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Abstract 

Background:  Molecular space visualization can help to explore the diversity of large heterogeneous chemical data, 
which ultimately may increase the understanding of structure-activity relationships (SAR) in drug discovery projects. 
Visual SAR analysis can therefore be useful for library design, chemical classification for their biological evaluation and 
virtual screening for the selection of compounds for synthesis or in vitro testing. As such, computational approaches 
for molecular space visualization have become an important issue in cheminformatics research. The proposed 
approach uses molecular similarity as the sole input for computing a probabilistic surface of molecular activity 
(PSMA). This similarity matrix is transformed in 2D using different dimension reduction algorithms (Principal Coordi-
nates Analysis ( PCooA), Kruskal multidimensional scaling, Sammon mapping and t-SNE). From this projection, a kernel 
density function is applied to compute the probability of activity for each coordinate in the new projected space.

Results:  This methodology was tested over four different quantitative structure-activity relationship (QSAR) binary 
classification data sets and the PSMAs were computed for each. The generated maps showed internal consistency 
with active molecules grouped together for all data sets and all dimensionality reduction algorithms. To validate the 
quality of the generated maps, the 2D coordinates of test molecules were computed into the new reference space 
using a data transformation matrix. In total sixteen PSMAs were built, and their performance was assessed using the 
Area Under Curve (AUC) and the Matthews Coefficient Correlation (MCC). For the best projections for each data set, 
AUC testing results ranged from 0.87 to 0.98 and the MCC scores ranged from 0.33 to 0.77, suggesting this methodol-
ogy can validly capture the complexities of the molecular activity space. All four mapping functions provided gener-
ally good results yet the overall performance of PCooA and t-SNE was slightly better than Sammon mapping and 
Kruskal multidimensional scaling.

Conclusions:  Our result showed that by using an appropriate combination of metric space representation and 
dimensionality reduction applied over metric spaces it is possible to produce a visual PSMA for which its consistency 
has been validated by using this map as a classification model. The produced maps can be used as prediction tools as 
it is simple to project any molecule into this new reference space as long as the similarities to the molecules used to 
compute the initial similarity matrix can be computed.

Keywords:  Structure activity relationship (SAR), Molecular/chemical space, Two dimensional kernel density 
estimation, Noncontiguous atom matching structural similarity function (NAMS), t-SNE, PCooA, Non-metric MDS, 
Sammon mapping
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Introduction
Chemical/molecular space reflects high dimensional 
conceptual spaces that describe the structural diversity 
of all possible potential pharmacologically active mol-
ecules. The size of molecular space is not well defined, 
yet a fraction of it ranging from thousands to millions of 
compounds is stored in small molecule databases. Con-
sequently, a part of the huge molecular space is mainly 
focused to explore the complexity of a relevant small set 
of chemical structures in many different problems during 
drug design [1–3]. Nonetheless, molecular space interac-
tive analysis and visualization can serve as a strong tool 
to explore the diversity of millions of compounds stored 
in public databases and can increase the performance of 
drug discovery process. For example, nearest neighbour 
searches in various defined property regions in molecular 
space (activity space map) can identify interesting similar 
molecules (potent analogues) with similar properties [1, 
2, 4, 5].

Molecular space visualization methods require that 
molecules are projected into a reduced set of dimensions 
(most of the times, two or three) in such a way that the 
relative distances between molecules are better preserved 
in this new projected space. As distances should be pre-
served, molecules with similar activity profiles should 
appear clustered together [1, 6]. Thus, molecular space 
visual analysis combines the concept of molecular struc-
ture and activity similarity [6, 7]. Since molecular dis/
similarity is defined through pairwise distances between 
projected molecules in reference space, an appropriate 
choice of a molecular metric space (spatial) representa-
tion is crucial for reliable application of molecular spacial 
analysis. A molecule in metric space is defined as a set 
of distances computed from the similarity between that 
molecule to all the other molecules in a given chemical 
data set. For this purpose, many methods are available in 
literature to compute dis/similarity. A variety of meth-
ods uses either molecular descriptors or fingerprints, 
which represent different physico-chemical or struc-
tural characteristics [8–16]. These approaches entail that 
each molecule is initially reduced into a vector space by 
computing a set of attributes, that can be used to infer 
distance, yet this is not always required as other inde-
pendent approaches like molecular graph matching 
approaches can also be used for a direct assessment of 
structural similarity [17–20].

In metric space representation, a set of M molecules is 
represented in M dimensions, as the distance to all the 
other elements of the set (including itself ) must be pre-
sent. As such, the visualization of this M-dimensional 
metric space in reduced spatial dimensionality is a chal-
lenge in data diversity analysis [7, 21, 22]. To address this 
issue many linear and non-linear approaches have been 

developed to reduce the dimensionality and complexity 
of molecular space [1, 6, 21, 23]. In all dimension reduc-
tion (DR) methods, the most important characteristic is 
the optimization of the criterion that guides dimension-
ality reduction. Since the concept of DR is mainly based 
on data geometrical representation where data is inter-
preted as discrete points/objects, the main objective to 
explore or analyze such geometrical spaces is to discover 
the relationships between the points within this complex 
structure of data (manifold) [22]. The main criterion that 
needs to be optimized in DR algorithms for metric space 
data is the approximation of the original intermolecular 
distances (proximity relationships) in the new projection 
space; DR approaches that are based on optimization of 
this dimensionality reduction criterion in a linear/non-
linear way are collectively referred as distance-preserving 
approaches [22]. Principal component analysis (PCA) 
[24], is by far the most common method [1, 25, 26] used 
in DR, yet it does not fall into this category, as the main 
purpose of PCA is to represent in less dimensions the 
linear components that maximize the data variance, not 
necessarily preserving the distances between data. On 
the other hand Principal Coordinates Analysis (PCooA) 
[27, 28], Sammon mapping [29], stochastic neighbor 
embedding [30] or stochastic proximity embedding [31], 
to name but a few are distance-preserving DR algorithms 
and some topology-preserving methods like self-organiz-
ing maps [32] or generative topographic mapping (GTM) 
[33] have been used in cheminformatics [23]. The latter 
method appears as an interesting approach to reduce 
dimensions while producing a kernel based probabil-
istic map, nonetheless it is not as accurate for preserv-
ing distances and requires a set of descriptors selected 
beforehand for data processing [33]. Most of the times, 
non-linear methods are usually preferred because linear 
algorithms may be limited to linear projection functions 
and therefore may not adequately handle complex asso-
ciations that may be present in such problems [22].

