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Abstract 

Recurrent neural networks have been widely used to generate millions of de novo molecules in defined chemical 
spaces. Reported deep generative models are exclusively based on LSTM and/or GRU units and frequently trained 
using canonical SMILES. In this study, we introduce Generative Examination Networks (GEN) as a new approach to 
train deep generative networks for SMILES generation. In our GENs, we have used an architecture based on multiple 
concatenated bidirectional RNN units to enhance the validity of generated SMILES. GENs autonomously learn the 
target space in a few epochs and are stopped early using an independent online examination mechanism, measur-
ing the quality of the generated set. Herein we have used online statistical quality control (SQC) on the percentage of 
valid molecular SMILES as examination measure to select the earliest available stable model weights. Very high levels 
of valid SMILES (95–98%) can be generated using multiple parallel encoding layers in combination with SMILES aug-
mentation using unrestricted SMILES randomization. Our trained models combine an excellent novelty rate (85–90%) 
while generating SMILES with strong conservation of the property space (95–99%). In GENs, both the generative 
network and the examination mechanism are open to other architectures and quality criteria.
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Introduction
Exploration of chemical space for the discovery of new 
molecules is a key challenge for the chemical commu-
nity, e.g. pharmaceutical and olfactive industries [1, 2]. 
Previously, exhaustive enumeration has been introduced 
with the creation of 26 M, 1G and 1.7G molecules in the 
databases GDB11, GDB13 and GDB17, respectively [3]. 
Exhaustive enumeration critically depends on knowl-
edge rules specified by chemists to restrict the combi-
natorial explosion of possible molecules. Consequently, 
exhaustive enumeration may generate a realistic but 
more biased chemical space. More recently, AI methods 

have been emerging rapidly and have proven successful 
for text learning [4] and applications in drug discovery 
[5]. Deep generative models based on the SMILES syn-
tax were reported as highly successful for the discov-
ery of new molecules [6]. A recent publication shows 
that the architecture with a classical recurrent network 
introduces a bias to the generated space. These results 
were confirmed in a recently published work on GDB13, 
showing that about 68% of GDB-13 [3] was reproduced 
using a deep generative model [7]. SMILES [8] is a very 
simple text representation of molecules. It is “readable” 
by chemists and is quickly translated into molecules 
with RDKit [9] or other cheminformatics toolkits. Other 
1D string encoders like InChI [10] or DeepSmiles [11] 
were reported with lower performance in deep genera-
tive models [3, 12]. Since 2016, SMILES-based machine-
learned methods are used to produce de novo molecules. 
These methods include Variational AutoEncoders (VAEs) 
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[12], Recurrent Neural Network (RNN) [6, 13–15], Gen-
erative Adversarial Networks (GANs) [16] and reinforce-
ment learning (RL) [17] or generate molecules based 
on molecular graph representation [18] as well as other 
many approaches as reviewed by [19]. Contrary to these 
earlier reports, we demonstrate herein that text learn-
ing on SMILES is highly efficient to explore the train-
ing space with a high degree of novelty. Herein we have 
modified a previously reported algorithm [6] and use 
bidirectional RNN layers for better generation results. 
The neural network of the generator is subsequently con-
verted into a generative examination network (GEN). In 
GENs, the deep generative models autonomously learn 
to write valid molecular SMILES. GENs are thus free 
to extract text-based rules to reconstruct the chemical 
space without being subjected to expert constraints. Dur-
ing training of the models, the learning progress of the 
generators is periodically examined using an independ-
ent online examination mechanism without feedback to 
the learning rate of the student. In this GEN we use an 
online generator that applies a statistical quality control 
after every training epoch, measuring the percentage of 
validity for a statistical set of generated SMILES. This 
mechanism is an early stopping function and prevents 
the network from overfitting [20] the training set to keep 
the highest degree of generativity. In GENs, the generator 
and examination methods are open to any other genera-
tive network and examination methods, including sim-
ple metrics or more advanced models. Our calculations 
based on the publicly available dataset PubChem [21], 
clearly demonstrate that the use of bidirectional layers 
systematically improves the capability of the GEN to gen-
erate a vast set of new SMILES within the property space 
of the training set. Following excellent results of SMILES 
augmentation for smaller datasets to predict physico-
chemical properties [22–24] and generators [25], we have 
used SMILES augmentation to increase both the number 
and diversity of SMILES in the training set.

