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Abstract 

Analysis of compound–protein interactions (CPIs) has become a crucial prerequisite for drug discovery and drug repo‑
sitioning. In vitro experiments are commonly used in identifying CPIs, but it is not feasible to discover the molecular 
and proteomic space only through experimental approaches. Machine learning’s advances in predicting CPIs have 
made significant contributions to drug discovery. Deep neural networks (DNNs), which have recently been applied to 
predict CPIs, performed better than other shallow classifiers. However, such techniques commonly require a consid‑
erable volume of dense data for each training target. Although the number of publicly available CPI data has grown 
rapidly, public data is still sparse and has a large number of measurement errors. In this paper, we propose a novel 
method, Multi-channel PINN, to fully utilize sparse data in terms of representation learning. With representation learn‑
ing, Multi-channel PINN can utilize three approaches of DNNs which are a classifier, a feature extractor, and an end‑to‑
end learner. Multi-channel PINN can be fed with both low and high levels of representations and incorporates each of 
them by utilizing all approaches within a single model. To fully utilize sparse public data, we additionally explore the 
potential of transferring representations from training tasks to test tasks. As a proof of concept, Multi-channel PINN was 
evaluated on fifteen combinations of feature pairs to investigate how they affect the performance in terms of highest 
performance, initial performance, and convergence speed. The experimental results obtained indicate that the multi‑
channel models using protein features performed better than single‑channel models or multi‑channel models using 
compound features. Therefore, Multi-channel PINN can be advantageous when used with appropriate representations. 
Additionally, we pretrained models on a training task then finetuned them on a test task to figure out whether Multi-
channel PINN can capture general representations for compounds and proteins. We found that there were significant 
differences in performance between pretrained models and non‑pretrained models.
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Introduction
Analysis of compound–protein interactions (CPIs) has 
become an important prerequisite for both discovering 
novel drugs for known protein targets and repurpos-
ing new targets for current drugs [1–3]. Exploring both 
molecular and proteomic space is a highly challenging 
and cost-intensive procedure. Each space is enormous 
and heterogeneous, moreover, most of the CPIs space 

remains to be discovered. For example, there are roughly 
108 synthesized compounds potentially developed into 
novel drugs [4, 5] but they are a small fraction of drug-
like compounds, which the total is estimated on the order 
of between 1024 and 1060 [5, 6]. As for the targets of the 
compounds, there are about 200,000 reviewed human 
protein records [7]. In  vitro experiments are commonly 
used in identifying CPIs, but it is not feasible to discover 
molecular and proteomic space only through experi-
mental approaches. In silico models have emerged to aid 
traditional experiments by narrowing down the search 
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space and prioritizing molecules with the highest poten-
tial [8–11].

Traditional in silico models can be grouped into two 
approaches, which are structure-based methods [12–14] 
and ligand-based methods [15–17]. In addition to the 
conventional approaches, proteochemometrics (PCM) 
methods have been proposed to predict CPIs by incorpo-
rating both ligand and target space within a single model 
[18–21]. First, structure-based methods yield reason-
able prediction performance and visually interpretable 
results. Structure-based methods use three-dimensional 
(3D) simulation for molecular docking to discover CPIs. 
AutoDock [22], Glide [23], Fred [24], and AtomNet [25] 
are examples of docking tools. However, the methods 
have two major limitations: (1) intensive computational 
complexity and (2) the shortage of 3D structure data for 
compounds and proteins. Therefore, ligand-based and 
PCM methods are preferred in most cases.

Secondly, ligand-based methods depend on a basic 
assumption called the molecular similarity principle [26]. 
The assumption is that similar compounds are used to 
interact with similar proteins, where Quantitative Struc-
ture–Activity Relationship (QSAR) model is one of the 
representative examples. With the advent of machine 
learning (ML) algorithms, ligand-based methods, such 
as Naïve Bayes (NB) [27, 28], random forest (RF) [29], 
support vector machines (SVM) [30], deep neural net-
works (DNNs) [31] and multi-task neural networks [32, 
33], have gained popularity. However, molecular activity 
alone is not sufficient to identify the bioactivity.

In contrast to ligand-based methods, PCM methods 
build a model using each compound and protein pair as 
the input data to fully utilize both proteomic and molec-
ular space. Due to their pair-based modelling, PCM 
methods are able to predict the interactions between 
novel compounds and new proteins. PCM methods have 
recently demonstrated their performance in various tasks 
such as the identification of new drug combinations 
[34], prediction of interactions between drug and target 
[35], and CPIs prediction for G protein coupled recep-
tor (GPCR) and protein kinase targets [36]. In addition, 
PCM has the potential to utilize information from vari-
ous multispecies into a single model [18, 37]. Therefore, 
PCM methods have drawn attention in discovering CPI 
space [20].

DNN algorithms have recently been applied to predict 
CPI pairs and performed better than other shallow clas-
sifiers such as RF, NB and SVM [38, 39]. In addition to 
using basic DNNs called feedforward neural networks 
(FFNN), a previous study [40] has proposed pairwise 
input neural networks (PINN). As a variation of a FFNN, 
a PINN consists of two separated layers and one concat-
enated layer. Each separated layer is fed with a different 

feature as the input (i.e. compound and protein) and then 
each layer is concatenated before classifying the classes. 
Before the concatenated layers, each separated layer is 
independently composed without connection from other 
layers. This architecture allows PINN to reduce the total 
number of parameters in the networks by about 50% 
compared to the conventional FFNN without degrada-
tion in performance (see Additional file 1: Table S1). The 
architecture is also suitable for PCM methods, which uti-
lize both compound and protein features. However, the 
majority of DNNs commonly require a considerable vol-
ume of data for each training target. Although the num-
ber of public available CPI pairs has grown rapidly, it is 
still not sufficient to model CPI space [41].

Moreover, as a recent study by Lenselink et  al. [38] 
pointed out, public data can have a large number of 
errors due to the use of different scientific protocols. The 
authors presented a high-quality benchmark dataset and 
compared the performance between various combina-
tions of descriptors, methods (PCM and QSAR), machine 
learning algorithms, and validation partitioning. The 
study found that PCM models generally exceed QSAR 
models under the same conditions. PCM-based DNNs 
algorithms outperformed the other models on both eval-
uation sets (temporal validation and random validation).