Distance preserving DR methods can then make it pos-
sible to project molecules into a 2D reduced molecular 
space while preserving the original proximity (distances) 
of molecules as best as possible, assuming that there is 
always going to be a loss of information as the original 
molecular space should have a much higher dimensional-
ity. To establish a structure-activity relationship, molec-
ular activity surface maps mostly referred as “activity 
landscapes” are generated from 2D projected space (ref-
erence space) of molecules by adding a property of each 
molecule as a third dimension [6, 23, 34]. In such projec-
tions, the activity of molecules added as third dimension 
in the projected molecular space is the basis for fitting 
a generated surface that represents the activity magni-
tude. Since data is largely scattered in projected space, 
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an interpolation algorithm [35, 36] is required to make 
a coherent surface onto this 2D projected map. Ideally, 
structurally similar molecules should appear grouped 
together in well-separated clusters and each group 
should have similar properties. This property may not 
always hold, and that is the case of “activity cliffs”, pro-
jected regions that exhibit similar molecules with largely 
varying activity very close together [9, 16, 35, 37]. Despite 
these challenges, such analysis may provide a global pic-
ture of the spatial characteristics of a given data set.

The descriptive and predictive accuracy of molecu-
lar space visualization approaches largely depends upon 
three main issues, including a) a choice of a molecular 
space representation, b) the accuracy of DR methods 
and c) the performance of the interpolation algorithm 
to generate well estimated activity surface from sparsely 
projected molecules. To this end, in our approach for vis-
ual characterization of molecules in conceptual spaces, 
a reliable pipeline is generated that can efficiently be 
used to build a probabilistic surface of molecular activity 
(PSMA), which can help to understand SAR in different 
situations. We have thus integrated the advantages of the 
following different methods in the proposed molecular 
space mapping approach:

•	 Choice of molecular space representation: Molecu-
lar pairwise similarity was quantified using a graph 
matching algorithm: The Non-contiguous Atom 
Matching Structural similarity (NAMS) [17], which 
is a robust metric space representation method. This 
algorithm has a higher discriminative power for very 
similar molecules over other structural or graph 
matching approaches [17, 38]. However, any other 
similarity computation method can be used.

•	 DR methods: We applied four non-linear DR 
methods including Principal Coordinates Analy-
sis (PCooA) [27], Kruskal Multidimensional Scal-
ing (KMDS) [28], Sammon mapping (SM), [29] 
and t-Distributed Stochastic Neighbor Embedding 
(t-SNE) [39].

•	 PSMA: Non-parametric 2D kernel density estimation 
(KDE) function [40] created within a Bayesian frame-
work was used to map the most likely activity regions 
(activity surfaces) from sparsely distributed active 
and inactive compounds.

This approach is, to our knowledge, new and allows 
building a non-parametric model out of raw similar-
ity data, which is useful for visualization and has clear 
predictive properties. This model does not make any 
assumptions on its form and, due to its construction pro-
cess, its resulting surface is independent of the coordinate 
axes. Furthermore, t-SNE applications in molecular space 

diversity analysis are not a common practice in chemin-
formatics. A survey of recent literature showed only one 
work to visualize molecular space using this algorithm 
[41]. However, under this particular domain, this is a first 
effort to build activity spatial classification model using 
this algorithm by comparing its performance with other 
commonly used tools. Another novel point the present 
approach tried to address was the use of 2 dimensional 
KDE for model making. KDE is considered a powerful 
tool in statistics for truthful assessment of data actual 
distribution/characteristics [40]. In cheminformatics lit-
erature KDE has been used as a robust method to define 
applicability domains of quantitative structure-activity 
relationship (QSAR) predictive models [42–44]. Applica-
bility domains are used to define a boundaries in molecu-
lar space within which new predictions of QSAR models 
are considered reliable [45]. We extended the same con-
cept to computing probability density function for active 
and inactive molecules within 2D projected space and 
surface was generated from the 2D map containing high 
promising regions of active molecules. In the presented 
methodology, integration of KDE in SAR spatial visuali-
zation is a new addition in the efforts of molecular space 
analysis. It must be made clear that, despite the fact that 
we are using a Bayesian approach to compute the PSMA, 
our method does not assume independence of the pro-
jected coordinates, thus being closer to a full Bayesian 
classifier than to a naive-Bayes approach. We are thus 
computing the full 2D probability map and not the indi-
vidual probability distribution functions of each coordi-
nate axis.

Methodology
Overview of the methodology
The basic idea of this study is to capture the measured 
molecular distances according to any proven method and 
try to represent those molecules in a reduced reference 
space for analysis and visualization. Many dimensional-
ity reduction methods are extant, [21, 22] and some of 
the more popular are PCooA, KMDS, SM, and t-SNE 
[23, 41]. The procedure to create a PSMA can summarily 
be described in the following steps. First, a full similar-
ity matrix of a molecular data set is computed. Secondly, 
similarities are transformed into distances and projected 
into a 2-Dimensional (2D) space using one of the above 
mapping functions. Finally, the probabilities of this 
reduced space are computed using a 2D KDE function 
within a Bayesian perspective [46] to produce a prob-
ability map of a projected molecule for all classes. The 
generated 2D probability map should show the density 
distribution of training data by mapping the locations of 
the most likely activity regions of the projected molecu-
lar space. Such interactive class probability topographical 
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map (A PSMA) can serve as classification model. To pro-
ject new molecules into the new reference space, a data 
transformation matrix can be used for embedding test 
molecules in the reference activity space. To classify each 
new projected molecule the generated PSMA is used to 
calculate their probability of belonging to either class. 
Models performance was assessed using test molecules 
predictions (Fig. 1).

