
Lee et al. J Cheminform (2019) 11:46
https://doi.org/10.1186/s13321-019-0368-1

RESEARCH ARTICLE

Multi-channel PINN: investigating scalable
and transferable neural networks for drug
discovery
Munhwan Lee, Hyeyeon Kim, Hyunwhan Joe and Hong‑Gee Kim*

Abstract

Analysis of compound–protein interactions (CPIs) has become a crucial prerequisite for drug discovery and drug repo‑
sitioning. In vitro experiments are commonly used in identifying CPIs, but it is not feasible to discover the molecular
and proteomic space only through experimental approaches. Machine learning’s advances in predicting CPIs have
made significant contributions to drug discovery. Deep neural networks (DNNs), which have recently been applied to
predict CPIs, performed better than other shallow classifiers. However, such techniques commonly require a consid‑
erable volume of dense data for each training target. Although the number of publicly available CPI data has grown
rapidly, public data is still sparse and has a large number of measurement errors. In this paper, we propose a novel
method, Multi-channel PINN, to fully utilize sparse data in terms of representation learning. With representation learn‑
ing, Multi-channel PINN can utilize three approaches of DNNs which are a classifier, a feature extractor, and an end‑to‑
end learner. Multi-channel PINN can be fed with both low and high levels of representations and incorporates each of
them by utilizing all approaches within a single model. To fully utilize sparse public data, we additionally explore the
potential of transferring representations from training tasks to test tasks. As a proof of concept, Multi-channel PINN was
evaluated on fifteen combinations of feature pairs to investigate how they affect the performance in terms of highest
performance, initial performance, and convergence speed. The experimental results obtained indicate that the multi‑
channel models using protein features performed better than single‑channel models or multi‑channel models using
compound features. Therefore, Multi-channel PINN can be advantageous when used with appropriate representations.
Additionally, we pretrained models on a training task then finetuned them on a test task to figure out whether Multi-
channel PINN can capture general representations for compounds and proteins. We found that there were significant
differences in performance between pretrained models and non‑pretrained models.

Keywords: Deep neural networks, Machine learning, Compound–protein interaction, Proteochemometrics,
Cheminformatics

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Analysis of compound–protein interactions (CPIs) has
become an important prerequisite for both discovering
novel drugs for known protein targets and repurpos-
ing new targets for current drugs [1–3]. Exploring both
molecular and proteomic space is a highly challenging
and cost-intensive procedure. Each space is enormous
and heterogeneous, moreover, most of the CPIs space

remains to be discovered. For example, there are roughly
108 synthesized compounds potentially developed into
novel drugs [4, 5] but they are a small fraction of drug-
like compounds, which the total is estimated on the order
of between 1024 and 1060 [5, 6]. As for the targets of the
compounds, there are about 200,000 reviewed human
protein records [7]. In vitro experiments are commonly
used in identifying CPIs, but it is not feasible to discover
molecular and proteomic space only through experi-
mental approaches. In silico models have emerged to aid
traditional experiments by narrowing down the search

Open Access

Journal of Cheminformatics

*Correspondence: hgkim@snu.ac.kr
Biomedical Knowledge Engineering Laboratory, Seoul National University,
1 Gwanak‑ro, Seoul, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0368-1&domain=pdf

Page 2 of 16Lee et al. J Cheminform (2019) 11:46

space and prioritizing molecules with the highest poten-
tial [8–11].

Traditional in silico models can be grouped into two
approaches, which are structure-based methods [12–14]
and ligand-based methods [15–17]. In addition to the
conventional approaches, proteochemometrics (PCM)
methods have been proposed to predict CPIs by incorpo-
rating both ligand and target space within a single model
[18–21]. First, structure-based methods yield reason-
able prediction performance and visually interpretable
results. Structure-based methods use three-dimensional
(3D) simulation for molecular docking to discover CPIs.
AutoDock [22], Glide [23], Fred [24], and AtomNet [25]
are examples of docking tools. However, the methods
have two major limitations: (1) intensive computational
complexity and (2) the shortage of 3D structure data for
compounds and proteins. Therefore, ligand-based and
PCM methods are preferred in most cases.

Secondly, ligand-based methods depend on a basic
assumption called the molecular similarity principle [26].
The assumption is that similar compounds are used to
interact with similar proteins, where Quantitative Struc-
ture–Activity Relationship (QSAR) model is one of the
representative examples. With the advent of machine
learning (ML) algorithms, ligand-based methods, such
as Naïve Bayes (NB) [27, 28], random forest (RF) [29],
support vector machines (SVM) [30], deep neural net-
works (DNNs) [31] and multi-task neural networks [32,
33], have gained popularity. However, molecular activity
alone is not sufficient to identify the bioactivity.

In contrast to ligand-based methods, PCM methods
build a model using each compound and protein pair as
the input data to fully utilize both proteomic and molec-
ular space. Due to their pair-based modelling, PCM
methods are able to predict the interactions between
novel compounds and new proteins. PCM methods have
recently demonstrated their performance in various tasks
such as the identification of new drug combinations
[34], prediction of interactions between drug and target
[35], and CPIs prediction for G protein coupled recep-
tor (GPCR) and protein kinase targets [36]. In addition,
PCM has the potential to utilize information from vari-
ous multispecies into a single model [18, 37]. Therefore,
PCM methods have drawn attention in discovering CPI
space [20].

DNN algorithms have recently been applied to predict
CPI pairs and performed better than other shallow clas-
sifiers such as RF, NB and SVM [38, 39]. In addition to
using basic DNNs called feedforward neural networks
(FFNN), a previous study [40] has proposed pairwise
input neural networks (PINN). As a variation of a FFNN,
a PINN consists of two separated layers and one concat-
enated layer. Each separated layer is fed with a different

feature as the input (i.e. compound and protein) and then
each layer is concatenated before classifying the classes.
Before the concatenated layers, each separated layer is
independently composed without connection from other
layers. This architecture allows PINN to reduce the total
number of parameters in the networks by about 50%
compared to the conventional FFNN without degrada-
tion in performance (see Additional file 1: Table S1). The
architecture is also suitable for PCM methods, which uti-
lize both compound and protein features. However, the
majority of DNNs commonly require a considerable vol-
ume of data for each training target. Although the num-
ber of public available CPI pairs has grown rapidly, it is
still not sufficient to model CPI space [41].

Moreover, as a recent study by Lenselink et al. [38]
pointed out, public data can have a large number of
errors due to the use of different scientific protocols. The
authors presented a high-quality benchmark dataset and
compared the performance between various combina-
tions of descriptors, methods (PCM and QSAR), machine
learning algorithms, and validation partitioning. The
study found that PCM models generally exceed QSAR
models under the same conditions. PCM-based DNNs
algorithms outperformed the other models on both eval-
uation sets (temporal validation and random validation).

To complete the modelling of CPI space [20], there
is still room for improvement for PCM-based DNNs in
terms of representation learning. DNNs can be utilized
with three approaches including a classifier, a feature
extractor, and an end-to-end learner. As a classifier, DNN
algorithms in drug discovery are generally fed with man-
ually crafted features and predict the bioactivity. DNNs
can also be used as a feature extractor for compound and
protein descriptors [42, 43] to fully utilize the informa-
tion in large-scale dataset such as ZINC for compounds
[44] and UniProt for proteins [45]. As an end-to-end
learner, DNNs can learn representations from raw data
such as SMILES string of compounds and amino acid
sequence of proteins. End-to-end learning manages the
whole learning process from feature extraction to classifi-
cation in a single model.

In this paper, we propose a novel multi-channel PCM-
based DNN called Multi-channel PINN (MCPINN). In
order to make full use of sparse data, MCPINN utilizes
three approaches of DNNs which are a classifier, a feature
extractor, and an end-to-end learner. This model can be
fed with both low and high levels of representations and
can incorporate each of them into a single model (Fig. 1).
With PINN architecture, this model takes both com-
pounds and proteins into the input layer. It takes SMILES
strings, ECFPs and vectors embedded by Mol2vec [42]
for compounds and amino acid sequences and vectors
embedded by ProtVec [43] for proteins. By incorporating

Page 3 of 16Lee et al. J Cheminform (2019) 11:46

the three approaches of DNNs, MCPINN can learn mul-
tiple representations to model the CPI data space. In
addition to improving the model, we explore the poten-
tial ability of MCPINN to transfer the generalized repre-
sentations from a high quality and well balanced training
dataset to a strongly imbalanced test dataset.