Methods
Preparation of datasets and encoding
The PubChem database was downloaded in March 2019 
as SDF. The canonical SMILES string PUBCHEM_OPEN-
EYE_CAN_SMILES was extracted, split into fragments 
and converted into canonical SMILES using RDKit ver-
sion 2019.03.3 [9, 26]. Only organic molecules, i.e. those 
that contain at least one carbon and all other atoms are 
a subset of {H, B, C, N, O, F, S, Cl, Br or I} were retained. 
The remaining organic SMILES were de-duplicated to 
produce a set of unique SMILES. From this dataset, we 
extracted a representative set of 225k fragment-sized 
molecules typically explored in the pharmaceutical and 
olfactive industries [6, 27]. Prior to training, the SMILES 

were either converted to the canonical form or aug-
mented as detailed in the results. Double character atoms 
were replaced by single characters: The characters Cl, Br 
and [nH] were modified to L, R and A, respectively. Ste-
reochemistry was removed, replacing [C@H], [C@@H], 
[C@@] and [C@] by C as well as removing the charac-
ters/and\ used for double bond stereochemistry. The 
molecules were tokenized by making an inventory of 
observed characters followed by decoding the molecules. 
The generated text corpus was converted to a training set 
pairing the next available characters (labels) to the pre-
viously observed sentence, which were presented as one-
hot encoded feature matrices to the network.

Architecture
Modeling was performed using the open source librar-
ies Tensorflow [28] and Keras [29]. The method was 
programmed in Python [30] and code is freely available 
[31] under a clause-3 BSD license. Architectures used 
for GENs were composed of an embedding biLSTM- or 
LSTM-layer, followed by a second encoding biLSTM- or 
LSTM-layer, a dropout layer (0.3) and a dense layer to 
predict the next character in the sequence (Fig.  1). For 
Architecture A and B, we also tested biGRU and GRU-
layers for embedding and encoding. For consistency of 
the architecture, LSTM and GRU units were not mixed. 
Several runs were evaluated to reduce the set of hyperpa-
rameters. Here we have evaluated LSTM and GRU units 
with layer sizes of 64 and 256. The Dense layer had a size 
equal to the number of unique characters observed in the 
training set. Architectures C and D with multiple parallel 
encoding layers were evaluated using merging by concat-
enation, averaging or learnable weighted average (Fig. 1). 
The code for the layer of the learnable weighted average 
can be downloaded [31].

Training of architecture with on‑line statistical quality 
control
It is widely known that LSTM is based on conservative 
long-range memory. Architectures A and B produced 
mostly canonical SMILES (> 92%) when trained with a 
set of canonical SMILES [32]. In order to improve the 
explorative nature of the GENs, we used a set of ran-
domized SMILES with varying levels of augmenta-
tion. Early stopping was used to avoid overfitting and 
memorization of the training set [20]. In neural net-
works based on Keras, early stopping is applied using 
Callback functions (keras.callbacks.Callbacks). In our 
workflow (Fig.  2), we have modified the existing Ear-
lyStopping function to generate a small sample of gen-
erated SMILES to measure the number of valid SMILES 
at every epoch [33]. On training start, the Callback 
function was parameterized with a target percentage, 
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Fig. 1  Tested architecture for SMILES generation. Architecture with two consecutive biLSTM layers used for deep-generative models for SMILES 
generation. a Original architecture with two consecutive LSTM layers, followed by a Dense output layer to predict the next character. b Modified 
architecture with two consecutive bidirectional LSTM layers. c Advanced architecture with one embedding biLSTM layers followed by multiple 
parallel bidirectional encoding layers and a merging layer (concatenated, averaged or learnable average). d Advanced architecture using 
parallel-concatenated architectures with multiplication of embedding and encoding layers. These layers are merge by concatenation, averaging or 
learnable weighted average