Molecular dis/similarity quantification
Chemical space analysis based on nearest neighbour 
searches in which molecular similarity analysis is a cen-
tral task that is based on Similar Property Principle [7]. 
According to this similarity principle, globally similar 
compounds should have similar properties [9]. Since 
intermolecular distances between projected molecules 
are a measure of their molecular similarity or dissimi-
larity, its quantification must be robust for meaningful 
spatial/metric space representations, so that they may be 

able to map similar compounds in contiguous regions, a 
fundamental aspect for reliable property prediction [6, 7].

For similarity quantification, molecules are trans-
lated into numeric data using various molecular rep-
resentations including structural descriptors and 
molecular fingerprints [47–49]. Molecular descriptors 
contain information of structural relevant features of 
molecules at different levels including constitutional 
(1D), topological (2D), geometrical (3D) and physico-
chemical properties-based (4D) [47, 48]. Molecular fin-
gerprints encode molecular structural information in a 
bit-string where each bit represents the presence (1) or 
absence (0) of a structural feature (e.g., chemical sub-
structure, sub-graph, or 2D or 3D pharmacophore). 2D 
fingerprints are commonly used molecular representa-
tions for dis/similarity quantification because comparing 
bit-string is fast and easy [14, 16, 50–52].

There are some conventional distance metrics like 
Euclidean, Hamming, Manhattan distance that measure 
the distance between compounds represented by using 

Fig. 1  Overview of the methodology
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descriptors/fingerprints [7, 53]. Some other similarity 
coefficients are available for binary data (e.g. Tanimoto, 
Sorensen-Dice, cosine or Tversky) [54, 55]. Of those, the 
Tanimoto coefficient (Tc) is extensively applied in lit-
erature to compute similarity between molecules using 
molecular fingerprints [53, 56]. Tc compares two finger-
prints and counts the number of on-bits (1) common 
in both with respect to the total number of on-bits (1) 
in each fingerprint. There are several other approaches 
that assess similarity using different algorithms based on 
superposition, molecular graph representations [57] his-
togram comparisons [58, 59] and Brownian processing of 
molecules [60]. In this study, we used for molecular simi-
larity assessment a graph matching algorithm, the Non-
contiguous Atom Matching Structural similarity (NAMS) 
[17]. This algorithm uses an atom alignment method to 
adequately quantify the structural similarity and has a 
high discriminative power for very similar molecules 
over other structural or graph matching approaches. 
NAMS breaks complex molecular structures into sim-
pler parts to reduce molecule to atoms and calculates 
global structural similarity score from the best alignment 
between the atoms of compared molecules. NAMS fol-
lows an atom matching methodology, which is able to 
consider the important characteristics of the atoms and 
bonds such as the chirality and the double bond stere-
oisomerism. These features are usually ignored in other 
approaches.

It is important to notice that this approach as it uses 
a full distance matrix as the basis for its representation, 
may present some computational challenges over very 
large data sets. Currently with common lab workstations 
with 16–32 Gib of RAM, it should be possible to use 
this methodology with datasets of up to 10,000–15,000 
molecules.

From similarity to distance
As stated above, since molecular similarity is measured 
by a distance between a pair of molecules in the chosen 
reference space, a distance function known as metric is 
mainly required to calculate distances between molecules 
in metric space representation. A dissimilarity function 
or a distance function d(x, y) between tho instances x and 
y must satisfy the following three basic properties:

(Property 1) d(x, x) = 0

(Property 2) d(x, y) ≥ 0

(Property 3) d(x, z) ≤ d(x, y)+ d(y, z)

Which essentially state that a distance between an 
instance and itself should always be zero, any distance 
between any instances should never be negative and 
that the distance between 2 points should respect the 

triangle inequality. A function that transforms similar-
ity into distance should accordingly be monotonically 
decreasing and intersect the X-axis precisely at x = 1 . 
Using these principles similarities and distances can be 
inter-converted i.e. every similarity metric correspond 
to a distance metric and vice versa. If similarity func-
tion s(x, y) is normalized 0 ≤ s(x, y) ≤ 1 and s(x, x) = 1 
for all x, y ∈ X then similarity matrix can be transform 
into distance matrix with a simple distance functions 
(see Eqs. 1 [61] and 2 [62])

Other complying transformations can also be applied like 
the negative of the natural logarithm (Eq. 2) [36].

These last two equations show the property that similar-
ity values of zero imply an infinite distance, so, for those 
extreme values, some clamping to a maximum distance 
may be necessary.

Within the molecular space a distance function should 
be modulated to set a particular meaning out of simi-
larity measures. It can be rapidly observed that the last 
two functions appear concave (Fig. 2), meaning that near 
the regions that have the lowest similarity, the impact 
on the resulting distance is the highest, which is coun-
ter-intuitive, as typically the conservation of activity for 
similar molecules is only verified at the highest levels of 
structural similarity. Such transformation functions may 
further increase the projection distortion, as most algo-
rithms will tend to minimize the error between the pro-
jected distances and the actual distances. A convex curve 
may solve this problem, by inflating the distances of very 
similar molecules but, on the other hand, if two mole-
cules are very unrelated, the impact on the transformed 
distance will appear small. As such we propose the use 
of the following transformation which uses a parameter k 
that controls the convexity.