To complete the modelling of CPI space [20], there 
is still room for improvement for PCM-based DNNs in 
terms of representation learning. DNNs can be utilized 
with three approaches including a classifier, a feature 
extractor, and an end-to-end learner. As a classifier, DNN 
algorithms in drug discovery are generally fed with man-
ually crafted features and predict the bioactivity. DNNs 
can also be used as a feature extractor for compound and 
protein descriptors [42, 43] to fully utilize the informa-
tion in large-scale dataset such as ZINC for compounds 
[44] and UniProt for proteins [45]. As an end-to-end 
learner, DNNs can learn representations from raw data 
such as SMILES string of compounds and amino acid 
sequence of proteins. End-to-end learning manages the 
whole learning process from feature extraction to classifi-
cation in a single model.

In this paper, we propose a novel multi-channel PCM-
based DNN called Multi-channel PINN (MCPINN). In 
order to make full use of sparse data, MCPINN utilizes 
three approaches of DNNs which are a classifier, a feature 
extractor, and an end-to-end learner. This model can be 
fed with both low and high levels of representations and 
can incorporate each of them into a single model (Fig. 1). 
With PINN architecture, this model takes both com-
pounds and proteins into the input layer. It takes SMILES 
strings, ECFPs and vectors embedded by Mol2vec [42] 
for compounds and amino acid sequences and vectors 
embedded by ProtVec [43] for proteins. By incorporating 
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the three approaches of DNNs, MCPINN can learn mul-
tiple representations to model the CPI data space. In 
addition to improving the model, we explore the poten-
tial ability of MCPINN to transfer the generalized repre-
sentations from a high quality and well balanced training 
dataset to a strongly imbalanced test dataset.

As a proof of concept, we evaluated MCPINN on a 
standardized benchmark dataset [38] obtained from 
ChEMBL, using MCC and ROC as evaluation metrics. 
To investigate the effect of each feature, MCPINN was 
evaluated with six combinations of single-channel fea-
ture pairs. MCPINN was also evaluated with nine com-
binations of multi-channel feature pairs to explore the 
synergy effects of low and high levels of representations. 
The models were investigated in terms of not only high-
est performance but also initial performance and con-
vergence speed. To test whether MCPINN can transfer 
general representations of compounds and proteins to a 
new task, we pretrained models on a training task, which 
is the benchmark dataset used above, and then fine-
tuned the pretrained models on a test task Tox21 [46]. 
The transferability of MCPINN was evaluated in terms 
of initial performance, speed of convergence, and highest 
performance using two metrics for validation MCC and 
PRC. Therefore, this study contributes to “the complete 

modelling of CPI space” [20] by full use of representation 
ability of DNNs as a classifier, a feature extractor, and an 
end-to-end learner and additionally by transferring the 
generalized representations from training tasks to test 
task.

Results and discussion
Investigating the representation learning ability
The first part of this study focuses on the representation 
learning ability of MCPINN. To figure out the contribu-
tion of each feature on the predictive performance of 
the model, MCPINN was evaluated with fifteen combi-
nations of feature pairs, which contained six pairs from 
single-channel features and nine pairs from multi-chan-
nel features. There are three features for compounds: 
SMILES, ECFP, and Mol2vec, where SMILES is a low-
level representation. The performance based on the fea-
ture concatenated ECFP and Mol2vec was evaluated but 
omitted because the concatenated feature models did 
not provide improvement in performance compared to 
the Mol2vec or ECFP models separately (as can be seen 
in Additional file 1: Table S2). Two features are used for 
proteins: ProtVec and the amino acid sequence which 
is a low-level representation. For low-level representa-
tions (SMILES and amino acid sequence) Dilated CNN is 

Fig. 1 Schematic representations of Multi-channel PINN (MCPINN). MCPINN utilizes the three approaches of DNN in terms of a classifier, a feature 
extractor, and an end‑to‑end learner. MCPINN can incorporate both low and high level representations in a single model
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applied as an end-to-end learner. Recurrent Neural Net-
work models were also trained but omitted due to their 
poor performance, which can be seen in Additional file 1: 
Figures S1 and S2.

There are fifteen models based on the combinations 
of feature pairs and are listed in Table 1 with shortened 
names. The models were evaluated on a benchmark data-
set [38] using two metrics for validation the Matthew 
Correlation Coefficient (MCC) and Receiver Operating 
Characteristic Area Under the Curve (ROC).

Comparison between single‑channel models
Above all, to investigate the effect of each feature on 
the predictive performance of the model, the six feature 
pairs are explored with Single-channel PINN (SCPINN). 
SCPINN is a basic model that is fed with only one fea-
ture for each protein and compound respectively as 
shown in Table  1. The prediction performance of each 
model is shown in Fig.  2. The average performance of 
SCPINN models was an MCC of 0.636 ± 0.03 and a ROC 
of 0.892 ± 0.02. Overall the differences in performances 
between the metrics scores were similar to each other. 
It is observed that the biggest difference in performance 
between the SCPINN models was the use of a high-level 
representation (ECFP and Mol2vec) in the chemical fea-
ture instead of a low-level representation (SMILES). For 
example, the average performance of the models using 
ECFP and Mol2vec for compounds was an MCC of 0.66 
± 0.008 and a ROC of 0.90 ± 0.004, while the average 
performance of the models using SMILES was an MCC 
of 0.60 ± 0.014 and a ROC of 0.87 ± 0.007.

On the other hand, the models using ProtVec did not 
outperform the models using amino acid sequence with 

Dilated CNN for the overall models, regardless of the 
types of chemical features used. The average MCC of 
models using amino acid sequence was 0.646 (± 0.023) 
and mean ROC was 0.896 (± 0.011), while the average 
MCC of models using ProtVec was 0.627 (± 0.029) and 
the mean ROC was 0.887 (± 0.015).

This difference in performance seems to be based on 
whether or not the feature extraction method is able to 
capture the order of the amino acid sequences in the fea-
ture vector, in addition to the content itself. The Dilated 
CNN model can featurize the entire sequence of a pro-
tein in terms of the order and content, whereas ProtVec 
has a limitation in that it does not reflect the order of 
the sequence in the feature vector. ProtVec divides the 
sequence into N-grams to make the word units, per-
forms individual embedding on each N-gram word, and 

Table 1 The shortened names for combinations of features for SCPINN and MCPINN 

Model name Channel type Compound feature Protein feature

SC1 Single‑channel SMILES AA sequence

SC2 SMILES ProtVec

SC3 Mol2vec AA sequence

SC4 Mol2vec ProtVec

SC5 ECFP AA sequence

SC6 ECFP ProtVec

MC1 Multi‑channel for protein SMILES AA sequence and ProtVec

MC2 Mol2vec AA sequence and ProtVec

MC3 ECFP AA sequence and ProtVec

MC4 Multi‑channel for compound SMILES and Mol2vec AA sequence

MC5 SMILES and Mol2vec ProtVec

MC6 SMILES and ECFP AA sequence

MC7 SMILES and ECFP ProtVec

MC8 Multi‑channel for both features SMILES and Mol2vec AA sequence and ProtVec

MC9 SMILES and ECFP AA sequence and ProtVec

Fig. 2 Comparison of predictive performance between SCPINN. On 
the left y‑axis the MCC is shown, while on the right y‑axis the ROC 
score is shown and error bars indicate SEM. Mean MCC is 0.636 (± 
0.03) and mean ROC is 0.892 (± 0.02)
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then sums up all the embedding vectors regardless of the 
orders. Therefore, different proteins could have the same 
embedding vectors with ProtVec, provided the same 
N-grams are used.