As a proof of concept, we evaluated MCPINN on a
standardized benchmark dataset [38] obtained from
ChEMBL, using MCC and ROC as evaluation metrics.
To investigate the effect of each feature, MCPINN was
evaluated with six combinations of single-channel fea-
ture pairs. MCPINN was also evaluated with nine com-
binations of multi-channel feature pairs to explore the
synergy effects of low and high levels of representations.
The models were investigated in terms of not only high-
est performance but also initial performance and con-
vergence speed. To test whether MCPINN can transfer
general representations of compounds and proteins to a
new task, we pretrained models on a training task, which
is the benchmark dataset used above, and then fine-
tuned the pretrained models on a test task Tox21 [46].
The transferability of MCPINN was evaluated in terms
of initial performance, speed of convergence, and highest
performance using two metrics for validation MCC and
PRC. Therefore, this study contributes to “the complete

modelling of CPI space” [20] by full use of representation
ability of DNNs as a classifier, a feature extractor, and an
end-to-end learner and additionally by transferring the
generalized representations from training tasks to test
task.

Results and discussion
Investigating the representation learning ability
The first part of this study focuses on the representation
learning ability of MCPINN. To figure out the contribu-
tion of each feature on the predictive performance of
the model, MCPINN was evaluated with fifteen combi-
nations of feature pairs, which contained six pairs from
single-channel features and nine pairs from multi-chan-
nel features. There are three features for compounds:
SMILES, ECFP, and Mol2vec, where SMILES is a low-
level representation. The performance based on the fea-
ture concatenated ECFP and Mol2vec was evaluated but
omitted because the concatenated feature models did
not provide improvement in performance compared to
the Mol2vec or ECFP models separately (as can be seen
in Additional file 1: Table S2). Two features are used for
proteins: ProtVec and the amino acid sequence which
is a low-level representation. For low-level representa-
tions (SMILES and amino acid sequence) Dilated CNN is

Fig. 1 Schematic representations of Multi-channel PINN (MCPINN). MCPINN utilizes the three approaches of DNN in terms of a classifier, a feature
extractor, and an end‑to‑end learner. MCPINN can incorporate both low and high level representations in a single model

Page 4 of 16Lee et al. J Cheminform (2019) 11:46

applied as an end-to-end learner. Recurrent Neural Net-
work models were also trained but omitted due to their
poor performance, which can be seen in Additional file 1:
Figures S1 and S2.

There are fifteen models based on the combinations
of feature pairs and are listed in Table 1 with shortened
names. The models were evaluated on a benchmark data-
set [38] using two metrics for validation the Matthew
Correlation Coefficient (MCC) and Receiver Operating
Characteristic Area Under the Curve (ROC).

Comparison between single‑channel models
Above all, to investigate the effect of each feature on
the predictive performance of the model, the six feature
pairs are explored with Single-channel PINN (SCPINN).
SCPINN is a basic model that is fed with only one fea-
ture for each protein and compound respectively as
shown in Table 1. The prediction performance of each
model is shown in Fig. 2. The average performance of
SCPINN models was an MCC of 0.636 ± 0.03 and a ROC
of 0.892 ± 0.02. Overall the differences in performances
between the metrics scores were similar to each other.
It is observed that the biggest difference in performance
between the SCPINN models was the use of a high-level
representation (ECFP and Mol2vec) in the chemical fea-
ture instead of a low-level representation (SMILES). For
example, the average performance of the models using
ECFP and Mol2vec for compounds was an MCC of 0.66
± 0.008 and a ROC of 0.90 ± 0.004, while the average
performance of the models using SMILES was an MCC
of 0.60 ± 0.014 and a ROC of 0.87 ± 0.007.

On the other hand, the models using ProtVec did not
outperform the models using amino acid sequence with

Dilated CNN for the overall models, regardless of the
types of chemical features used. The average MCC of
models using amino acid sequence was 0.646 (± 0.023)
and mean ROC was 0.896 (± 0.011), while the average
MCC of models using ProtVec was 0.627 (± 0.029) and
the mean ROC was 0.887 (± 0.015).

This difference in performance seems to be based on
whether or not the feature extraction method is able to
capture the order of the amino acid sequences in the fea-
ture vector, in addition to the content itself. The Dilated
CNN model can featurize the entire sequence of a pro-
tein in terms of the order and content, whereas ProtVec
has a limitation in that it does not reflect the order of
the sequence in the feature vector. ProtVec divides the
sequence into N-grams to make the word units, per-
forms individual embedding on each N-gram word, and

Table 1 The shortened names for combinations of features for SCPINN and MCPINN

Model name Channel type Compound feature Protein feature

SC1 Single‑channel SMILES AA sequence

SC2 SMILES ProtVec

SC3 Mol2vec AA sequence

SC4 Mol2vec ProtVec

SC5 ECFP AA sequence

SC6 ECFP ProtVec

MC1 Multi‑channel for protein SMILES AA sequence and ProtVec

MC2 Mol2vec AA sequence and ProtVec

MC3 ECFP AA sequence and ProtVec

MC4 Multi‑channel for compound SMILES and Mol2vec AA sequence

MC5 SMILES and Mol2vec ProtVec

MC6 SMILES and ECFP AA sequence

MC7 SMILES and ECFP ProtVec

MC8 Multi‑channel for both features SMILES and Mol2vec AA sequence and ProtVec

MC9 SMILES and ECFP AA sequence and ProtVec

Fig. 2 Comparison of predictive performance between SCPINN. On
the left y‑axis the MCC is shown, while on the right y‑axis the ROC
score is shown and error bars indicate SEM. Mean MCC is 0.636 (±
0.03) and mean ROC is 0.892 (± 0.02)

Page 5 of 16Lee et al. J Cheminform (2019) 11:46

then sums up all the embedding vectors regardless of the
orders. Therefore, different proteins could have the same
embedding vectors with ProtVec, provided the same
N-grams are used.

Secondly, there is room to improve operations in
Mol2vec and ProtVec to prevent incorrect representa-
tions of embedded compounds and proteins. In Mol2vec
and ProtVec, the sum operation reconstructs embedded
word vectors (i.e. Morgan substructure or N-gram amino
acid sequence) into a sentence vector (i.e. compound or
protein). Since the number of sum operations is depend-
ent on the number of words in the sentence, applying
these operations can significantly alter the embedded
value of the sentence, regardless of the actual meaning of
the sentence. To prevent information distortion, the sum
operation in Mol2vec and ProtVec should be improved.
Therefore, in the next section, we first refine the sum
operation.

Improving Mol2vec and ProtVec
To refine the sum operation in Mol2vec and ProtVec, we
tested two types of weighted average operations, which
are arithmetic mean and Term Frequency Inverse Doc-
ument Frequency (TF-IDF) [47]. The former sets the
weight of each word according to the length of the sen-
tence while the latter sets the weight of each word by
TF-IDF (see "Methods and materials" section). Table 2
shows the predictive performance of nine combinations
of feature pairs using the original methods and the pro-
posed methods for both Mol2vec and ProtVec. The pro-
posed methods performed better than original methods
with the exception of the arithmetic mean method on
proteins. The best method for Mol2vec is the arithmetic
mean method having an average MCC of 0.659 ± 0.013
and an average ROC 0.906 ± 0.004, compared to TF-IDF
weighted average method (MCC of 0.657 ± 0.013 and
ROC of 0.903 ± 0.002), and the original methods (MCC
of 0.649 ± 0.014 and ROC of 0.903 ± 0.006). For ProtVec,
the TF-IDF weighted average method outperformed the
other models with an average MCC of 0.673 ± 0.04 and
an average ROC of 0.909 ± 0.003. Among all of the usage
of Mol2vec and ProtVec, the best performing feature pair
is arithmetic mean method for the former and TF-IDF
weighted average method for the latter, where the usage
of the pair showed an MCC of 0.678 ± 0.002 and a ROC
of 0.912 ± 0.002.

It is observed that these improved methods can more
accurately capture the contents of each compound and
protein. The sentences (i.e. compounds and proteins)
within each document (i.e. bioactivity dataset) have spe-
cific contexts and characteristics, which the entire corpus
set (i.e. ZINC and UniProt) cannot represent. In particu-
lar, TF-IDF assigns a weight to each word in a sentence,

so that TF-IDF weighted average method is able to more
finely capture the characteristics and contexts inherent in
the document.

In the case of Mol2vec, the TF-IDF weighted average
method has a slightly lower performance than the arith-
metic mean method. It seems that the TF-IDF weights
from a specific document can be used to bias the infor-
mation toward the document and reduce the gener-
alization performance. In summary, all words were first
embedded within the whole corpus, and then sentences
were represented by weighting each word through a doc-
ument. As a result, SC4 performed better than original
one, where MCC increased to 0.678 from 0.642 and ROC
increased to 0.912 from 0.900.