In Eq.  4, small positive values of k entail extremely 
convex functions, while on the other hand, very high 
values approach d(x, y) = 1− s(x, y) (Fig.  2). Empiri-
cally and visually we have determined that values of k 
ranging from 0.3 to 0.5 provide not too abrupt tran-
sitions, and a value of 0.382 was used in all problems 
( 0.382 ≈ φ − 1 , where φ is the Golden Ratio)

(1)d(x, y) = 1− s(x, y)

(2)

s(x, y) =
1

1+ d(x, y)
⇐⇒ d(x, y) =

1

s(x, y)
− 1

(3)d(x, y) = − ln(s(x, y))

(4)d(x, y) = 1−
k × s(x, y)

1+ k − s(x, y)
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Dimensionality reduction
As stated, the visualization of metric space data is a dif-
ficult challenge in many different domains of data anal-
ysis, as it demands efficient and robust techniques to 
adequately represent in 2 or 3 dimensions the data vari-
ability present in an intrinsic multidimensional problem 
[21, 22]. The objective of metric space visualization is to 
generate a topographical map, which should be able to 
present a visual characterization of molecules by group-
ing them together on the basis of their structural similar-
ity. As referred, a metric space is an M ×M dimensional 
distance matrix where M compounds are represented 
each by M intermolecular distances. However, it is not 
trivial to graph the diversity of such high dimensional 
metric space. As referred, the main objective of dimen-
sionality reduction (DR) in metric spaces is the distance-
preservation in original high dimensional space to reduce 
dimensions. These transformations can be linear or 
non-linear. The distance-preservation criteria is that any 
manifold complex geometrical structure of data can be 
projected into reduced number of dimensions, and the 
quality of such transformation can be measured by the 
difference between the original and the projected dis-
tances in the new space. A large number of nonlinear DR 
approaches are available that aim to preserve the local 
structure of data [21, 22]. In this work we used four of 
the most widely used DR distance-preserving techniques, 

namely, Principal Coordinates Analysis (PCooA), Kruskal 
Multidimensional Scaling (KMDS), Sammon mapping 
(SM), and t-Distributed Stochastic Neighbor Embedding 
(t-SNE), for reducing the molecules’ distance matrix in 
2D and allow the visualization of the data. After DR, the 
newly projected instances were divided according to their 
activity class and a probability function assigned by using 
a kernel density function to each element of each class.

Principal Coordinates Analysis (PCooA)
Principal Coordinates Analysis (PCooA) [27] also known 
as metric multidimensional scaling (MDS). PCooA relies 
on a simple generative model possessing all the advan-
tages and drawbacks of Principal components analysis, 
although its goal is to preserve distances, while PCA 
aims at preserving the data variance. However, differently 
from PCA which generally is performed by computing 
the eigenstructure of the covariance matrix of the data, 
in PCooA, the basic input is the distance matrix. To the 
squared of the distance matrix, each element is double 
centered and, to the resulting matrix, an eigendecom-
position is performed. The eigenscaled coordinates of 
the first N eigenvectors are the projected coordinates 
resulting from this transformation. There are no tun-
ing parameters for PCooA, however, results may vary 
depending on the distance function used for data met-
ric space representation. It is important to notice that 

Fig. 2  Distance functions for similarity to distance transformations
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PCooA is only guaranteed to provide an optimal solution 
if the distances computed between instances are Euclid-
ean, which is clearly not the case. Nonetheless this linear 
projection into a reduced dimension space has been used 
in other studies (e.g. [36]). It would have been possible to 
transform the existing distances into Euclidean distances, 
but as to make a direct comparison between projection 
heuristics, it was opted to use the exact same data for all 
methods without any further processing. Many imple-
mentations of KMDS or SM use the results of PCooA 
transformation as a starting point, which were also used 
non-transformed.

Kruskal Multidimensional Scaling (KMDS)
Non-metric multidimensional scaling was developed by 
Kruskal [28] for resolving problems related to the linear 
multidimensional scaling algorithms, like PCooA. The 
KMDS is based on numerical optimization methods. This 
method uses ordinal information (i.e., proximity ranks) 
and then calculates the scaled proximities using mono-
tonic transformation to determine the high-dimensional 
structure of data set. Finally, to visualize data in low 
dimensional features space, KMDS finds the best possible 
projections with minimum squared differences between 
the initial distances and the scaled ranking of the dis-
tances. Thus, in contrast to PCooA, KMDS does not 
attempt to directly preserve distances between the data 
points in the initial space but rather its order, or ranking, 
of the distances between objects [22]. KMDS optimizes 
the following stress function or error function (Eq.  5) 
to estimate the preservation of the pairwise distances 
(goodness of fit).

where d(i,  j) are the collected proximities and d̂(i, j) is 
the distance measured between the ith and jth objects in 
low-dimensional representations

Sammon mapping
In 1969 Sammon [29] developed a non-linear variant of 
MDS, which is referred as Sammon mapping, Sammon’s 
nonlinear mapping and NLM (Non-Linear Mapping). 
The word “mapping” used to represent the main objec-
tive of the method, which was to establish a mapping 
between a high-dimensional metric space and a lower-
dimensional feature space. But, to some extent the ’map-
ping’ word is misleading as it does not exactly generate 
a continuous mapping between these two spatial rep-
resentations. The main goal of Sammon’s algorithm is a 
dimensionality reduction of a finite set of objects/points 

(5)Kruskal’s stress =

√√√√
∑

i,j(d(i, j)− d̂(i, j)2
∑

i,j d
2(i, j)

by following the same basic principle of MDS algorithm. 
The main modification is its efficient optimization tech-
nique to minimize the Sammon’s stress function (Eq. 6) 
by calculating its normalized value by the initial space 
distances. Sammon’s algorithm does not require any 
parameter optimization, but results may vary depending 
on the chosen different dissimilarity measures.

where d(i, j) are orignal distances and d̂(i, j) are distances 
between the ith and jth objects in reduced space.

t‑Distributed Stochastic Neighbor Embedding (t‑SNE)
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
[39] is a variant of Stochastic Neighbor Embedding 
(SNE) and was developed to solve two basic problems 
of the SNE algorithm including difficult optimization 
of a cost function and a problem referred as “crowding 
problem”. The main objective of both methods SNE and 
t-SNE is similar to MDS to projected objects in reduced 
space, such that the pairwise distances between projected 
objects reflect the original distances between objects as 
good as possible; although this distance preservation is 
achieved in a non-linear way. t-SNE algorithm focuses 
on local data structures, to generate well-separated clus-
ters. One of the key characteristics of this method is that 
the new distances of objects in the reduced feature space 
are determined probabilistically with close objects hav-
ing a much higher probability of staying together in the 
new space than distant objects. In contrast to SNE, t-SNE 
does not compute Gaussian “induced” probabilities 
between each pair of points in embedded space, instead 
it uses a heavy-tailed Student’s t-distribution for the same 
purpose so as to avoid the projection of points to the 
same place (crowding effect). This method consequently 
allows efficient visualization of moderate distances in the 
initial space by larger distances in graphical configuration 
of projected space. Differently from the other methods, 
t-SNE is a probabilistic approach, thus different runs may 
produce different maps.