Secondly, there is room to improve operations in 
Mol2vec and ProtVec to prevent incorrect representa-
tions of embedded compounds and proteins. In Mol2vec 
and ProtVec, the sum operation reconstructs embedded 
word vectors (i.e. Morgan substructure or N-gram amino 
acid sequence) into a sentence vector (i.e. compound or 
protein). Since the number of sum operations is depend-
ent on the number of words in the sentence, applying 
these operations can significantly alter the embedded 
value of the sentence, regardless of the actual meaning of 
the sentence. To prevent information distortion, the sum 
operation in Mol2vec and ProtVec should be improved. 
Therefore, in the next section, we first refine the sum 
operation.

Improving Mol2vec and ProtVec
To refine the sum operation in Mol2vec and ProtVec, we 
tested two types of weighted average operations, which 
are arithmetic mean and Term Frequency Inverse Doc-
ument Frequency (TF-IDF) [47]. The former sets the 
weight of each word according to the length of the sen-
tence while the latter sets the weight of each word by 
TF-IDF (see "Methods and materials" section). Table  2 
shows the predictive performance of nine combinations 
of feature pairs using the original methods and the pro-
posed methods for both Mol2vec and ProtVec. The pro-
posed methods performed better than original methods 
with the exception of the arithmetic mean method on 
proteins. The best method for Mol2vec is the arithmetic 
mean method having an average MCC of 0.659 ± 0.013 
and an average ROC 0.906 ± 0.004, compared to TF-IDF 
weighted average method (MCC of 0.657 ± 0.013 and 
ROC of 0.903 ± 0.002), and the original methods (MCC 
of 0.649 ± 0.014 and ROC of 0.903 ± 0.006). For ProtVec, 
the TF-IDF weighted average method outperformed the 
other models with an average MCC of 0.673 ± 0.04 and 
an average ROC of 0.909 ± 0.003. Among all of the usage 
of Mol2vec and ProtVec, the best performing feature pair 
is arithmetic mean method for the former and TF-IDF 
weighted average method for the latter, where the usage 
of the pair showed an MCC of 0.678 ± 0.002 and a ROC 
of 0.912 ± 0.002.

It is observed that these improved methods can more 
accurately capture the contents of each compound and 
protein. The sentences (i.e. compounds and proteins) 
within each document (i.e. bioactivity dataset) have spe-
cific contexts and characteristics, which the entire corpus 
set (i.e. ZINC and UniProt) cannot represent. In particu-
lar, TF-IDF assigns a weight to each word in a sentence, 

so that TF-IDF weighted average method is able to more 
finely capture the characteristics and contexts inherent in 
the document.

In the case of Mol2vec, the TF-IDF weighted average 
method has a slightly lower performance than the arith-
metic mean method. It seems that the TF-IDF weights 
from a specific document can be used to bias the infor-
mation toward the document and reduce the gener-
alization performance. In summary, all words were first 
embedded within the whole corpus, and then sentences 
were represented by weighting each word through a doc-
ument. As a result, SC4 performed better than original 
one, where MCC increased to 0.678 from 0.642 and ROC 
increased to 0.912 from 0.900.

Comparing the performance of multi‑channel models
To figure out the synergy effects of a combination of both 
low and high  level representation, the nine MCPINN 
models based on multi-channel feature pairs are evalu-
ated as shown in Table 1. In order to improve the read-
ability of this paper, the three multi-channel features 
are abbreviated as follows: ProtVec with amino acid 
sequences is ProtVecAA , Mol2vec with SMILES strings 
is Mol2vecSS , ECFP with SMILES strings is ECFPSS . It 
is observed that the effect of multi-channel was differ-
ent between proteins and compounds, as shown in Fig. 3. 
In the case of protein features, it was observed that the 
usage of ProtVecAA performed better than the oth-
ers (average MCC of 0.658 ± 0.03 vs. 0.649 ± 0.03 and 
average ROC of 0.902 ± 0.02 vs. 0.897 ± 0.02). End to 
end learning channel with Dilated CNN seems to mainly 
represent the order (sentence level) of the amino acid 
sequence, while ProtVec channel represents the impor-
tance (word level) of each amino acid sequence in the 
protein. This suggests that the proposed multi-channel 
architecture can utilize both channels to capture features 
from both sentence and word perspectives for proteins.

Contrary to expectations, multi-channel models for 
compounds demonstrated very different results between 

Table 2 Comparison of  SC4 ’s performance obtained 
by different methods in Mol2vec and ProtVec

Mol2vec ProtVec MCC ROC

Mean Sum 0.652 (± 0.004) 0.905 (± 0.002)

Mean Mean 0.648 (± 0.003) 0.902 (± 0.003)

Mean TF‑IDF 0.678 (± 0.002) 0.912 (± 0.002)

TF‑IDF Sum 0.651 (± 0.003) 0.904 (± 0.003)

TF‑IDF Mean 0.644 (± 0.002) 0.901 (± 0.002)

TF‑IDF TF‑IDF 0.674 (± 0.004) 0.905 (± 0.002)

Sum Sum 0.642 (± 0.005) 0.900 (± 0.003)

Sum Mean 0.636 (± 0.003) 0.898 (± 0.003)

Sum TF‑IDF 0.668 (± 0.002) 0.911 (± 0.002)
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the usage of ECFPSS and Mol2vecSS . For example, the 
usage of ECFPSS performed only slightly better than the 
usage of ECFP (MCC of 0.670 ± 0.004 vs. 0.669 ± 0.005 
and ROC of 0.907 ± 0.002 and 0.906 ± 0.003). Moreover, 
the models using Mol2vecSS performed worse than the 
models using Mol2vec, where the average MCC dropped 
to 0.65 (± 0.002) from 0.68 (± 0.006) and the average 
ROC dropped to 0.89 (± 0.001) from 0.91 (± 0.003). In 
addition, the usage of Mol2vecSS also resulted in lower 
training performance than ECFPSS , where the average 
training performance was an MCC of 0.97 ± 0.006 for the 
models using ECFPSS and an MCC of 0.95 ± 0.007 for the 
models using Mol2vecSS . Therefore, a careful selection of 
representations is required to achieve better performance.