Comparing the performance of multi‑channel models
To figure out the synergy effects of a combination of both
low and high level representation, the nine MCPINN
models based on multi-channel feature pairs are evalu-
ated as shown in Table 1. In order to improve the read-
ability of this paper, the three multi-channel features
are abbreviated as follows: ProtVec with amino acid
sequences is ProtVecAA , Mol2vec with SMILES strings
is Mol2vecSS , ECFP with SMILES strings is ECFPSS . It
is observed that the effect of multi-channel was differ-
ent between proteins and compounds, as shown in Fig. 3.
In the case of protein features, it was observed that the
usage of ProtVecAA performed better than the oth-
ers (average MCC of 0.658 ± 0.03 vs. 0.649 ± 0.03 and
average ROC of 0.902 ± 0.02 vs. 0.897 ± 0.02). End to
end learning channel with Dilated CNN seems to mainly
represent the order (sentence level) of the amino acid
sequence, while ProtVec channel represents the impor-
tance (word level) of each amino acid sequence in the
protein. This suggests that the proposed multi-channel
architecture can utilize both channels to capture features
from both sentence and word perspectives for proteins.

Contrary to expectations, multi-channel models for
compounds demonstrated very different results between

Table 2 Comparison of SC4 ’s performance obtained
by different methods in Mol2vec and ProtVec

Mol2vec ProtVec MCC ROC

Mean Sum 0.652 (± 0.004) 0.905 (± 0.002)

Mean Mean 0.648 (± 0.003) 0.902 (± 0.003)

Mean TF‑IDF 0.678 (± 0.002) 0.912 (± 0.002)

TF‑IDF Sum 0.651 (± 0.003) 0.904 (± 0.003)

TF‑IDF Mean 0.644 (± 0.002) 0.901 (± 0.002)

TF‑IDF TF‑IDF 0.674 (± 0.004) 0.905 (± 0.002)

Sum Sum 0.642 (± 0.005) 0.900 (± 0.003)

Sum Mean 0.636 (± 0.003) 0.898 (± 0.003)

Sum TF‑IDF 0.668 (± 0.002) 0.911 (± 0.002)

Page 6 of 16Lee et al. J Cheminform (2019) 11:46

the usage of ECFPSS and Mol2vecSS . For example, the
usage of ECFPSS performed only slightly better than the
usage of ECFP (MCC of 0.670 ± 0.004 vs. 0.669 ± 0.005
and ROC of 0.907 ± 0.002 and 0.906 ± 0.003). Moreover,
the models using Mol2vecSS performed worse than the
models using Mol2vec, where the average MCC dropped
to 0.65 (± 0.002) from 0.68 (± 0.006) and the average
ROC dropped to 0.89 (± 0.001) from 0.91 (± 0.003). In
addition, the usage of Mol2vecSS also resulted in lower
training performance than ECFPSS , where the average
training performance was an MCC of 0.97 ± 0.006 for the
models using ECFPSS and an MCC of 0.95 ± 0.007 for the
models using Mol2vecSS . Therefore, a careful selection of
representations is required to achieve better performance.

These results suggest that the richness of the features of
compounds highly depend on the base representations.
For example, compounds are represented in the form of
a two-dimensional graph as the raw data for ECFP and
Mol2vec, where they divide the graph into substructures
and define each part to extract compound features. In
contrast, Dilated CNN extracts features from an one-
dimensional SMILES strings and it seems to capture less
generalized representations from the strings compared
to the representations from ECFP and Mol2vec. In this
study, sequence data was used for the multi-channel
architecture but there are a variety of other data types
that can be embedded and used for a new channel. There-
fore, the more embedding methods applied to a variety of
data types such as graphs [48], heterogeneous networks
[49], and nodes [50], the more biological and molecular
information (i.e. pathway and drug–drug interactions)
can be fully utilized for drug discovery, poly-pharmacol-
ogy, side-effect prediction, and drug resistance.

Ranking the features and models
We compared and ranked fifteen models including the
six SCPINN models and the nine MCPINN models intro-
duced above. To compare between the models, we calcu-
lated two z-scores for each model and metric (MCC and
ROC) and averaged them as shown in Fig. 4 and Table 3.
To verify the validity of the difference between the
z-scores, the following statistical tests were performed:
the paired Student’s t Test and the F Test.

Among the chemical features, the usage of Mol2Vec
showed the best performance with an average z-score
of 0.94 ± 0.01 , compared to ECFPSS (0.57± 0.02), ECFP
(0.53± 0.02), Mol2vecSS (− 0.25± 0.06), and SMILES
(− 1.79± 0.02). For the Student’s t test, the usage of
Mol2vec and SMILES are shown to significantly differ
from all other features with a p value < 0.05 . Likewise,
the usage of ECFPSS and ECFP differs significantly from
all features with a p value < 0.05 with the exception of the
usage of Mol2vecSS , where the p value is 0.06 and 0.07
respectively (Additional file 1: Table S3). For the F Test,
the differences in variances are also noticeable from all
features with a p value < 0.05, with the exception of ECFP
and ECFPSS , where the p value is 0.38 for each other
(Additional file 1: Table S4). Therefore, Mol2vec and
Mol2vecSS showed significant differences in performance
of both mean and variance, while ECFP and ECFPSS
showed significant differences in mean performance.

Among the protein features, the usage of ProtVecAA
outperformed the other features with an average z-scores
of 0.21 (± 0.009), compared to ProtVec (− 0.14 ± 0.008)
and AA sequence (− 0.08± 0.001). It is observed that the
usage of ProtVecAA performed better than the others in
terms of means and variances with a p value < 0.05, while

Fig. 3 Comparison of predictive performance between MCPINN. On the left y‑axis the MCC is shown, while on the right y‑axis the ROC score is
shown and error bars indicate SEM. Mean MCC is 0.658 (± 0.02) and mean ROC is 0.902 (± 0.009)

Page 7 of 16Lee et al. J Cheminform (2019) 11:46

ProtVec and AA sequence did not differ significantly (p
value is 0.21 and 0.06 for the means and variances respec-
tively (Additional file 1: Tables S5, S6). It is observed that
there are considerable synergy effects of multi-channel
for proteins. Therefore, these statistical results indicate
that the usage of Mol2vec and ProtVecAA outperformed
the usage of the other features.

The best model was MC2 with a z-score of 1.22
(± 0.001), followed by SC4 with a z-score of 0.93
(± 0.020), and MC9 with a z-score of 0.75 (± 0.017). It is
observed that there were significant differences between

the highest model and the lowest model compared to the
other models (as can be seen in Additional file 1: Tables
S7, S8). For example, for the Student’s t test MC2 and SC2
were shown to significantly differ from all other models
with a p value < 0.05. Likewise in variance MC2 and SC2
were significantly different from the other models with
the p value < 0.05. So far we have only looked into the
highest performance. In the next section we look further
into initial performance and the speed of convergence.

Comparing convergence speed
In addition to the maximum performance, also notice-
able are the differences in initial performance and con-
vergence speed between SCPINN and MCPINN. Initial
performance was measured by the performance at the
first epoch and the speed of convergence was measured
by the actual run time at 98% of the highest performance
of the model. In order to compare the convergence speed
of each model more precisely, we mainly measured actual
run time and secondarily labeled the number of epochs.
For more information about convergence speed against
training epochs, refer to the Additional file 1: Figure
S3. The machine specifications for the experiments are
described in "Methods and materials" section—Hard-
ware used. There are more thresholds that were tested
for convergence performance such as 95% , 98% , and 99%
in Additional file 1: Table S9. The top 3 performing mod-
els (MC2 , SC4 , and MC9) and baseline model (SC1) were
compared. Each model showed differences in the number
of parameters, training time on an epoch, and the per-
formance but there appears to be no direct correlations

Fig. 4 Comparison of the mean z‑scores obtained by the different models and error bars indicate SEM. Bars are colored by compound features,
which are blue bars for Mol2vec, green bars for ECFPSS , yellow bars for ECFP, purple bars for Mol2vecSS , and grey bars for SMILES. The bars
highlighted with red border indicate the usage of ProtVecAA , which demonstrates better performance than other protein features

Table 3 Comparison of performance between models
expressed as z-scores per experiment

Model MCC ROC Average SEM

MC2 1.22 1.22 1.22 0.001

SC4 0.91 0.95 0.93 0.020

MC9 0.77 0.73 0.75 0.017

MC3 0.72 0.75 0.74 0.018

SC3 0.69 0.65 0.67 0.020

MC7 0.64 0.58 0.61 0.027

SC6 0.64 0.58 0.61 0.030

MC6 0.36 0.32 0.34 0.027

SC5 0.30 0.20 0.25 0.050

MC8 − 0.18 − 0.04 − 0.11 0.069

MC5 − 0.34 − 0.26 − 0.30 0.038

MC4 − 0.42 − 0.27 − 0.34 0.074

MC1 − 1.50 − 1.55 − 1.53 0.027

SC1 − 1.58 − 1.63 − 1.60 0.027

SC2 − 2.24 − 2.25 − 2.24 0.004

Page 8 of 16Lee et al. J Cheminform (2019) 11:46

between them (as can be seen Additional file 1: Fig-
ures S4 and S5).