Probabilities density estimation
The probability density function (PDF) is an informal way 
to explore and analyse the properties of any given quan-
titative variable. The PDF gives a natural description of 
the distribution of any random variable by specifying its 
probability for all values of its range. Since robust esti-
mation of the probability density can be used to solve 
regression and classification problems, the PDF is a fun-
damental concept in data analysis [40, 46]

(6)

Sammon’s stress =
1

∑
i<j d

(
i, j

)
∑

i<j

(
d
(
i, j

)
− d̂

(
i, j

)2)

d
(
i, j

)
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The PDF for any given variable can be estimated using 
either parametric methods that assume the density func-
tion has a standard distribution function. As an example, if 
we assume a continuous variable has a normal distribution, 
then it is possible to compute the full PDF of this variable if 
the mean and the variance of the data are known and confi-
dently mirror that of the original population. Non-paramet-
ric methods, on the other hand, are free of any assumptions 
and estimate probability density solely from data. One of 
the most common methods in one dimensional variables 
is to use a gaussian kernel function applied to each obser-
vation, and using the scaled sum of each kernel for each 
point within the defined range of the data. Non-parametric 
PDF estimation is an extensive research area in field of data 
exploration [40, 46]. Most of the existing techniques focus 
on low dimensional densities estimation (1 to 3D) because 
uni/bivariate PDF is relatively easy; however investigat-
ing PDF of data in higher dimensions (multivariate) is dif-
ficult and computational expensive. In lower dimensions 
histograms can be constructed that generate a non smooth 
representation of the PDF. But for smooth PDF estimation, 
the usage of kernel density estimation (KDE) is a common 
method, used in visual data exploration [40, 46]. The mul-
tivariate KDE algorithm has been introduced to deal with 
high dimensional data with improved accuracy and speed 
[46, 63]. In our analysis we have used a bivariate KDE 
applied to the chemical data projected in 2D.

2D kernel density estimation
A kernel density estimation function generates an actual 
distribution of the data by calculating the probability of 
each data point in the given data without using any refer-
ence point [42] or prior assumptions. Kernel probability 
density function computes the PDF of the projected 2D 
space by summing up M-dimensional kernels placed on 
every projected coordinate. The basic kernel estimator 
can be expressed as

where K is a fixed kernel and h is the calculated band-
width for sample x1, . . . , xn . Commonly available kernel 
functions are Gaussian (normal), uniform, cosine, trian-
gle, Epanechnikov, quartic (biweight), and tricube (tri-
weight). The bandwidth, h, is a smoothing parameter that 
influences the width of PDF estimates. Choosing a band-
width is a compromise between very smooth estimates 
(large h values) to remove insignificant bumps and wiggly 
estimates to find out real peaks (small h values). In this 
study, we applied a two-dimensional KDE with a Gauss-
ian kernel [46] to calculate densities in the two-dimen-
sional reduced space. It is defined as

(7)f̂ (x) =
1

nh

n∑

j=1

K
(x − xj

h

)

For determining the bandwidth ( hn ), we used Silverman’s 
heuristic approach [40] ( hn ) for the Gaussian kernel func-
tion (Eq. 6) [46].

where σ̂ is the standard deviation of the reference coordi-
nate, R, the difference between the 2nd and 3rd quartile 
and M the number of projected points.

In QSAR modelling, KDE is usually explored as an 
interpolation method to define the applicability domain 
of generated classification models [45]. Among the most 
widely used multivariate (high dimensional metric space) 
interpolation approaches (e.g., range-based, distance-
based, geometrical), KDE is considered as one of the 
more advanced and accurate methods for calculating the 
applicability domain [42–44]. However, to the best of our 
knowledge, KDE is not used for visualization nor data 
classification over 2D activity landscapes.

Defining active probability regions
In the available literature, several other methods have been 
used for data visualization of the molecular space. Yet, in 
all cases each projected point is associated with its meas-
ured activity value and surfaces are generated according to 
the activity magnitude of each molecule or colour codes 
are used to differentiate different activities [1, 6, 23, 35]. 
In all these approaches, along with all referred issues in 
data visualizing methods most implemented interpolation 
methods are not adequate as classification tools.

To clearly identify the spatial regions where is a higher 
probability of finding active compounds, to the 2D pro-
jected molecules, training data was divided into two 
classes of active and inactive molecules according to a 
predefined activity threshold. For both partitions a kernel 
density map (KDM) is computed, using a common band-
width, previously computed with all the data. Each KDM 
can be seen as a measure of the likelihood of a molecule 
being a negative or a positive depending on its position 
on the 2D space, as each KDM is an actual probability 
function, with an integral summing to one. To compute 
the posteriors of both KDMs it is necessary to accom-
modate the data priors. Following Bayes’ theorem [64], 
the posterior probability density (likelihood/probability 
of a randomly projected new molecule to be in positive 
class) can be calculated by normalizing the product of the 
conditional density probability (projected KDM) with the 
prior probability density of the given partition (positive 

