance is evaluated with the RMSD between the native and 
the docking poses (GRIM, left). This RMSD is corrected for the increase of the proportion of correct poses in the docking ensemble (GRIM weighted, 
center). This proportion is evaluated with the RMSD between the native pose and the best docking pose (Best, right). a Non-hydrogen atom count. 
b Oxygen and nitrogen atom count
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structure. Noteworthy, GRIM and ROCS rescoring per-
formance are hardly modified if low quality structures are 
not discarded from the reference dataset (Fig.  9a), sug-
gesting that incomplete or approximate information on 
binding mode may be enough to guide pose selection.

The Astex diverse dataset [41] is a standard in pose 
prediction benchmarking. The 85 complexes between 
drug-like molecules and pharmaceutically relevant pro-
tein targets which constitute the dataset have been rig-
orously selected, and the match of atom coordinates and 
electron density was validated manually. In our dataset, 
which contains 30 times more structures, the structures 
of the native complexes of the docked fragments also 
passed quality filters, yet the match of atom coordinates 

and electron density has not been verified manually. 
The overlap between the two datasets is small. There 
are eleven common proteins, including five in complex 
with fragment (Additional file 1: Table S3). Similarly, the 
blind pose prediction cases proposed by CSAR and D3R 
challenges are different from those in our benchmarking 
dataset [19, 20, 42–45]. There are respectively only 27 
and 7 common PDB entries (Additional file 1: Tables S4 
and S5).

One strength of the present dataset lies in the mul-
tiple structures that are available for a protein, thereby 
allowing both the study of native docking and cross-
docking. In native docking, or redocking,  the input 
conformations of the ligand and  the site come from the 

Fig. 9  Variation of GRIM performance in pose prediction. The proportion of correct poses is based on the RMSD between the native and the 
docked poses of the fragment, considering five threshold values. Poses were selected by comparison to reference drug-like ligands and fragments 
(DF). a Filtering of low quality poses. Pose selection using the reference dataset before filtering with EDIA score (All, 832 docked fragments, 2082 
reference molecules) and after filtering with EDIA score (Filt, 586 docked fragments, 1529 reference molecules). Filt is the dataset described in this 
study. b Native docking (Native) is compared to cross-docking using all the structures of the protein site (Cross) or only its representative structure 
(Ref)
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same PDB structure. Cross-docking uses input from dif-
ferent sources, and thus better reproduces conditions of 
prospective drug discovery investigations. Here, native 
docking of the fragment outperformed cross-docking 
considering a single protein structure (Fig.  9b), even if 
this structure is representative of the conformational 
ensemble and if the protein site is relatively rigid (Fig. 3c). 
Considering all the structures of protein brings the per-
formance level of cross-docking back to that of native 
docking (Fig.  9b). Noteworthy, the standardization of 
inputs ensured that the protein structures are compa-
rable, with identical residues in the binding site. Only 
amino acids and metal cofactors were included. Non-
metal cofactor, other bound molecules and tightly bound 
water molecules were removed from structures. The 
absence of bound water in binding sites may be critical 
in docking [46]. We verified that it did not cause docking 
failures. In about half of the 32 cases where no correct 
poses were produced, interactions between the frag-
ment and another ligand bound to the protein site were 
observed in the native complex.

Fragments with multiple poses
Is a fragment binding pose unique? The development of 
the first approved fragment-based drug (vemurafenib) 
provides a first negative answer. The lead fragment 
7-azaindole indeed showed multiple binding modes when 
crystallized in the ATP-binding site of the Pim-1 kinase 

[47]. Our recent analysis of the PDB identified about 100 
fragments with multiple binding modes when consider-
ing a RMSD between two poses > 0.5 Å [21]. Low struc-
tural accuracy, conformational variation of fragments 
and changes in the protein environment in different crys-
tal conditions explained many but not all examples of 
multiple binding modes, suggesting that more than a sin-
gle pose may be relevant for fragment-based drug design 
[21].

In the docking benchmark set presented here, we dis-
tinguished the different native poses of a fragment by 
hierarchical clustering based on RMSD with a 1.0  Å 
cut-off. We identified only six fragments with multiple 
binding modes (Additional file  1: Table  S6). We evalu-
ated whether docking solutions comprise all the native 
poses, considering that a docking pose correctly predicts 
a native pose if the RMSD computed from their atomic 
coordinates is smaller than 1.0  Å. Unfortunately, the 
docking program failed to generate more than one cor-
rect pose for all but one fragment. Docking failures were 
most likely due to incorrect placement in absence of an 
organic cofactor, which were not included in the protein 
site. The only useful example is that of the CK2 fragment 
in the cyclin-dependent kinase 2 (CDK2). Many CDK2 
structures are present in the dataset, and therefore, are 
used for docking, providing a total of 2040 CK2 poses. 
GRIM and ROCS placed solutions close to the two native 
poses among the six and seven top  scored solutions, 

Fig. 10  Multiple poses of CK2 within the cyclin-dependent kinase 2. Crystallographic structures revealed two binding modes in the protein site 
(Uniprot: P24941). The crystallographic poses are represented with transparent cyan sticks (PDB 1PXJ and 2C5O). In green are shown the top ranked 
correct poses (RMSD to the native pose < 1.0 Å). In grey are shown the top ranked incorrect poses. a The six best poses according to GRIM ranking. b 
The seven best poses according to ROCS ranking
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respectively (Fig. 10). In addition, ROCS ranked first the 
most representative native pose and proposed in the top 
of the list only solutions which are all close to the two 
native poses. By contrast, GRIM ranked only sixth the 
most representative native pose of CDK2 and suggested 
a various panel of binding modes (Fig. 10a). Noteworthy, 
the CK2 fragment was crystallized in the active and inac-
tive forms of the protein, adopting two binding modes 
in the two protein conformations (PDB 2C50 and 1PXJ). 
The conformational changes in CDK2 are among the 
largest observed for all the proteins in the dataset (site 
RMSD Cα = 1.89 Å, site RMSD all = 2.71 Å). Remarkably, 
ROCS paired the “active” native pose with a site structure 
in the active form (2C5O and 3PXY, RMSD Cα = 0.73 Å) 
and the “inactive” native pose with a site structure in the 
inactive form (1PJX and 1H1R, RMSD Cα = 0.32 Å). By 
contrast, GRIM retrieved the two native poses in inactive 
forms of the site (PDB 2XNB and 1H1R).

Conclusions
Interactions with the protein have already been con-
sidered in successful virtual screening campaigns. For 
example, hit rates of about 10% have been obtained in 
the search for human bromodomains inhibitors [48]. 
Here we demonstrated that binding mode information 
improves fragment pose prediction. Rescoring using the 
3D-approaches GRIM and ROCS was more efficient than 
IFP rescoring based on 2D-fingerprints. Both fragments 
and drug-like ligands were suitable reference molecules. 
Importantly, GRIM and ROCS yielded successful rescor-
ing when the docked fragment and reference molecules 
are structurally dissimilar. We also observed that rescor-
ing performance tends to increase when the number of 
atoms, and more especially oxygen and nitrogen atoms, 
increases. A strong point common to all the three meth-
ods is the speed of calculation, which allows a large num-
ber of poses to be processed. We exploited this advantage 
to rank the poses obtained for docking a fragment in 
multiple conformations of the target protein site.
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