It is observed that MCPINN performed better than
SCPINN in terms of initial performance and conver-
gence speed as shown in Fig. 5. Initial performance was
an MCC of 0.47 ± 0.004 for MC9 , 0.43 ± 0.005 for MC2 ,
0.40 ± 0.003 for SC1 , and 0.38 ± 0.016 for SC4 . The time
it took to reach 98% of the highest performance was 11
min (18 epochs) for MC9 , 41 min (113 epochs) for MC2 ,
50 min (102 epochs) for SC1 , and 55 min (201 epochs) for
SC4 . SC4 and MC9 showed the most contrasting differ-
ences in the convergence speed and the highest perfor-
mance. Even though the former performed a little better
than the latter in performance with an MCC of 0.678 ver-
sus 0.674, it took 104 min to outperform the latter.

While the exact cause in these differences cannot be
proven, it seems that low-level representations from
Dilated CNNs contributed to a non-negligible portion
in these differences between the models. Because it is
worthwhile examining these differences between the
models, let us discuss these phenomena in the perspec-
tive of the information bottleneck (IB) theory of deep
learning [51]. The authors claim that “DNNs undergo
two distinct phases which consist of an initial fitting/
memorizing phase and a subsequent compression/for-
getting phase, which is related to the high generalization
performance of DNNs” [51]. In this point of view, fol-
lowing explanations can help account for differences in
convergence speed: (1) multi-channel architecture can
help to construct better representations and reduce the
length of two phases because there is little information to
be compressed or forgotten. (2) single-channel architec-
ture generally need more training to discover appropriate
representations for both fitting phase and compression

phase, because there are not enough features. In sum-
mary, multi-channel architecture can improve conver-
gence speed as well as the performance.

Exploring the potential of transfer learning
While this study has focused on representation ability
of MCPINN in terms of the performance and conver-
gence speed, this section further explores the transferable
ability of MCPINN to generalize representations from
training tasks to related testing tasks. To test whether
MCPINN can capture general information for com-
pounds and proteins, we pretrained MC2 on the bench-
mark dataset and finetuned the model on Tox21 dataset
[46]. In order to improve the readability of this section,
the pretrained models are abbreviated as follows: PMi ,
where i is the number of epochs pretrained on training
task, so non-pretrained model is PM0 . PMi was finetuned
on the Tox21 training set with early stopping on the vali-
dation set and evaluated on the test set, where the Tox21
dataset was split as suggested by DeepChem [52].

It should be noted that the two datasets are distinct,
where the benchmark dataset is based on biophysics,
while the Tox21 dataset is based on physiology [53].
The benchmark dataset, obtained from ChEMBL [41],
focused on bioactivity of small molecules, while Tox21
measured toxicity results in nuclear receptor and stress
response pathways in human body. Because Tox21 data-
set is strongly imbalanced dataset with the percentage of
positives being 7.49% (5957 positives from 79,585 all data
points), the performance of models was measured using
MCC and Precision–Recall AUC (PRC) instead of ROC,
where PRC can provide more accurate prediction when
applied to imbalanced classification scenarios [54].

To investigate the potential of transferability of
MCPINN, we have compared the performance of the
models pretrained in different epochs in terms of high-
est performance, initial performance, and convergence
speed [55, 56]. First, pretrained models performed
higher than non-pretrained model. The non-pretrained
model PM0 had an MCC of 0.43 and a PRC of 0.48 as
shown in Fig. 6. The pretrained models from PM30 to
PM110 outperformed PM0 with a paired t test p value
< 0.05 for both MCC and PRC with an exception of
PM85 , where the p value was 0.053 (Additional file 1:
Table S10). It is observed that the overall performance
of the models rose up to PM55 and then declined, where
it seems that the decline is because of overfitting on the
training task dataset.

In contrast, there were small differences in initial per-
formance and convergence speed between the models.
We looked into the finetuning phase of the three mod-
els including PM0 , PM55 , and PM135 , in order to inves-
tigate the generalization performance according to the

Fig. 5 Comparison of convergence performance between two
MCPINN and two SCPINN. The plot shows the Matthews Correlation
Coefficient of models on y‑axis against the actual training time in
minutes on the x‑axis

Page 9 of 16Lee et al. J Cheminform (2019) 11:46

number of pretraining epochs, As shown in Table 4 and
Fig. 7, PM0 performed slightly better than other models
until finetuning epoch 10, but the performance became
lower than other models as finetuning continued. For
example, initial performance was an MCC of 0.16 ±
0.03 for PM0 , 0.11 ± 0.02 for PM55 , and 0.08 ± 0.03 for
PM135 . After finetuning epoch 11, PM55 started to out-
perform PM0 and PM135 did so after finetuning epoch
40. In addition to initial performance, it is observed
that there were similar performance in convergence
speed between models. The number of finetuning
epochs to reach 95% of the highest performance was 46
finetuning epochs for PM55 , 56 finetuning epochs for
PM135 , and 60 finetuning epochs for PM0.

From the results we can see there is still room for
improvement. The aim of transfer learning based on
PCM methods is high performance with minimum fine-
tuning. Due to the flexibility of PCM method, MCPINN
can predict any CPI pairs, while the performance with-
out finetuning was poor as can be seen in initial perfor-
mance of each model. Since there are still a lot of small
molecules with only a small amount of bioactivity data,
further study of transferring general information cover-
ing CPIs space is required.

Conclusions
In this paper we proposed a novel multi-channel PINN
(MCPINN) based on PCM methods to fully utilize CPI
data. MCPINN utilizes three approaches of DNNs which
are a classifier, a feature extractor, and an end-to-end
learner to maximize the representation learning ability.
We evaluated full combinations of feature pairs to inves-
tigate the effects of each pair. We also compared SCPINN
and MCPINN in terms of initial performance and the
speed of convergence. In addition to improving the mod-
els within a high quality and well balanced dataset, we
explored the transferable ability of MCPINN to general-
ize representations from training tasks to related testing
tasks, which consist of a strongly imbalanced dataset. To
the best of our knowledge, MCPINN is the first method
to incorporate low and high level representations in a
single model.

As discussed above, our results lead to a number of
conclusions. For Mol2vec and ProtVec, we suggested
that a weighted average operation is a better alternative
to the sum operation in representing compounds and
proteins. MCPINN using the feature pair of ProtVecAA
and Mol2vec outperformed all other models with sta-
tistically significant differences. The usage of ProtVecAA
performed better than others. It suggested that a multi-
channel architecture can utilize both channels to capture
the order and the content of amino acid sequences. The
usage of Mol2vec showed statistically significant differ-
ences from the other features for compounds. In particu-
lar, the multi-channel models using Mol2vecSS performed
worse than the single-channel models using Mol2vec
separately. Depending on the combination of compound
and protein features, multi-channel models did not guar-
antee better performance than single-channel models,

Fig. 6 Comparison of finetuning performance between different
pretrained models (PMi), where i is the number of pretraining epochs.
On the left y‑axis the MCC is shown, while on the right y‑axis the PRC
score is shown against the number of pretraining epochs on x‑axis

Fig. 7 Comparison of convergence speed between models PMi ,
where i is the number of pretraining epochs. The plot shows the MCC
of models on y‑axis against the number of finetuning epochs on
x‑axis. There were small differences in convergence speed between
models

Table 4 Comparison performance between different
finetuning epochs for models (PMi)

Models Finetuning epoch
1

Finetuning epoch
11

Finetuning epoch
40

PM55 0.11 ± 0.02 0.35 ± 0.01 0.43 ± 0.01

PM135 0.08 ± 0.03 0.32 ± 0.02 0.41 ± 0.02

PM0 0.16 ± 0.03 0.34 ± 0.01 0.40 ± 0.01

Page 10 of 16Lee et al. J Cheminform (2019) 11:46

so a careful selection of representations is required to
achieve better performance.