(8)f (x, y) =

∑
s φ

(
(x−xs)
hx

)
φ

(
(y−ys)
hy

)

nhxhy

(9)hn ≈ 1.06min
(
σ̂ ,

R

1.34

)
M,−

1
5
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or negative). Thus to identify whether or not a molecule 
in (x, y) coordinates being active it is necessary to evalu-
ate each of both Eqs. (10 and 11)

where m+ and m− , stand for active (positive) and non-
active (negative) molecules. P((x, y) | m+) is the actual 
value of the KDM of positive molecules (the likelihood 
of being positive) and P(m+) the prior probability of the 
molecule being active. This illustrates that in the end it 
should be possible to compute the posterior probability 
P(m+ | (x, y)) . The corresponding meanings stand for 
Eq.  11 that quantify the likelihood, prior and posterior 
probabilities for the inactive molecules

These observations show that it is possible to compute 
an activity probability surface using the 2D coordinates 
of the projected molecules. This surface can therefore 
be visualized and it should be able to capture the more 
promising activity regions in the chemical landscape. 
Furthermore as this surface corresponds to an actual 
activity posterior map, this visualization tool could be 
used as a classifier, an actual spatial classification model 
that approximates a 2D Bayes classifier.

Test set embedding and model validation
The creation of 2D surfaces from the original data will 
necessarily cause some loss of information. It is thus 
required to verify if the activity maps constructed are 
valid in the face of new observations. Therefore to 
assess model quality, each data set was randomly split 
into training and test sets. The training set was used 
to create the model surface and the test set molecules 
were later embedded, using a linear projection func-
tion. If we assume that the original distance matrix is 
D (an M × M matrix) that we are going to project into 
a reduced subspace of P dimensions, which we will 
call C (an M × P matrix with one row for each instance 
and P columns) corresponding to the molecule coordi-
nates in the new space. As, in the present case, we are 
transforming into a 2D space, P must be equal to 2. We 
can then assume that there is a transformation f() that 
transforms D into C: f (D) = C . The purpose of any 
multidimensional scaling algorithm is getting the best 
f() for translating D into C, according to different stress 
measures and criteria. A very simple way to model this 
f() function is to assume it as a linear transformation of 
D into C. As any linear transformation can be thought 
as a matrix, which we will call T, we can then think of 
such a transformation as:

(10)P(m+ | (x, y)) =
P((x, y) | m+)P(m+)

P((x, y))

(11)P(m− | (x, y)) =
P((x, y) | m−)P(m−)

P((x, y))

The matrix D is the original training set distance matrix. 
After the multidimensional scaling heuristic has been 
processed we have the projected coordinates of the train-
ing set into the new space (C). With these, T can then be 
computed by pre-multiplying each part of the equation 
by the inverse of D ( D−1 ): Thus

Which simplifies into

The T transformation can then be computed by multiply-
ing the inverse of the training set distance matrix with 
the matrix of the projected coordinates. This approach 
is applicable to all projections and, as long as the new 
instances are close to the training set, this projection 
should provide an adequate (but not exact) transforma-
tion. It is obvious that the projections of the training set 
Distance matrix(D) using T will coincide exactly with 
C. To project any new molecule into the new reference 
space it is only necessary to compute its distances to the 
molecules of the training set, which will then be trans-
formed by multiplying the transpose of that vector with 
matrix T.

As the projected coordinates of each molecule into 
the new reference space, it should be easy to compute 
its activity probability (Eqs.  10 and 11). As the result 
is a probability function, the model’s performance was 
assessed using AUC, which measures the entire two-
dimensional area underneath the entire receiver oper-
ating characteristic (ROC) curve created by plotting the 
sensitivity/recall/true positive rate (TPR) against the 
false positive rate (FPR)  (Eqs. 15 and 16).

where, for both eqs., TP are the true positives, TN, the 
true negatives, FP the false positives and FN, the false 
negatives. For AUC computation, the positive accepting 
threshold is changed, and thus the values of these quan-
tities will change accordingly. and provide the data for 
building the ROC curve.

A second, more stringent criterion is the use of the 
Matthews Correlation Criterion (MCC) [65], which 
encompasses the quantities defined above into one sta-
tistic that has been widely used for assessing the qual-
ity of binary classification models (Eq.  17). Differently 

(12)D · T = C

(13)D−1 · D · T = D−1 · C

(14)T = D−1 · C

(15)Sensitivity =
TP

TP + FN

(16)FPR = 1− Specificity = 1−
TN

TN + FP



Page 10 of 17Kausar and Falcao ﻿J Cheminform           (2019) 11:63 

from the AUC, the MCC will consider as positives only 
the instances where P(M+ | (x, y) > P(M− | (x, y)))

Data
The designed methodology was tested over four human 
protein targets (Table 1), retrieved from ChEMBL23 [66]. 
We have looked for data sets for which biological activ-
ity was measured as Ki as it quantifies a ligand-recep-
tor interaction based on the equilibrium dissociation 
constant (K) where smaller value corresponds higher 
ligand-receptor binding affinities and vice versa [67]. The 
selected data sets were curated using an automated QSAR 
modelling workflow [68] which essentially removed dupli-
cates and curated the structures by removing salt groups 
and complex compounds. Of the four data sets selected, 
only was further trimmed, as we were looking for a data 
set where the experimental conditions were similar. As 
such, for the Sigma 1 receptor only molecules for which Ki 
resulted from the displacement of [3H]-pentazocine were 
considered. All data sets were divided into two classes 
using a cut-off activity value to discriminate highly active 
molecules ( Ki ≤ 10.0 nM) as positives and less active and 
non-active molecules ( Ki > 10.0 nM) as negatives. This 
low cut-off value was selected to counter the positive bias 
in public repositories such as ChEMBL, which is an unre-
alistic assumption in actual drug development scenarios, 
where the active/non-active ratio is typically much lower. 
Such stringent threshold resulted in purposely unbal-
anced data sets with a much larger number of negatives 
than positives, which is a known characteristic of most 
problem sets in real world in-silico drug development. 
Such unbalance is an hindrance in model learning, and 
makes the fitting process typically much harder.