These results suggest that the richness of the features of 
compounds highly depend on the base representations. 
For example, compounds are represented in the form of 
a two-dimensional graph as the raw data for ECFP and 
Mol2vec, where they divide the graph into substructures 
and define each part to extract compound features. In 
contrast, Dilated CNN extracts features from an one-
dimensional SMILES strings and it seems to capture less 
generalized representations from the strings compared 
to the representations from ECFP and Mol2vec. In this 
study, sequence data was used for the multi-channel 
architecture but there are a variety of other data types 
that can be embedded and used for a new channel. There-
fore, the more embedding methods applied to a variety of 
data types such as graphs [48], heterogeneous networks 
[49], and nodes [50], the more biological and molecular 
information (i.e. pathway and drug–drug interactions) 
can be fully utilized for drug discovery, poly-pharmacol-
ogy, side-effect prediction, and drug resistance.

Ranking the features and models
We compared and ranked fifteen models including the 
six SCPINN models and the nine MCPINN models intro-
duced above. To compare between the models, we calcu-
lated two z-scores for each model and metric (MCC and 
ROC) and averaged them as shown in Fig. 4 and Table 3. 
To verify the validity of the difference between the 
z-scores, the following statistical tests were performed: 
the paired Student’s t Test and the F Test.

Among the chemical features, the usage of Mol2Vec 
showed the best performance with an average z-score 
of 0.94 ± 0.01 , compared to ECFPSS ( 0.57± 0.02 ), ECFP 
( 0.53± 0.02 ), Mol2vecSS ( − 0.25± 0.06 ), and SMILES 
( − 1.79± 0.02 ). For the Student’s t test, the usage of 
Mol2vec and SMILES are shown to significantly differ 
from all other features with a p value < 0.05 . Likewise, 
the usage of ECFPSS and ECFP differs significantly from 
all features with a p value < 0.05 with the exception of the 
usage of Mol2vecSS , where the p value is 0.06 and 0.07 
respectively (Additional file 1: Table S3). For the F Test, 
the differences in variances are also noticeable from all 
features with a p value < 0.05, with the exception of ECFP 
and ECFPSS , where the p value is 0.38 for each other 
(Additional file  1: Table  S4). Therefore, Mol2vec and 
Mol2vecSS showed significant differences in performance 
of both mean and variance, while ECFP and ECFPSS 
showed significant differences in mean performance.

Among the protein features, the usage of ProtVecAA 
outperformed the other features with an average z-scores 
of 0.21 ( ± 0.009 ), compared to ProtVec ( − 0.14 ± 0.008 ) 
and AA sequence ( − 0.08± 0.001 ). It is observed that the 
usage of ProtVecAA performed better than the others in 
terms of means and variances with a p value < 0.05, while 

Fig. 3 Comparison of predictive performance between MCPINN. On the left y‑axis the MCC is shown, while on the right y‑axis the ROC score is 
shown and error bars indicate SEM. Mean MCC is 0.658 (± 0.02) and mean ROC is 0.902 (± 0.009)
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ProtVec and AA sequence did not differ significantly (p 
value is 0.21 and 0.06 for the means and variances respec-
tively (Additional file 1: Tables S5, S6). It is observed that 
there are considerable synergy effects of multi-channel 
for proteins. Therefore, these statistical results indicate 
that the usage of Mol2vec and ProtVecAA outperformed 
the usage of the other features.

The best model was MC2 with a z-score of 1.22 
( ± 0.001 ), followed by SC4 with a z-score of 0.93 
( ± 0.020 ), and MC9 with a z-score of 0.75 (± 0.017). It is 
observed that there were significant differences between 

the highest model and the lowest model compared to the 
other models (as can be seen in Additional file 1: Tables 
S7, S8). For example, for the Student’s t test MC2 and SC2 
were shown to significantly differ from all other models 
with a p value < 0.05. Likewise in variance MC2 and SC2 
were significantly different from the other models with 
the p value < 0.05. So far we have only looked into the 
highest performance. In the next section we look further 
into initial performance and the speed of convergence.

Comparing convergence speed
In addition to the maximum performance, also notice-
able are the differences in initial performance and con-
vergence speed between SCPINN and MCPINN. Initial 
performance was measured by the performance at the 
first epoch and the speed of convergence was measured 
by the actual run time at 98% of the highest performance 
of the model. In order to compare the convergence speed 
of each model more precisely, we mainly measured actual 
run time and secondarily labeled the number of epochs. 
For more information about convergence speed against 
training epochs, refer to the Additional file  1: Figure 
S3. The machine specifications for the experiments are 
described in "Methods and materials" section—Hard-
ware used. There are more thresholds that were tested 
for convergence performance such as 95% , 98% , and 99% 
in Additional file 1: Table S9. The top 3 performing mod-
els ( MC2 , SC4 , and MC9 ) and baseline model ( SC1 ) were 
compared. Each model showed differences in the number 
of parameters, training time on an epoch, and the per-
formance but there appears to be no direct correlations 

Fig. 4 Comparison of the mean z‑scores obtained by the different models and error bars indicate SEM. Bars are colored by compound features, 
which are blue bars for Mol2vec, green bars for ECFPSS , yellow bars for ECFP, purple bars for Mol2vecSS , and grey bars for SMILES. The bars 
highlighted with red border indicate the usage of ProtVecAA , which demonstrates better performance than other protein features

Table 3 Comparison of  performance between  models 
expressed as z-scores per experiment

Model MCC ROC Average SEM

MC2 1.22 1.22 1.22 0.001

SC4 0.91 0.95 0.93 0.020

MC9 0.77 0.73 0.75 0.017

MC3 0.72 0.75 0.74 0.018

SC3 0.69 0.65 0.67 0.020

MC7 0.64 0.58 0.61 0.027

SC6 0.64 0.58 0.61 0.030

MC6 0.36 0.32 0.34 0.027

SC5 0.30 0.20 0.25 0.050

MC8 − 0.18 − 0.04 − 0.11 0.069

MC5 − 0.34 − 0.26 − 0.30 0.038

MC4 − 0.42 − 0.27 − 0.34 0.074

MC1 − 1.50 − 1.55 − 1.53 0.027

SC1 − 1.58 − 1.63 − 1.60 0.027

SC2 − 2.24 − 2.25 − 2.24 0.004
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between them (as can be seen Additional file  1: Fig-
ures S4 and S5).