The multi-channel architecture can improve initial per-
formance and convergence speed. It seems that the archi-
tecture can help to construct better representations and
reduce the length of training phase based on memorizing
phase and forgetting phase in terms of IB theory of deep
learning. Additionally, we explored the potential of trans-
ferability of MCPINN in terms of initial performance,
speed of convergence, and highest performance. Pre-
training on training task improved highest performance,
while it did not improve convergence speed and initial
performance. It seems that there is room for improve-
ment to transfer the generalized representations from
training tasks to test task.

In conclusion, MCPINN can improve the representa-
tions in terms of initial performance, convergence speed,
and highest performance. Moreover, we expect that more
biological and molecular information can be utilized as a
part of multi-channel for various tasks such as drug dis-
covery, poly-pharmacology, side-effect prediction, and
drug resistance.

Methods and materials
Datasets
A high quality dataset [38] was employed as a benchmark
dataset for the training task. Fifteen models are evaluated
on the benchmark dataset. The dataset covers 0.13% of
the total available bioactivity matrix space in ChEMBL,
where there are 314,767 observations from 250,412,295
possible data points produced by 204,085 compounds
and 1227 protein targets. Percentage of the positives in
the dataset is 54.7%. We used Tox21 dataset for the test
task in transfer learning. Tox21 dataset has been used in
the 2014 Tox21 Data Challenge, where there are 79,585
measurements for 8014 compounds on 12 different tar-
gets. Tox21 dataset is strongly imbalanced and the per-
centage of positives is 7.49%.

DNNs try to minimize differences in the distribution
of data between the prediction and target due to the
usage of cross entropy as loss function. Therefore, train-
ing models on imbalanced data is a challenge. One of
the basic solutions is to set higher weights on the posi-
tives than the negatives. In addition, it is also difficult to
appropriately split the dataset into a training set, a valida-
tion set, and a test set. Therefore, we used the data split-
ting method and the weight value for the positive classes
as suggested by Deepchem [52].

High level representation descriptors
We used Extended-Connectivity Fingerprints with diam-
eter of 4 (ECFP4), Mol2vec [42], and ProtVec [43] to
get high level representations. ECFPs is one of the most

popular representation in cheminformatics and ECFP4
have shown promising performance among various fin-
gerprints [57]. RDkit [58] was used for ECFP4 with 1024
dimensional binary vector.

ProtVec and Mol2vec are unsupervised machine learn-
ing approaches for embedding proteins and compounds.
These algorithm are inspired by a technique called Word-
2Vec [59] in Natural Language Processing (NLP). As a
metaphor by NLP, molecules and proteins are considered
as sentences. Morgan substructures and N-gram amino
acid sequences are considered as “words”, and large-scale
databases such as ZINC [44], ChEMBL [41] and UniProt
[45] are considered as large corpus datasets.

For the protein embedding model, we train the embed-
ding model on protein sets obtained from UniProt
(release 2017_09) and ChEMBL (version 23). All dupli-
cate sequence and same protein id with various amino
sequences are removed. The number of sequences for
training embedding model is 553,195. The embedding
model is based on Skip-gram model and the model is
trained with following hyperparameters: dimension of
the representation is 300, window size is 35, and mini-
mum count is 2. In Tox21, the target “SR-MMP” has
no amino acid sequences, so the embedding value is
zeros. Molecular corpus dataset, obtained from ZINC
and ChEMBL (version 23), contains about 19.9 mil-
lion compounds using the approach suggested in [42],
and we used a pretrained embedding model the authors
proposed.

Embedded sentences are composed of the group of
embedded words. We build two types of weighted aver-
age methods, which are arithmetic mean and TF-IDF
weighted average method, to refine the original sum
method. The original sum method is as followed:

where Ssum is a embedded sentence produced by the
method, N is the number of words in the sentence, and
wi is a ith embedded word in the sentence. However, the
number of sum operations is dependent on N of each
sentence, so it can alter the embedded sentence, regard-
less of the actual meaning of the sentence. Instead, arith-
metic mean method is as followed:

where Smean is a embedded sentence produced by the
method. This method divides each word by the length of
the sentence. Therefore, the same word can have different

Ssum =
N
∑

i=1

wi

Smean =
1

N

N
∑

i=1

wi

Page 11 of 16Lee et al. J Cheminform (2019) 11:46

embedded value in each sentence due to the differences
in length.

Moreover, TF-IDF [47] weighted average method is as
followed:

where Stf−idf is a embedded sentence produced by the
method and tw stands for TF-IDF weight value for a word
w. This method sets the importance of each word by TF-
IDF, so the same word has same embedded value in every
sentence. To calculate weight value of TF-IDF, scikit-
learn (version 0.19) is used based on compounds and
proteins in benchmark dataset and Tox21.

Low level representation descriptors
We used low-level representation data for end-to-end
learning models, where they are amino acid sequences
for proteins and SMILES strings for compounds. Both
sequences were tokenized and then encoded into one-
hot binary vector with fixed length. Tokenizing process
produced 24 single characters from the proteins and 57
single characters for SMILES as suggested in [60], where
the characters are extracted from benchmark dataset and
the Tox21 dataset. The tokenized strings were converted
into one-hot encoded representations, which assign the
corresponding single token to one and the others to zero.
In order to use the sequences as an input for the machine
learning model, we set the sequences to a fixed length
with post truncation or zero-padding. If the sequences
are longer than the fixed length, they are trimmed by
removing from the end of sequences to the fixed length,
unless they are filled with zero from the end of the
sequences to the fixed length. In determining the fixed
length of sequences, there is a trade-off between informa-
tion preservation and computational efficiency. We chose
the fixed length 100 for compounds and 700 for proteins,
where a percentile of 75% for SMILES strings is 63.0 and
a percentile of 75% for amino acid sequences is 712.2 as
shown in Figs. 8 and 9.

Transfer learning
Transfer learning focuses on whether machine learn-
ing model can transfer generalized representations from
training tasks to a different but related test tasks. While
there are several factors that affect finetuning methods,
two important factors are generally considered [55, 56].
The factors are the size of the test task’s dataset (i.e. small
or large) and similarity of test task (i.e. the content of data
or classes and balance of data or classes). There are four
basic strategies to finetune the pretrained models on test

Stf−idf =
N
∑

i=1

twwi

tasks as followed: (1) If the dataset of test task is large
and the task is very similar to training task, finetuning
full networks is suggested since the risk of overfitting is
low. This case is expected to demonstrate promising per-
formance. (2) If the dataset of test task is large and the
task is very different from the training task, there are two
options which are finetuning full networks or not pre-
training the model on the training dataset. In practice,
it is suggested to finetune the full networks to reduce
training time. (3) If the dataset of test task is small and
the task is very similar to the training task, finetuning full
networks is not suggested due to the risk of overfitting.
Instead, it is suggested to finetune the simple classifier to
avoid overfitting. (4) If the dataset of test task is small and
the task is very different from the training task, a simple
classifier is not suggested due to the differences between
tasks. It is suggested to initialize the top layers and freeze
the other layers to finetune the layers and classifier, since
the top layers contain more task-specific representations.

The benchmark dataset is four times larger than Tox21
dataset and the tasks are different in terms of biophys-
ics versus physiology as categorized in [53]. Moreover,
the benchmark dataset is balanced, while Tox21 dataset

Fig. 8 SMILES string length distribution

Fig. 9 Amino acid sequence length distribution

Page 12 of 16Lee et al. J Cheminform (2019) 11:46

is strongly imbalanced, where the percentage of posi-
tives is 7.49% (5957 positives from 79,585 all data points).
Therefore, this study corresponds to the fourth scenario.
We pretrained the models on training dataset and then
finetuned the pretrained models for every 5 pretrain-
ing epoch. The pretraining epoch is 140 and finetuning
epoch is 200 with early stopping.

DNNs
All DNN models are created using Keras [61] and Ten-
sorflow [62]. We tested various architectures, parameters,
and hyperparameters to optimize DNN models in initial
cross-validation phase as shown in Table 5. All tested
models were validated with five-fold cross-validation on
validation data (20% of training data) for 400 epochs with
early stopping in order to find the optimal network con-
figuration. Then the optimal model was trained on the
full training data and evaluated on test data.