To assess the structural diversity of of each data set 
the average distance between all pairs of molecules was 
computed. For all data sets the average distance was 
about 0.8, with a low standard deviation (∼ 0.09) which 
indicates that these data sets are very diverse with a large 

(17)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

majority of molecules with virtually no ascertainable sim-
ilarity to most of the others in each data set.

Implementation
All analysis was implemented using R software (version 
3.4.4) [69] on a PC desktop with a Core i7 Processor (3.41 
GHz) and 16 GB RAM. Data sets of all selected problems 
were divided into a training set and test set using a ran-
dom partition with (20/80)% ratio. Similarity matrices (M 
× M matrix containing intermolecular similarities) of all 
data sets were computed using NAMS [17] that allows for 
the computation of pairwise similarities between all mol-
ecules within a database. All the other NAMS parameters 
were left as default. Similarity matrices were converted 
into dissimilarity matrices (metric space representa-
tion) using Eq. 4, with k = 0.382 for all data sets. For the 
DR processes, R cmdscale function [70] was used for 
PCooA, two functions from R package MASS [46] includ-
ing isoMDS and sammon was used for KMDS and SM 
respectively. We used the t-SNE implementation from 
R library Rtsne [39]. Finally, for computing the kernel 
desnity map in 2D, the kde2d function from R package 
MASS [46] was used. The bandwidths for the positive 
and negative maps were calculated beforehand using the 
bandwidth.nrd function (see Eq. 9).

Results and discussion
We generated the activity ( Ki ) probability maps (PSMA) 
for four different problems (SIGMAR1, HRH1, HERG, 
and DRD5) using 4 different DR methods: PCooa, 
KMDS, SM, and t-SNE. For each we have produced 
the probability of activity surface maps. These PSMAs 
typically show consistency, and the regions with the 
highest probability of activity appear most of the times 
well differentiated from the negative regions. Figure  3 
shows the results of PCooA projection for the 4 data 
sets, computed solely from the 80% training data. The 
PSMA for all projection functions appears on supple-
mentary material (Additional file  1: Figure S1a, S1b, 
S1c). In these probability maps, surface height mirrors 

Table 1  Data set description—data set sizes discriminated by positives and negatives within training/testing data split

Includes the average computational distance between compounds of each data set and its respective standard deviation

Target protein name Uniprot ID Training set Test set Mean distance Distance 
std. dev.

Positives Negatives Positives Negatives

Sigma non-opioid intracellular 
receptor 1 (SIGMAR1)

Q99720 46 135 10 35 0.79 0.13

Histamine H1 receptor (HRH1) P35367 184 783 46 195 0.83 0.08

Potassium voltage-gated channel 
subfamily H member 2 (HERG)

Q12809 39 1142 12 283 0.84 0.06

D(1B) dopamine receptor (DRD5) P21918 41 231 5 62 0.80 0.10
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the kernel density distribution of active molecules (posi-
tive class) and the colour represents higher probability 
locations (most likely activity regions). It is interest-
ing to verify that the visual complexity and asymmetry 
of the resulting maps clearly shows that a naive-Bayes 
approach would be inadequate for this type of mod-
eling, where the data clustering patterns make obvious 
the interdependence of the data in the projection axes.

To check the quality of the produced probability sur-
face maps, the test set molecules were projected into the 
new reference plane. The performance of all sixteen gen-
erated PSMAs was assessed using AUC and MCC. AUC 
testing results range from 0.77 to 0.98 and MCC score 

ranges between 0.18 to 0.77 (Table  2). In two data sets 
(SIGMAR1 and DRD5), PCooA performance was better 
than the other DR methods while for HRH1 and HERG 
t-SNE outperformed the others. All DR approaches 
provided generally good AUC results. The overall per-
formance of PCooA and t-SNE was roughly the same 
(average AUC = 0.86) in all four problems with a slightly 
(and not statistically significant) more positive outcome 
for PCooA with the MCC score. The test set projections 
over the best PSMAs for each data set shows ground 
truth active molecules (as red circles) typically within 
the highest probability of activity regions (Fig. 4). In the 
present analysis is several cases, the MCC was low, albeit 

Fig. 3  Test set projection over map surface (PSMA) with PCooA. Surfaces represents higher probability locations. red – circles are ground truth 
positives, white are ground truth negatives
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Table 2  Results on validation set

PCooA Principal co-ordinates analysis, KMDS Kruskal Multidimensional Scaling, SM Sammon mapping, t-SNE t-distributed stochastic neighbor em-bedding

(*)—best model

Target protein name PCooA KMDS SM t-SNE

AUC​ MCC AUC​ MCC AUC​ MCC AUC​ MCC

Sigma non-opioid intracellular receptor 1 
(Sigma1R)

0.87(*) 0.63 0.80 0.60 0.79 0.55 0.79 0.47

Histamine H1 receptor (HRH1) 0.80 0.45 0.83 0.43 0.78 0.36 0.87(*) 0.54

Potassium voltage-gated channel subfam-
ily H member 2 (HERG)

0.80 0.18 0.77 0.24 0.80 0.25 0.89(*) 0.33

D(1B) dopamine receptor (DRD5) 0.98(*) 0.77 0.86 0.32 0.80 0.42 0.90 0.41

Overall performance (average score) 0.86 0.51 0.82 0.40 0.79 0.40 0.86 0.44

Fig. 4  Test set projection over map surface of selected PSMAs with highest performance. Surfaces represents higher probability locations. 
red-circles are ground truth positives, white are ground truth negatives
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always showing clear discriminant power. On the other 
hand, the AUC score was consistently high.