It is observed that MCPINN performed better than 
SCPINN in terms of initial performance and conver-
gence speed as shown in Fig. 5. Initial performance was 
an MCC of 0.47 ± 0.004 for MC9 , 0.43 ± 0.005 for MC2 , 
0.40 ± 0.003 for SC1 , and 0.38 ± 0.016 for SC4 . The time 
it took to reach 98% of the highest performance was 11 
min (18 epochs) for MC9 , 41 min (113 epochs) for MC2 , 
50 min (102 epochs) for SC1 , and 55 min (201 epochs) for 
SC4 . SC4 and MC9 showed the most contrasting differ-
ences in the convergence speed and the highest perfor-
mance. Even though the former performed a little better 
than the latter in performance with an MCC of 0.678 ver-
sus 0.674, it took 104 min to outperform the latter.

While the exact cause in these differences cannot be 
proven, it seems that low-level representations from 
Dilated CNNs contributed to a non-negligible portion 
in these differences between the models. Because it is 
worthwhile examining these differences between the 
models, let us discuss these phenomena in the perspec-
tive of the information bottleneck (IB) theory of deep 
learning [51]. The authors claim that “DNNs undergo 
two distinct phases which consist of an initial fitting/
memorizing phase and a subsequent compression/for-
getting phase, which is related to the high generalization 
performance of DNNs” [51]. In this point of view, fol-
lowing explanations can help account for differences in 
convergence speed: (1) multi-channel architecture can 
help to construct better representations and reduce the 
length of two phases because there is little information to 
be compressed or forgotten. (2) single-channel architec-
ture generally need more training to discover appropriate 
representations for both fitting phase and compression 

phase, because there are not enough features. In sum-
mary, multi-channel architecture can improve conver-
gence speed as well as the performance.

Exploring the potential of transfer learning
While this study has focused on representation ability 
of MCPINN in terms of the performance and conver-
gence speed, this section further explores the transferable 
ability of MCPINN to generalize representations from 
training tasks to related testing tasks. To test whether 
MCPINN can capture general information for com-
pounds and proteins, we pretrained MC2 on the bench-
mark dataset and finetuned the model on Tox21 dataset 
[46]. In order to improve the readability of this section, 
the pretrained models are abbreviated as follows: PMi , 
where i is the number of epochs pretrained on training 
task, so non-pretrained model is PM0 . PMi was finetuned 
on the Tox21 training set with early stopping on the vali-
dation set and evaluated on the test set, where the Tox21 
dataset was split as suggested by DeepChem [52].

It should be noted that the two datasets are distinct, 
where the benchmark dataset is based on biophysics, 
while the Tox21 dataset is based on physiology [53]. 
The benchmark dataset, obtained from ChEMBL [41], 
focused on bioactivity of small molecules, while Tox21 
measured toxicity results in nuclear receptor and stress 
response pathways in human body. Because Tox21 data-
set is strongly imbalanced dataset with the percentage of 
positives being 7.49% (5957 positives from 79,585 all data 
points), the performance of models was measured using 
MCC and Precision–Recall AUC (PRC) instead of ROC, 
where PRC can provide more accurate prediction when 
applied to imbalanced classification scenarios [54].

To investigate the potential of transferability of 
MCPINN, we have compared the performance of the 
models pretrained in different epochs in terms of high-
est performance, initial performance, and convergence 
speed [55, 56]. First, pretrained models performed 
higher than non-pretrained model. The non-pretrained 
model PM0 had an MCC of 0.43 and a PRC of 0.48 as 
shown in Fig.  6. The pretrained models from PM30 to 
PM110 outperformed PM0 with a paired t test p value 
< 0.05 for both MCC and PRC with an exception of 
PM85 , where the p value was 0.053 (Additional file  1: 
Table S10). It is observed that the overall performance 
of the models rose up to PM55 and then declined, where 
it seems that the decline is because of overfitting on the 
training task dataset.

In contrast, there were small differences in initial per-
formance and convergence speed between the models. 
We looked into the finetuning phase of the three mod-
els including PM0 , PM55 , and PM135 , in order to inves-
tigate the generalization performance according to the 

Fig. 5 Comparison of convergence performance between two 
MCPINN and two SCPINN. The plot shows the Matthews Correlation 
Coefficient of models on y‑axis against the actual training time in 
minutes on the x‑axis
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number of pretraining epochs, As shown in Table 4 and 
Fig. 7, PM0 performed slightly better than other models 
until finetuning epoch 10, but the performance became 
lower than other models as finetuning continued. For 
example, initial performance was an MCC of 0.16 ± 
0.03 for PM0 , 0.11 ± 0.02 for PM55 , and 0.08 ± 0.03 for 
PM135 . After finetuning epoch 11, PM55 started to out-
perform PM0 and PM135 did so after finetuning epoch 
40. In addition to initial performance, it is observed 
that there were similar performance in convergence 
speed between models. The number of finetuning 
epochs to reach 95% of the highest performance was 46 
finetuning epochs for PM55 , 56 finetuning epochs for 
PM135 , and 60 finetuning epochs for PM0.

From the results we can see there is still room for 
improvement. The aim of transfer learning based on 
PCM methods is high performance with minimum fine-
tuning. Due to the flexibility of PCM method, MCPINN 
can predict any CPI pairs, while the performance with-
out finetuning was poor as can be seen in initial perfor-
mance of each model. Since there are still a lot of small 
molecules with only a small amount of bioactivity data, 
further study of transferring general information cover-
ing CPIs space is required.

Conclusions
In this paper we proposed a novel multi-channel PINN 
(MCPINN) based on PCM methods to fully utilize CPI 
data. MCPINN utilizes three approaches of DNNs which 
are a classifier, a feature extractor, and an end-to-end 
learner to maximize the representation learning ability. 
We evaluated full combinations of feature pairs to inves-
tigate the effects of each pair. We also compared SCPINN 
and MCPINN in terms of initial performance and the 
speed of convergence. In addition to improving the mod-
els within a high quality and well balanced dataset, we 
explored the transferable ability of MCPINN to general-
ize representations from training tasks to related testing 
tasks, which consist of a strongly imbalanced dataset. To 
the best of our knowledge, MCPINN is the first method 
to incorporate low and high level representations in a 
single model.