Adam is generally used in DNNs due to efficient and
fast training performance because the step size is not
affected by the value of the gradient. We used the hyper-
parameters 0.9 for β1 and 0.999 for β2 as suggested [63].
However, learning rate was 0.0005 and weight decay was
not zero to achieve more stable training, where weight
decay reduces the learning rate over each update. Since
the benchmark dataset is very sparse, small batch size
can mislead the training model to local optimum. There-
fore, we set mini-batch size 1024 for the generalized
performance as suggested [64]. All weights and biases
were initialized from a uniform distribution within
[−

√

3/fanin,
√

3/fanin] , where fanin is the number of
input units in the weights, which is called Lecun uniform

distribution. Lecun uniform distribution performed bet-
ter than random uniform distribution and truncated
normal distribution in terms of performance and conver-
gence speed, because it leads to efficient backpropagation
calculations [65].

Rectified linear (ReLU) units are commonly used in
DNNs because they do not suffer from vanishing gradi-
ent and their training speed is fast. However, ReLU units
ignore the negative values, so there is information loss
called “dying ReLU” [66]. Exponential linear units (ELU)
[67] was introduced to solve the problem. ELU and ReLU
are in identity function form for non-negative inputs,
but for negative inputs, they are different, where if x < 0 ,
f (x) = α(ex − 1) for ELU and f (x) = 0 for ReLU. ELU
can capture information in the negative value. Therefore,
we used following parameters for the final DNN models:
(1) as an optimizer Adam with 0.9 beta 1 and 0.999 beta
2 is used as suggested [63], (2) learning rate is 0.0005,
(3) number of epochs is 500, (4) mini-batch size is 1024,
(5) Lecun uniform distribution, (6) the weight decay is
0.00001, (7) activation function is ELU.

DNNs: end‑to‑end learning
We built three types of end-to-end DNNs based on con-
volution neural networks (CNN) and recurrent neural
networks (RNN). RNN is designed to learn sequential
data and CNN has multiple filters which are incorpo-
rated with each other to discover various representations.
These model have shown promising performance for
sequential data in various domains. Among RNN models,
long short-term memory (LSTM) [68] and bidirectional
LSTM (BLSTM) [69] have outperformed conventional

Table 5 Architectures, parameters, and hyperparameters explored for DNNs

Base model Value Description

PINN Separated layers 1, 2, 3, 4 The number of separated layers for PINN

Concatenated layers 1, 2 The number of concatenated layers for PINN

Number of nodes 256, 512, 1024, 2048 The number of nodes for layers

Dilated CNN Filters 4, 8, 16, 32 The number of filters for Dilated CNN

Kernel size 6, 8, 12, 22 The length of the convolution window for Dilated CNN

Embedding 16, 32 Dimension of dense embedding for low level representations

LSTM, BLSTM Units 128, 256 The units to represent hidden layers for RNN

DNN Lr 0.0005 Initial learning rate

Initializer [−
√

3/fanin ,
√

3/fanin] Initial weight value called Lecun uniform distribution

Optimizer Adam Optimizer for stochastic gradient descent

Weight decay 0.0, 0.00001 Learning rate decay over each update

Activation function ReLU, ELU Neuron activation function

Drop out 0.25, 0.5 The rate of drop out

Batch 1024 Batch size for training

Epochs_training 400 Training epochs on a training task

Epochs_finetune 200 Finetuning epochs for a pretrained model on a test task

Page 13 of 16Lee et al. J Cheminform (2019) 11:46

models (i.e. Hidden Markov model) and recent proposed
models (i.e. Gated Recurrent Unit) over two decades [70].
LSTM is a recurrent neural network model with explicit
memory cell. Due to the memory cell, LSTM can remem-
ber or forget long-term dependencies needed for tasks.
The memory cell is carefully regulated by four modules,
which are input gate, forget gate, output gate, and cell
update. Bidirectional LSTM (BLSTM) is a variant version
of LSTM. BLSTM has two LSTMs which go in oppo-
site directions, forward and backward. The two features
complement each other and contribute to performance
improvement.

We used dilated convolution neural networks (Dilated
CNN) [71] among end-to-end learners. Dilated CNN is
a convolution neural networks with skip layers. Conven-
tional CNN learns long-term dependency by reducing
the size of the data, but it results in information loss. In
contrast, Dilated CNN can learn long-term dependency
efficiently with skip layers. The layers have wider recep-
tive fields compared to conventional layers. The size of
kernel is the length of the convolution window and it
affects the long-term dependency of given sequences.
The basic suggestion is a small kernel size (i.e. 3) to
achieve efficient training and less number of parameters
[72]. However, we chose larger size of kernel, since Pro-
tVec and Mol2vec already captured the features in terms
of local perspective.

The number of filters determines depth of the output
volume called feature map, which is the result of the
convolution layer. If the number of filters is too large the
model can suffer from overfitting, otherwise the model
can suffer from underfitting. In computer vision domain,
the number of filter is large but we tested smaller num-
bers of filter due to the sparseness of CPI data space. The
embedding layer is the first layer for one-hot encoded
vectors. The dimension size 32 and 16 was tested, but
there were little differences in performance. Therefore,
the final value of network architecture and hyperparame-
ters for Dilated CNNs were (1) the number of filters is 16,
(2) the kernel size is 12, (3) an embedding layer with 16
dimension is used to reduce the number of parameters,
and (4) valid padding to reduce the shape of the feature
maps in each layers.

For LSTM and BLSTM, the final value of network
architecture and hyperparameters were: (1) units are 256,
which is the dimensionality of output, (2) set forget bias
as suggested [73].

DNNs: pairwise input neural networks
Pairwise input neural network (PINN) is used for
MCPINN and SCPINN. PINN is a variation of feedfor-
ward neural networks and is a more suitable architecture
for PCM methods. It consists of separated layers with two

input and concatenated layers. For MCPINN, all channels
are merged in the concatenated layer as shown in Fig. 1.
Since the separated layers are independently composed
without connection from other layers, each input chan-
nel layers build representations independently for each
input. Moreover, the architecture can balance the ratio of
each feature by controlling the number of nodes in the
last separated layers. For example, although the input
dimension of ECFP is 1024 and the input dimension of
ProtVec is 300, the dimension of each representation is
the number of nodes in the last separated layers. In con-
trast, DNNs can be biased to the feature of larger input
dimensions.

We normalized the high-level representations with
zero mean and unit variance to achieve stable train-
ing, because outliers can degrade the performance of
machine learning algorithms in terms of prediction,
learning speed, and the convergence of the algorithms.
In particular, many gradient based algorithms (i.e. deep
learning) are often designed with the assumption that
input data is nearly standardized data, which is generally
obtained by subtracting the mean and scaling the data to
unit variance. We tested separated layers from 1 to 4 and
concatenated layer from 1 to 2. The number of concat-
enated layer is 1 for both SCPINN and MCPINN, but the
number of each separated layers is 2 for SCPINN and 1
for MCPINN to reduce overfitting, where the parameters
of end-to-end channel was added in MCPINN. To pre-
vent overfitting, we used 10% dropout on initial layer and
50% on hidden layers and early stopping.

In our experiments, the final value of network architec-
ture and hyperparameters for PINN were: (1) the num-
ber of each separated layers is 2 for SCPINN and 1 for
MCPINN, (2) the number of each concatenated layer is
1, (3) the number of units in each separated layer is 1024
and 256, (4) the number of units in each concatenated
layer is 256, (5) dropout rate is 0.5 (6) each features are
normalized with zero mean and unit variance.

Performance metrics
For the performance evaluation, we used three met-
rics, which are Matthew Correlation Coefficient (MCC),
Receiver Operating Characteristic Area Under the Curve
(ROC), and Precision–Recall Area Under the Curve
(PRC). Above metrics are commonly used in binary clas-
sification to evaluate the quality of the performance.
ROC space is determined by the false positive rate (FPR)
versus true positive rate (TPR) called recall as x and y
axis, where FPR and TPR is calculated by following for-
mula: TPR = TP/(TP + FN) and FPR = FP/(FP + TN) ,
where TP is the number of true positives, FN the number
of false negatives, FP the number of false positives, and
TN the number of true negatives. It means ROC shows

Page 14 of 16Lee et al. J Cheminform (2019) 11:46

relative trade-offs between true positive and false posi-
tive. The value of ROC is between 0 and + 1, where + 1
indicated perfect prediction, 0.5 means random predic-
tion, and 0 indicates totally wrong prediction.

PRC can provide more accurate prediction when
applied to imbalanced classification scenario than ROC,
because PRC put more importance on the TPR in case
of imbalanced dataset. ROC and PRC share TPR (recall)
on same axis, but PRC uses precision for the other axis,
where precision is calculated by following formula:
precision = TP/(FP + TP) . MCC is generally regarded as
being one of the best metrics because MCC is more use-
ful than other metrics when the two classes are very dif-
ferent. MCC is calculated by following formula:

The value of MCC is between − 1 and + 1, where + 1
indicates perfect prediction, 0 means random prediction,
and − 1 represents totally wrong prediction.