Since dimensionality reduction is one of the important 
task in data visualization where it is really necessary to 
capture the maximum original data information in the 
new reduced space, Shepard plots [46] were generated 
to analyze how much molecular initial proximity rela-
tionship remained intact. In Shepard plots the original 
distances are plotted against the projected distances and, 
ideally, the points (both distances) should lie on a straight 
line, which would indicate zero distortion in the projec-
tion function. The Shepard plot for the hERG data set, for 
all projection functions is shown (Fig. 5). The remaining 
three data set Shepard plots can be seen in supplemen-
tary material (Additional file  1: Figures  S2a–c). The 2D 
projections, for all approaches, showed a similar pattern, 
in which it can be seen that many large distances in the 
initial space fail to maintain that separation in the pro-
jected space, however, in all cases, very close molecules 
will always appear close, which shows that locality fac-
tors were preserved in all projections, which contributes 
to explain the quality of the classification models. The 
projection of dissimilar molecules in the vicinity of simi-
lar molecules can generate noise in visualization of the 
real pattern of the data distribution. This is probably the 
cause for having low MCC scores in some data sets.

To verify whether the quality of the projection influ-
ences the classification results, the R2 coefficient that 

measures how the projected distances measure against 
the original distances was calculated (Fig.  5 and Addi-
tional file 1: Figure S2). It is apparent that KMDS shows 
the highest scores while Sammon mapping features the 
lowest values for all 4 test cases. It is therefore striking 
that KMDS although always able to produce consist-
ently good models was never the projection that yielded 
the best results. This may suggest that, on this reduced 
dimension space, other factors rather than stricter dis-
tance preservation may be relevant for accurate model 
building, and the nonlinear optimization performed by 
KMDS actually hampers the projection quality for clas-
sification purposes.

To have a more detailed appraisal of the quality of the 
test set projections, the 2D molecular structures of top 6 
test molecules with higher probability of being actives (pre-
dicted positives) are shown within the 2D probability map 
of the best 2D projections for each data set (Table 2.), along 
with their ChEMBL IDs (Fig. 6). It can be seen that, with 
only one exception, in all 4 data sets, all molecules were 
strong actives, although some not within the strict activ-
ity criterion ( Ki ≤ 10nM ). For the Sigma 1 Receptor, there 
were 3 correctly predicted positives, and the three nega-
tives incorrectly predicted had in fact very low Ki values, 
all of them below 30 nM. For the Histamine 1 receptor, the 
5 more likely molecules to be active were all correctly pre-
dicted as positives, which is striking as this data set is one 
of the hardest, with low classification results. The only miss 

Fig. 5  HERG shepard plot for PCooA, KMDS, SM and t-SNE
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is one molecule (CHEMBL1767152) with a Ki = 31.62nM , 
therefore with strong activity as well. The humean hERG is 
the hardest problem, as the number of negative molecules 
largely outnumbers the positives, nonetheless for the 6 mol-
ecules with highest probability, 4 were correctly predicted 
only two were misses. As in the previous cases, both mol-
ecules (CHEMBL1086480 and CHEMBL1085091) are also 
strong actives, with Ki ≤ 50nM . The last test set (Dopa-
mine 5 receptor), is the one with the more striking situation, 
as this was the data set that had the highest classification 
performance. The two misses, the first molecule had a 
Ki = 10.4nM , thus clearly a borderline molecule. The com-
pound CHEMBL595720, was the only one that on ChEMBL 
was a clear inactive with a measured Ki ≥ 10, 000nM . It 
can be pointed out that, on this specific problem, that mol-
ecule is outside the most active region which appears clearly 

marked on the upper region of the map, with an activity cliff 
crossing the full surface, identifying the most promising 
region for finding very active molecules.

Conclusion
This study aimed initially at presenting a visualization 
method that is able to capture the highest probability 
regions for molecules being active. To reach this goal, 
the molecular spaces of four data sets, captured as 
similarity matrices that were computed using NAMS, a 
graph matching algorithm. In a previous study NAMS-
based molecular metric space representation was found 
a reliable approach to establish molecular similarity-
activity relationship in QSAR modeling [38]. Accord-
ingly NAMS-based molecular spaces for the selected 
data sets were reduced into a new reference space in 2D 
using four different algorithms. The X, Y coordinates 

Fig. 6  Test set projection over 2D probability map of selected models with highest performance. Contour lines represent 2D kernel density 
distribution of active molecules (positive class) and the colour other than green represents higher probability locations. Red-circles are ground truth 
positives, white are ground truth negatives. ChEMBL IDs. in red color text (2D structures within red lined box) are true positives and other are false 
positives (2D structures within white lined box)
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generated from each DR methods were used by a 2D 
kernel density function to generate their correspond-
ing activity probability maps (PSMAs). These PSMAs 
were able to depict the most likely activity regions, and 
appear consistent, with active molecules clearly group-
ing together. The analysis of the produced PSMAs from 
the 4 data sets showed the reliability of the proposed 
methodology as it can efficiently produce visual cues as 
to where the more promising regions of the molecular 
space are located. The presented approach allows for 
the projection of new molecules into the new projected 
space, thus allowing for model assessment with external 
data. Accordingly, to validate the quality of this 2D rep-
resentation as a classification model, independent vali-
dation sets were projected over the generated PSMAs, 
and the results were consistently good with AUC val-
ues, for the highest scoring projections, ranging from 
0.87 to 0.98 and MCC scores ranging from 0.33 to 
0.77. Although the followed approach did not aim at 
optimizing models for getting high classification accu-
racies, these results are strongly suggestive that it actu-
ally is capturing a large part of the modelable aspects 
of these SAR problems. This approach therefore uses 
only the 2D structural similarity between molecules to 
produce a non-parametric model that is both visually 
informative and shows demonstrable quality as a clas-
sification model.

The predictability of the presented spatial classifi-
cation model (PSMA) is thus an attractive feature for 
virtual screening using only structural similarity of 
molecules. The applicability domain of such visual 
approaches can be vastly increased using larger data 
sets for any single or multiple targets. Comparatively 
to traditional QSAR models with a limited applicability 
domain, this activity space visualization directly uses 
structural similarity and thus may enhance SAR visuali-
zation within large activity spaces.

Availability and requirements
All data sets and R source code (PSMA.Rmd and 
PSMA.html) for analysis and inference of molecular 
activity spaces is available in supplementary material 
(Additional file 2).
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