As discussed above, our results lead to a number of 
conclusions. For Mol2vec and ProtVec, we suggested 
that a weighted average operation is a better alternative 
to the sum operation in representing compounds and 
proteins. MCPINN using the feature pair of ProtVecAA 
and Mol2vec outperformed all other models with sta-
tistically significant differences. The usage of ProtVecAA 
performed better than others. It suggested that a multi-
channel architecture can utilize both channels to capture 
the order and the content of amino acid sequences. The 
usage of Mol2vec showed statistically significant differ-
ences from the other features for compounds. In particu-
lar, the multi-channel models using Mol2vecSS performed 
worse than the single-channel models using Mol2vec 
separately. Depending on the combination of compound 
and protein features, multi-channel models did not guar-
antee better performance than single-channel models, 

Fig. 6 Comparison of finetuning performance between different 
pretrained models ( PMi ), where i is the number of pretraining epochs. 
On the left y‑axis the MCC is shown, while on the right y‑axis the PRC 
score is shown against the number of pretraining epochs on x‑axis

Fig. 7 Comparison of convergence speed between models PMi , 
where i is the number of pretraining epochs. The plot shows the MCC 
of models on y‑axis against the number of finetuning epochs on 
x‑axis. There were small differences in convergence speed between 
models

Table 4 Comparison performance between  different 
finetuning epochs for models ( PMi)

Models Finetuning epoch 
1

Finetuning epoch 
11

Finetuning epoch 
40

PM55 0.11 ± 0.02 0.35 ± 0.01 0.43 ± 0.01

PM135 0.08 ± 0.03 0.32 ± 0.02 0.41 ± 0.02

PM0 0.16 ± 0.03 0.34 ± 0.01 0.40 ± 0.01
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so a careful selection of representations is required to 
achieve better performance.

The multi-channel architecture can improve initial per-
formance and convergence speed. It seems that the archi-
tecture can help to construct better representations and 
reduce the length of training phase based on memorizing 
phase and forgetting phase in terms of IB theory of deep 
learning. Additionally, we explored the potential of trans-
ferability of MCPINN in terms of initial performance, 
speed of convergence, and highest performance. Pre-
training on training task improved highest performance, 
while it did not improve convergence speed and initial 
performance. It seems that there is room for improve-
ment to transfer the generalized representations from 
training tasks to test task.

In conclusion, MCPINN can improve the representa-
tions in terms of initial performance, convergence speed, 
and highest performance. Moreover, we expect that more 
biological and molecular information can be utilized as a 
part of multi-channel for various tasks such as drug dis-
covery, poly-pharmacology, side-effect prediction, and 
drug resistance.

Methods and materials
Datasets
A high quality dataset [38] was employed as a benchmark 
dataset for the training task. Fifteen models are evaluated 
on the benchmark dataset. The dataset covers 0.13% of 
the total available bioactivity matrix space in ChEMBL, 
where there are 314,767 observations from 250,412,295 
possible data points produced by 204,085 compounds 
and 1227 protein targets. Percentage of the positives in 
the dataset is 54.7%. We used Tox21 dataset for the test 
task in transfer learning. Tox21 dataset has been used in 
the 2014 Tox21 Data Challenge, where there are 79,585 
measurements for 8014 compounds on 12 different tar-
gets. Tox21 dataset is strongly imbalanced and the per-
centage of positives is 7.49%.

DNNs try to minimize differences in the distribution 
of data between the prediction and target due to the 
usage of cross entropy as loss function. Therefore, train-
ing models on imbalanced data is a challenge. One of 
the basic solutions is to set higher weights on the posi-
tives than the negatives. In addition, it is also difficult to 
appropriately split the dataset into a training set, a valida-
tion set, and a test set. Therefore, we used the data split-
ting method and the weight value for the positive classes 
as suggested by Deepchem [52].

High level representation descriptors
We used Extended-Connectivity Fingerprints with diam-
eter of 4 (ECFP4), Mol2vec [42], and ProtVec [43] to 
get high level representations. ECFPs is one of the most 

popular representation in cheminformatics and ECFP4 
have shown promising performance among various fin-
gerprints [57]. RDkit [58] was used for ECFP4 with 1024 
dimensional binary vector.

ProtVec and Mol2vec are unsupervised machine learn-
ing approaches for embedding proteins and compounds. 
These algorithm are inspired by a technique called Word-
2Vec [59] in Natural Language Processing (NLP). As a 
metaphor by NLP, molecules and proteins are considered 
as sentences. Morgan substructures and N-gram amino 
acid sequences are considered as “words”, and large-scale 
databases such as ZINC [44], ChEMBL [41] and UniProt 
[45] are considered as large corpus datasets.

For the protein embedding model, we train the embed-
ding model on protein sets obtained from UniProt 
(release 2017_09) and ChEMBL (version 23). All dupli-
cate sequence and same protein id with various amino 
sequences are removed. The number of sequences for 
training embedding model is 553,195. The embedding 
model is based on Skip-gram model and the model is 
trained with following hyperparameters: dimension of 
the representation is 300, window size is 35, and mini-
mum count is 2. In Tox21, the target “SR-MMP” has 
no amino acid sequences, so the embedding value is 
zeros. Molecular corpus dataset, obtained from ZINC 
and ChEMBL (version 23), contains about 19.9 mil-
lion compounds using the approach suggested in [42], 
and we used a pretrained embedding model the authors 
proposed.

Embedded sentences are composed of the group of 
embedded words. We build two types of weighted aver-
age methods, which are arithmetic mean and TF-IDF 
weighted average method, to refine the original sum 
method. The original sum method is as followed:

where Ssum is a embedded sentence produced by the 
method, N is the number of words in the sentence, and 
wi is a ith embedded word in the sentence. However, the 
number of sum operations is dependent on N of each 
sentence, so it can alter the embedded sentence, regard-
less of the actual meaning of the sentence. Instead, arith-
metic mean method is as followed:

where Smean is a embedded sentence produced by the 
method. This method divides each word by the length of 
the sentence. Therefore, the same word can have different 

Ssum =
N
∑

i=1

wi

Smean =
1

N

N
∑

i=1

wi
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embedded value in each sentence due to the differences 
in length.

Moreover, TF-IDF [47] weighted average method is as 
followed:

where Stf−idf  is a embedded sentence produced by the 
method and tw stands for TF-IDF weight value for a word 
w. This method sets the importance of each word by TF-
IDF, so the same word has same embedded value in every 
sentence. To calculate weight value of TF-IDF, scikit-
learn (version 0.19) is used based on compounds and 
proteins in benchmark dataset and Tox21.