Software used
Python (version 2.7) was used with the following librar-
ies: Keras (version 2.2.0) and Tensorflow (1.9.0) for the
neural networks, RDKit (version 2017.03.3) for the cal-
culation of the fingerprints and descriptors, scikit-learn
(version 0.19) for splitting validation, normalization and
performance evaluation, SciPy (version 1.2.0) for statis-
tical analysis including students t test and Fisher F test,
ProtVec for the protein descriptors, and Mol2vec for the
molecule descriptors.

Hardware used
A Linux server running Ubuntu 16.04 was established
for experiments. The server was equipped with a Xeon
E5-2620 v4 processor, 96 GB RAM, and four NVIDIA
GeForce GTX 1080 Ti for Graphics Processing Units.

Additional file

Additional file 1. Supplementary results in the form of 5 Figures and 10
Tables.

Abbreviations
AUC : area under the curve; CPI: compound–protein interaction; DNN: deep
neural network; ECFP: extended‑connectivity fingerprints; IB: information
bottleneck; MCC: Matthews correlation coeffcient; MCPINN: multi‑channel
pairwise input neural networks; PCM: proteochemometrics; PINN: pairwise
input neural networks; PRC: precision–recall curve; QSAR: quantitative
structure–activity relationship; ROC: receiver operator characteristic; SCPINN:
single‑channel pairwise input neural networks; SMILES: simplifed molecular
input line entry system; TF‑IDF: term frequency inverse document frequency.

TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Acknowledgements
The manuscript was proofread by the Dental Research Institute of Seoul
National University. Munhwan Lee wants to thank Suresh Manandhar for
fruitful discussions they had. Munhwan Lee also wants to thank Yongju Lee for
designing Fig. 1.

Authors’ contributions
H‑GK supervised the whole process of this work. ML and H‑GK conceived this
work. ML and H‑GK developed the prediction methods. ML and HK performed
the experimental work and analysis. ML, HK, and HJ wrote the manuscript. All
authors read and approved the final manuscript.

Funding
This work was partly supported by Institute for Information and Communica‑
tions Technology Promotion (IITP) Grant funded by the Korea Government
(MSIP) (No. 2017‑0‑00398, Development of drug discovery software based on
big data) and the National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT and future Planning (No. NRF‑2017R1A2B2008729).

Availability of data and materials
The source code and data supporting the conclusions of this article are
available in the following link: https ://githu b.com/mhlee 0903/multi _chann
els_PINN.git.

Competing interests
The authors declare that they have no competing interests.

Received: 2 October 2018 Accepted: 2 July 2019

References
 1. Rifaioglu AS, Atas H, Martin MJ, Cetin‑Atalay R, Atalay V, Doğan T (2018)

Recent applications of deep learning and machine intelligence on in
silico drug discovery: methods, tools and databases. Brief Bioinform
10:1–36

 2. Chen R, Liu X, Jin S, Lin J, Liu J (2018) Machine learning for drug–target
interaction prediction. Molecules 23(9):2208

 3. Ding H, Takigawa I, Mamitsuka H, Zhu S (2013) Similarity‑based machine
learning methods for predicting drug–target interactions: a brief review.
Brief Bioinform 15(5):734–747

 4. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He
S, Shoemaker BA et al (2015) Pubchem substance and compound data‑
bases. Nucleic Acids Res 44(D1):1202–1213

 5. Walters WP (2018) Virtual chemical libraries: miniperspective. J Med Chem
62(3):1116–1124

 6. Ruddigkeit L, Van Deursen R, Blum LC, Reymond J‑L (2012) Enumeration
of 166 billion organic small molecules in the chemical universe database
GDB‑17. J Chem Inf Model 52(11):2864–2875

 7. Consortium U (2014) Uniprot: a hub for protein information. Nucleic
Acids Res 43(D1):204–212

 8. Cao D‑S, Liu S, Xu Q‑S, Lu H‑M, Huang J‑H, Hu Q‑N, Liang Y‑Z (2012)
Large‑scale prediction of drug–target interactions using protein
sequences and drug topological structures. Anal Chim Acta 752:1–10

 9. Gönen M (2012) Predicting drug–target interactions from chemical and
genomic kernels using bayesian matrix factorization. Bioinformatics
28(18):2304–2310

 10. Scior T, Bender A, Tresadern G, Medina‑Franco JL, Martínez‑Mayorga K,
Langer T, Cuanalo‑Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in
virtual screening: a critical review. J Chem Inf Model 52(4):867–881

 11. Reymond J‑L, Van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical
space as a source for new drugs. MedChemComm 1(1):30–38

 12. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen
J et al (2006) Tarfisdock: a web server for identifying drug targets with
docking approach. Nucleic Acids Res 34(suppl–2):219–224

 13. Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemi‑
cal systems biology: weak inhibition of multiple kinases may contribute
to the anti‑cancer effect of nelfinavir. PLoS Comput Biol 7(4):1002037

 14. Yang L, Wang K, Chen J, Jegga AG, Luo H, Shi L, Wan C, Guo X, Qin S, He
G et al (2011) Exploring off‑targets and off‑systems for adverse drug

http://doi.org/10.1186/s13321-019-0368-1
https://github.com/mhlee0903/multi_channels_PINN.git
https://github.com/mhlee0903/multi_channels_PINN.git

Page 15 of 16Lee et al. J Cheminform (2019) 11:46

reactions via chemical‑protein interactome—clozapine‑induced agranu‑
locytosis as a case study. PLoS Comput Biol 7(3):1002016

 15. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK
(2007) Relating protein pharmacology by ligand chemistry. Nat Biotech‑
nol 25(2):197

 16. Campillos M, Kuhn M, Gavin A‑C, Jensen LJ, Bork P (2008) Drug target
identification using side‑effect similarity. Science 321(5886):263–266

 17. Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S,
Young MP, Jenkins JL, Glick M, Glen RC et al (2011) From in silico target
prediction to multi‑target drug design: current databases, methods and
applications. J Proteom 74(12):2554–2574

 18. van Westen GJ, Wegner JK, IJzerman AP, van Vlijmen HW, Bender A (2011)
Proteochemometric modeling as a tool to design selective compounds
and for extrapolating to novel targets. MedChemComm 2(1):16–30

 19. Westen G et al (2013) Benchmarking of protein descriptor sets in pro‑
teochemometric modeling (part 1): comparative study of 13 amino acid
descriptor sets. J Cheminform 5:41

 20. Cortés‑Ciriano I, Ain QU, Subramanian V, Lenselink EB, Méndez‑Lucio O,
IJzerman AP, Wohlfahrt G, Prusis P, Malliavin TE, van Westen GJ et al (2015)
Polypharmacology modelling using proteochemometrics (PCM): recent
methodological developments, applications to target families, and future
prospects. MedChemComm 6(1):24–50

 21. Qiu T, Qiu J, Feng J, Wu D, Yang Y, Tang K, Cao Z, Zhu R (2016) The recent
progress in proteochemometric modelling: focusing on target descrip‑
tors, cross‑term descriptors and application scope. Brief Bioinform
18(1):125–136

 22. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson
AJ (1998) Automated docking using a Lamarckian genetic algorithm
and an empirical binding free energy function. J Comput Chem
19(14):1639–1662

 23. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky
MP, Knoll EH, Shelley M, Perry JK et al (2004) Glide: a new approach for
rapid, accurate docking and scoring. 1. Method and assessment of dock‑
ing accuracy. J Med Chem 47(7):1739–1749

 24. McGann M (2011) Fred pose prediction and virtual screening accuracy. J
Chem Inf Model 51(3):578–596

 25. Wallach I, Dzamba M, Heifets A (2015) Atomnet: a deep convolutional
neural network for bioactivity prediction in structure‑based drug discov‑
ery. arXiv preprint arXiv :1510.02855

 26. Bender A, Glen RC (2004) Molecular similarity: a key technique in molecu‑
lar informatics. Org Biomol Chem 2(22):3204–3218

 27. Nigsch F, Bender A, Jenkins JL, Mitchell JB (2008) Ligand‑target prediction
using winnow and naive Bayesian algorithms and the implications of
overall performance statistics. J Chem Inf Model 48(12):2313–2325

 28. Lowe R, Mussa HY, Nigsch F, Glen RC, Mitchell JB (2012) Predicting the
mechanism of phospholipidosis. J Cheminform 4(1):2

 29. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003)
Random forest: a classification and regression tool for compound clas‑
sification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958

 30. Lowe R, Mussa HY, Mitchell JB, Glen RC (2011) Classifying molecules
using a sparse probabilistic kernel binary classifier. J Chem Inf Model
51(7):1539–1544

 31. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as
a method for quantitative structure–activity relationships. J Chem Inf
Model 55(2):263–274

 32. Dahl GE, Jaitly N, Salakhutdinov R (2014) Multi‑task neural networks for
QSAR predictions. arXiv preprint arXiv :1406.1231

 33. Ramsundar B, Liu B, Wu Z, Verras A, Tudor M, Sheridan RP, Pande V (2017)
Is multitask deep learning practical for pharma? J Chem Inf Model
57(8):2068–2076

 34. Iwata H, Sawada R, Mizutani S, Kotera M, Yamanishi Y (2015) Large‑scale
prediction of beneficial drug combinations using drug efficacy and
target profiles. J Chem Inf Model 55(12):2705–2716

 35. Li Z, Han P, You Z‑H, Li X, Zhang Y, Yu H, Nie R, Chen X (2017) In silico
prediction of drug–target interaction networks based on drug chemical
structure and protein sequences. Sci Rep 7(1):11174

 36. Yabuuchi H, Niijima S, Takematsu H, Ida T, Hirokawa T, Hara T, Ogawa T,
Minowa Y, Tsujimoto G, Okuno Y (2011) Analysis of multiple compound–
protein interactions reveals novel bioactive molecules. Mol Syst Biol
7(1):472

 37. Lapinsh M, Prusis P, Lundstedt T, Wikberg JE (2002) Proteochemometrics
modeling of the interaction of amine g‑protein coupled receptors with a
diverse set of ligands. Mol Pharmacol 61(6):1465–1475

 38. Lenselink EB, Ten Dijke N, Bongers B, Papadatos G, van Vlijmen HW, Kowal‑
czyk W, IJzerman AP, van Westen GJ (2017) Beyond the hype: deep neural
networks outperform established methods using a ChEMBL bioactivity
benchmark set. J Cheminform 9(1):45

 39. Koutsoukas A, Monaghan KJ, Li X, Huan J (2017) Deep‑learning: inves‑
tigating deep neural networks hyper‑parameters and comparison of
performance to shallow methods for modeling bioactivity data. J Chem‑
inform 9(1):42

 40. Wang C, Liu J, Luo F, Tan Y, Deng Z, Hu Q‑N (2014) Pairwise input neural
network for target–ligand interaction prediction. In: 2014 IEEE interna‑
tional conference on bioinformatics and biomedicine (BIBM). IEEE, pp
67–70

 41. Papadatos G, Gaulton A, Hersey A, Overington JP (2015) Activity, assay
and target data curation and quality in the ChEMBL database. J Comput
Aided Mol Des 29(9):885–896

 42. Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised machine learning
approach with chemical intuition. J Chem Inf Model 58(1):27–35

 43. Asgari E, Mofrad MR (2015) Continuous distributed representation of
biological sequences for deep proteomics and genomics. PLoS ONE
10(11):0141287

 44. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012)
Zinc: a free tool to discover chemistry for biology. J Chem Inf Model
52(7):1757–1768

 45. Consortium U et al (2018) Uniprot: the universal protein knowledgebase.
Nucleic Acids Res 46(5):2699

 46. Program NT (2014) Tox21 challenge. https ://tripo d.nih.gov/tox21 /chall
enge/. Accessed 3 Dec 2018

 47. Sparck Jones K (1972) A statistical interpretation of term specificity and its
application in retrieval. J Doc 28(1):11–21

 48. Ribeiro LF, Saverese PH, Figueiredo DR (2017) Struc2vec: learning node
representations from structural identity. In: Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data min‑
ing. ACM, pp 385–394

 49. Dong Y, Chawla NV, Swami A (2017) Metapath2vec: scalable representa‑
tion learning for heterogeneous networks. In: Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data
mining. ACM, pp 135–144

 50. Grover A, Leskovec J (2016) Node2vec: scalable feature learning for net‑
works. In: Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. ACM, pp 855–864

 51. Saxe AM, Bansal Y, Dapello J, Advani M, Kolchinsky A,Tracey BD, Cox
DD(2018) On the information bottleneck theory of deeplearning. In: 6th
International Conference on Learning Representations, ICLR 2018, Van‑
couver, BC, Canada, April 30 ‑ May 3, 2018, Conference Track Proceedings.
https ://openr eview .net/forum ?id=ry_WPG‑A‑

 52. Ramsundar B, Eastman P, Leswing K, Walters P, Pande V (2019) Deep learn‑
ing for the life sciences. O’Reilly Media, Sebastopol

 53. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS,
Leswing K, Pande V (2018) Moleculenet: a benchmark for molecular
machine learning. Chem Sci 9(2):513–530

 54. Saito T, Rehmsmeier M (2015) The precision–recall plot is more informa‑
tive than the ROC plot when evaluating binary classifiers on imbalanced
datasets. PLoS ONE 10(3):0118432

 55. Olivas ES (2009) Handbook of research on machine learning applications
and trends. IGI Global, Hershey

 56. Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1.
MIT Press, Cambridge

 57. Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies JW (2009)
How similar are similarity searching methods? A principal component
analysis of molecular descriptor space. J Chem Inf Model 49(1):108–119

 58. RDKit: open‑source cheminformatics. http://www.rdkit .org. Accessed 11
Apr 2018

 59. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed
representations of words and phrases and their compositionality. In:
Advances in neural information processing systems, pp 3111–3119

 60. Gómez‑Bombarelli R, Wei JN, Duvenaud D, Hernández‑Lobato JM,
Sánchez‑Lengeling B, Sheberla D, Aguilera‑Iparraguirre J, Hirzel TD,
Adams RP, Aspuru‑Guzik A (2018) Automatic chemical design using

http://arxiv.org/abs/1510.02855
http://arxiv.org/abs/1406.1231
https://tripod.nih.gov/tox21/challenge/
https://tripod.nih.gov/tox21/challenge/
https://openreview.net/forum?id=ry_WPG-A-
http://www.rdkit.org

Page 16 of 16Lee et al. J Cheminform (2019) 11:46

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

a data‑driven continuous representation of molecules. ACS Cent Sci
4(2):268–276

 61. Chollet F et al (2015) Keras. https ://keras .io/. Accessed 27 July 2018
 62. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,

Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D,
Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals
O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow:
large‑scale machine learning on heterogeneous systems. Software avail‑
able from tensorflow.org. https ://www.tenso rflow .org/. Accessed 27 July
2018

 63. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv
preprint arXiv :1412.6980

 64. Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP (2016) On
large‑batch training for deep learning: generalization gap and sharp
minima. arXiv preprint arXiv :1609.04836

 65. LeCun YA, Bottou L, Orr GB, Müller K‑R (2012) Efficient backprop. In:
Montavon G, Orr GB, Müller K‑R. (eds) Neural Networks: Tricks of the Trade.
Lecture Notes in Computer Science, vol 7700. Springer, Berlin.

 66. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activa‑
tions in convolutional network. arXiv preprint arXiv :1505.00853

 67. Clevert D‑A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv
:1511.07289

 68. Hochreiter S, Schmidhuber J (1997) Long short‑term memory. Neural
Comput 9(8):1735–1780

 69. Graves A, Schmidhuber J (2005) Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Netw
18(5–6):602–610

 70. Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J (2017)
LSTM: a search space odyssey. IEEE Trans Neural Netw Learn Syst
28(10):2222–2232

 71. Van Den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A,
Kalchbrenner N, Senior AW, Kavukcuoglu K (2016) Wavenet: a generative
model for raw audio. In: The 9th ISCA Speech Synthesis Workshop, Sun‑
nyvale, CA, USA, 13–15 September 2016, p.125

 72. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the
inception architecture for computer vision. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 2818–2826

 73. Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of
recurrent network architectures. In: International conference on machine
learning, pp 2342–2350

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://keras.io/
https://www.tensorflow.org/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

	Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery
	Abstract
	Introduction
	Results and discussion
	Investigating the representation learning ability
	Comparison between single-channel models
	Improving Mol2vec and ProtVec
	Comparing the performance of multi-channel models
	Ranking the features and models

	Comparing convergence speed
	Exploring the potential of transfer learning

	Conclusions
	Methods and materials
	Datasets
	High level representation descriptors
	Low level representation descriptors
	Transfer learning
	DNNs
	DNNs: end-to-end learning
	DNNs: pairwise input neural networks

	Performance metrics
	Software used
	Hardware used

	Acknowledgements
	References