Low level representation descriptors
We used low-level representation data for end-to-end 
learning models, where they are amino acid sequences 
for proteins and SMILES strings for compounds. Both 
sequences were tokenized and then encoded into one-
hot binary vector with fixed length. Tokenizing process 
produced 24 single characters from the proteins and 57 
single characters for SMILES as suggested in [60], where 
the characters are extracted from benchmark dataset and 
the Tox21 dataset. The tokenized strings were converted 
into one-hot encoded representations, which assign the 
corresponding single token to one and the others to zero. 
In order to use the sequences as an input for the machine 
learning model, we set the sequences to a fixed length 
with post truncation or zero-padding. If the sequences 
are longer than the fixed length, they are trimmed by 
removing from the end of sequences to the fixed length, 
unless they are filled with zero from the end of the 
sequences to the fixed length. In determining the fixed 
length of sequences, there is a trade-off between informa-
tion preservation and computational efficiency. We chose 
the fixed length 100 for compounds and 700 for proteins, 
where a percentile of 75% for SMILES strings is 63.0 and 
a percentile of 75% for amino acid sequences is 712.2 as 
shown in Figs. 8 and 9.

Transfer learning
Transfer learning focuses on whether machine learn-
ing model can transfer generalized representations from 
training tasks to a different but related test tasks. While 
there are several factors that affect finetuning methods, 
two important factors are generally considered [55, 56]. 
The factors are the size of the test task’s dataset (i.e. small 
or large) and similarity of test task (i.e. the content of data 
or classes and balance of data or classes). There are four 
basic strategies to finetune the pretrained models on test 

Stf−idf =
N
∑

i=1

twwi

tasks as followed: (1) If the dataset of test task is large 
and the task is very similar to training task, finetuning 
full networks is suggested since the risk of overfitting is 
low. This case is expected to demonstrate promising per-
formance. (2) If the dataset of test task is large and the 
task is very different from the training task, there are two 
options which are finetuning full networks or not pre-
training the model on the training dataset. In practice, 
it is suggested to finetune the full networks to reduce 
training time. (3) If the dataset of test task is small and 
the task is very similar to the training task, finetuning full 
networks is not suggested due to the risk of overfitting. 
Instead, it is suggested to finetune the simple classifier to 
avoid overfitting. (4) If the dataset of test task is small and 
the task is very different from the training task, a simple 
classifier is not suggested due to the differences between 
tasks. It is suggested to initialize the top layers and freeze 
the other layers to finetune the layers and classifier, since 
the top layers contain more task-specific representations.

The benchmark dataset is four times larger than Tox21 
dataset and the tasks are different in terms of biophys-
ics versus physiology as categorized in [53]. Moreover, 
the benchmark dataset is balanced, while Tox21 dataset 

Fig. 8 SMILES string length distribution

Fig. 9 Amino acid sequence length distribution
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is strongly imbalanced, where the percentage of posi-
tives is 7.49% (5957 positives from 79,585 all data points). 
Therefore, this study corresponds to the fourth scenario. 
We pretrained the models on training dataset and then 
finetuned the pretrained models for every 5 pretrain-
ing epoch. The pretraining epoch is 140 and finetuning 
epoch is 200 with early stopping.

DNNs
All DNN models are created using Keras [61] and Ten-
sorflow [62]. We tested various architectures, parameters, 
and hyperparameters to optimize DNN models in initial 
cross-validation phase as shown in Table  5. All tested 
models were validated with five-fold cross-validation on 
validation data (20% of training data) for 400 epochs with 
early stopping in order to find the optimal network con-
figuration. Then the optimal model was trained on the 
full training data and evaluated on test data.

Adam is generally used in DNNs due to efficient and 
fast training performance because the step size is not 
affected by the value of the gradient. We used the hyper-
parameters 0.9 for β1 and 0.999 for β2 as suggested [63]. 
However, learning rate was 0.0005 and weight decay was 
not zero to achieve more stable training, where weight 
decay reduces the learning rate over each update. Since 
the benchmark dataset is very sparse, small batch size 
can mislead the training model to local optimum. There-
fore, we set mini-batch size 1024 for the generalized 
performance as suggested [64]. All weights and biases 
were initialized from a uniform distribution within 
[−

√

3/fanin,
√

3/fanin] , where fanin is the number of 
input units in the weights, which is called Lecun uniform 

distribution. Lecun uniform distribution performed bet-
ter than random uniform distribution and truncated 
normal distribution in terms of performance and conver-
gence speed, because it leads to efficient backpropagation 
calculations [65].

Rectified linear (ReLU) units are commonly used in 
DNNs because they do not suffer from vanishing gradi-
ent and their training speed is fast. However, ReLU units 
ignore the negative values, so there is information loss 
called “dying ReLU” [66]. Exponential linear units (ELU) 
[67] was introduced to solve the problem. ELU and ReLU 
are in identity function form for non-negative inputs, 
but for negative inputs, they are different, where if x < 0 , 
f (x) = α(ex − 1) for ELU and f (x) = 0 for ReLU. ELU 
can capture information in the negative value. Therefore, 
we used following parameters for the final DNN models: 
(1) as an optimizer Adam with 0.9 beta 1 and 0.999 beta 
2 is used as suggested [63], (2) learning rate is 0.0005, 
(3) number of epochs is 500, (4) mini-batch size is 1024, 
(5) Lecun uniform distribution, (6) the weight decay is 
0.00001, (7) activation function is ELU.

DNNs: end‑to‑end learning
We built three types of end-to-end DNNs based on con-
volution neural networks (CNN) and recurrent neural 
networks (RNN). RNN is designed to learn sequential 
data and CNN has multiple filters which are incorpo-
rated with each other to discover various representations. 
These model have shown promising performance for 
sequential data in various domains. Among RNN models, 
long short-term memory (LSTM) [68] and bidirectional 
LSTM (BLSTM) [69] have outperformed conventional 

Table 5 Architectures, parameters, and hyperparameters explored for DNNs

Base model Value Description

PINN Separated layers 1, 2, 3, 4 The number of separated layers for PINN

Concatenated layers 1, 2 The number of concatenated layers for PINN

Number of nodes 256, 512, 1024, 2048 The number of nodes for layers

Dilated CNN Filters 4, 8, 16, 32 The number of filters for Dilated CNN

Kernel size 6, 8, 12, 22 The length of the convolution window for Dilated CNN

Embedding 16, 32 Dimension of dense embedding for low level representations

LSTM, BLSTM Units 128, 256 The units to represent hidden layers for RNN

DNN Lr 0.0005 Initial learning rate

Initializer [−
√

3/fanin ,
√

3/fanin] Initial weight value called Lecun uniform distribution

Optimizer Adam Optimizer for stochastic gradient descent

Weight decay 0.0, 0.00001 Learning rate decay over each update

Activation function ReLU, ELU Neuron activation function

Drop out 0.25, 0.5 The rate of drop out

Batch 1024 Batch size for training

Epochs_training 400 Training epochs on a training task

Epochs_finetune 200 Finetuning epochs for a pretrained model on a test task
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models (i.e. Hidden Markov model) and recent proposed 
models (i.e. Gated Recurrent Unit) over two decades [70]. 
LSTM is a recurrent neural network model with explicit 
memory cell. Due to the memory cell, LSTM can remem-
ber or forget long-term dependencies needed for tasks. 
The memory cell is carefully regulated by four modules, 
which are input gate, forget gate, output gate, and cell 
update. Bidirectional LSTM (BLSTM) is a variant version 
of LSTM. BLSTM has two LSTMs which go in oppo-
site directions, forward and backward. The two features 
complement each other and contribute to performance 
improvement.

We used dilated convolution neural networks (Dilated 
CNN) [71] among end-to-end learners. Dilated CNN is 
a convolution neural networks with skip layers. Conven-
tional CNN learns long-term dependency by reducing 
the size of the data, but it results in information loss. In 
contrast, Dilated CNN can learn long-term dependency 
efficiently with skip layers. The layers have wider recep-
tive fields compared to conventional layers. The size of 
kernel is the length of the convolution window and it 
affects the long-term dependency of given sequences. 
The basic suggestion is a small kernel size (i.e. 3) to 
achieve efficient training and less number of parameters 
[72]. However, we chose larger size of kernel, since Pro-
tVec and Mol2vec already captured the features in terms 
of local perspective.

The number of filters determines depth of the output 
volume called feature map, which is the result of the 
convolution layer. If the number of filters is too large the 
model can suffer from overfitting, otherwise the model 
can suffer from underfitting. In computer vision domain, 
the number of filter is large but we tested smaller num-
bers of filter due to the sparseness of CPI data space. The 
embedding layer is the first layer for one-hot encoded 
vectors. The dimension size 32 and 16 was tested, but 
there were little differences in performance. Therefore, 
the final value of network architecture and hyperparame-
ters for Dilated CNNs were (1) the number of filters is 16, 
(2) the kernel size is 12, (3) an embedding layer with 16 
dimension is used to reduce the number of parameters, 
and (4) valid padding to reduce the shape of the feature 
maps in each layers.

For LSTM and BLSTM, the final value of network 
architecture and hyperparameters were: (1) units are 256, 
which is the dimensionality of output, (2) set forget bias 
as suggested [73].

DNNs: pairwise input neural networks
Pairwise input neural network (PINN) is used for 
MCPINN and SCPINN. PINN is a variation of feedfor-
ward neural networks and is a more suitable architecture 
for PCM methods. It consists of separated layers with two 

input and concatenated layers. For MCPINN, all channels 
are merged in the concatenated layer as shown in Fig. 1. 
Since the separated layers are independently composed 
without connection from other layers, each input chan-
nel layers build representations independently for each 
input. Moreover, the architecture can balance the ratio of 
each feature by controlling the number of nodes in the 
last separated layers. For example, although the input 
dimension of ECFP is 1024 and the input dimension of 
ProtVec is 300, the dimension of each representation is 
the number of nodes in the last separated layers. In con-
trast, DNNs can be biased to the feature of larger input 
dimensions.

We normalized the high-level representations with 
zero mean and unit variance to achieve stable train-
ing, because outliers can degrade the performance of 
machine learning algorithms in terms of prediction, 
learning speed, and the convergence of the algorithms. 
In particular, many gradient based algorithms (i.e. deep 
learning) are often designed with the assumption that 
input data is nearly standardized data, which is generally 
obtained by subtracting the mean and scaling the data to 
unit variance. We tested separated layers from 1 to 4 and 
concatenated layer from 1 to 2. The number of concat-
enated layer is 1 for both SCPINN and MCPINN, but the 
number of each separated layers is 2 for SCPINN and 1 
for MCPINN to reduce overfitting, where the parameters 
of end-to-end channel was added in MCPINN. To pre-
vent overfitting, we used 10% dropout on initial layer and 
50% on hidden layers and early stopping.

In our experiments, the final value of network architec-
ture and hyperparameters for PINN were: (1) the num-
ber of each separated layers is 2 for SCPINN and 1 for 
MCPINN, (2) the number of each concatenated layer is 
1, (3) the number of units in each separated layer is 1024 
and 256, (4) the number of units in each concatenated 
layer is 256, (5) dropout rate is 0.5 (6) each features are 
normalized with zero mean and unit variance.

Performance metrics
For the performance evaluation, we used three met-
rics, which are Matthew Correlation Coefficient (MCC), 
Receiver Operating Characteristic Area Under the Curve 
(ROC), and Precision–Recall Area Under the Curve 
(PRC). Above metrics are commonly used in binary clas-
sification to evaluate the quality of the performance. 
ROC space is determined by the false positive rate (FPR) 
versus true positive rate (TPR) called recall as x and y 
axis, where FPR and TPR is calculated by following for-
mula: TPR = TP/(TP + FN ) and FPR = FP/(FP + TN ) , 
where TP is the number of true positives, FN the number 
of false negatives, FP the number of false positives, and 
TN the number of true negatives. It means ROC shows 
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relative trade-offs between true positive and false posi-
tive. The value of ROC is between 0 and + 1, where + 1 
indicated perfect prediction, 0.5 means random predic-
tion, and 0 indicates totally wrong prediction.

PRC can provide more accurate prediction when 
applied to imbalanced classification scenario than ROC, 
because PRC put more importance on the TPR in case 
of imbalanced dataset. ROC and PRC share TPR (recall) 
on same axis, but PRC uses precision for the other axis, 
where precision is calculated by following formula: 
precision = TP/(FP + TP) . MCC is generally regarded as 
being one of the best metrics because MCC is more use-
ful than other metrics when the two classes are very dif-
ferent. MCC is calculated by following formula:

The value of MCC is between − 1 and +  1, where +  1 
indicates perfect prediction, 0 means random prediction, 
and − 1 represents totally wrong prediction.

Software used
Python (version 2.7) was used with the following librar-
ies: Keras (version 2.2.0) and Tensorflow (1.9.0) for the 
neural networks, RDKit (version 2017.03.3) for the cal-
culation of the fingerprints and descriptors, scikit-learn 
(version 0.19) for splitting validation, normalization and 
performance evaluation, SciPy (version 1.2.0) for statis-
tical analysis including students t test and Fisher F test, 
ProtVec for the protein descriptors, and Mol2vec for the 
molecule descriptors.

Hardware used
A Linux server running Ubuntu 16.04 was established 
for experiments. The server was equipped with a Xeon 
E5-2620 v4 processor, 96 GB RAM, and four NVIDIA 
GeForce GTX 1080 Ti for Graphics Processing Units.

Additional file

Additional file 1. Supplementary results in the form of 5 Figures and 10 
Tables.
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