Fig. 2  Modeling workflow used for every architecture/hyperparameter search. The autodidactic generator models learn independently a 
probability for the next logical character. At every epoch, i.e. online the generator generates a statistical sample of 300 SMILES Strings with are 
examined using statistical quality control as examination criteria. Upon completion of the training, the earliest stable model that satisfies the quality 
criteria is selected and evaluated based on a generated sample
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e.g. 97%, along with the sample size (Nsample = 300). 
Optionally, the size of the population (Npop) was 
specified in the callback method. If no value Npop was 
specified, the size of the population is assumed to be 
very large i.e. Npop ≫ Nsample. Based on the specified 
parameters, the upper and lower margins were com-
puted using a 95% confidence interval (CI) [34]. The 
callback function stopped training early, if the trained 
model showed stable generation results within the 95% 
CI for 10 consecutive epochs to exclude incidental 
bad results (variable patience) [35]. The EarlyStopping 
counter was reset if the percentage of valid structures 
fell below the lower margin of the computed stabil-
ity interval. Upon completion of training, the earliest 
available model was selected and used to generate 2k 
SMILES strings for evaluation. All evaluations were 
performed using three independently trained models 
and reported as average ± standard deviation. To have 
an objective assessment of quality, SMILES with easy-
detectable errors, i.e. a mismatch for ring and branch 
closure characters, were included in the evaluation.

Percentage of valid molecules, uniqueness and training 
compounds
For all generated molecules, the molecules were con-
sidered as valid if they were successfully converted to 
an InChIKey using RDKit [9, 10]. The percentage of 
valid molecules, Validity%, was measured as the ratio 
of the number of valid molecules to the number of gen-
erated SMILES. All valid molecules were reduced to 
unique compounds. The uniqueness, Uniqueness%, was 
expressed as a number of unique molecules divided by 
the number of valid molecules. The percentage of known 
training compound, Training%, was computing dividing 
the number of generated SMILES known in the training 
set, by the number of unique SMILES.

Property distributions and percentage match
For the model with architecture C (biLSTM–biLSTM 
256/256 with four concatenated encoding layers), 200 
sets of 10k molecules were generated to create 2M mol-
ecules. For three sets of 10 k molecules at the beginning 
(early) and end (late) of generation process, we calcu-
lated property distributions for a set of 12 properties 
and compared to the property distributions of the train-
ing set (Fig.  3). Four classes of properties have been 
evaluated: A size comparison was performed using 
SMILES length (measured as number of characters), 
heavy atom count (HAC, counting all non-hydrogen 
atoms) and molecular weight; Polarity was evaluated 
using LogP and TPSA; Topological properties were 

compared using the number of rotatable bonds, frac-
tion of cyclic, conjugated or aromatic atoms; A compar-
ison on elemental composition was performed based 
on fractions of carbon, nitrogen or oxygen atoms in the 
molecules. All distributions are displayed in Fig. 3 and 
the percentage match for the distributions of the gener-
ated space A and training space B was computed using 
the continuous Tanimoto coefficient T(A,B) Eq. 1 [36].

The Jensen-Shannon divergence JSD(A,B) between the 
normalized distributions A and B was computed apply-
ing Eq. 2: [37, 38].

Novelty analysis
For architectures A (LSTM–LSTM 256/256), B (biL-
STM–biLSTM 256/256) and C (biLSTM–biLSTM 
256/256 with 4 concatenated encoding layers), 200 sets 
of 10 k molecules were generated to create a total of 2M 
SMILES strings for each model. Every set of 10k mole-
cules was considered a time point t in the analysis. For 
every set, all molecules were compared against all previ-
ously generated molecules and duplicates with the same 
InChIKey were excluded. The percentage of new mole-
cules was subsequently expressed as number of new mol-
ecules divided by the number of valid molecules (Fig. 4a). 
All unique molecules were summed over time (Fig. 4b). 
An overall percentage of efficiency was expressed as 
number of valid unique molecules divided by the number 
of generated SMILES strings (Fig.  4b). The novelty was 
also analyzed by number of heavy atoms (Fig. 5). 

Size analysis of the training set
The impact of the size of the training set on the GENs 
was evaluated using random fragments subsets from 
PubChem [21], Zinc15 [39] and ChEMBL24 [40]. We 
have evaluated the sizes 225k, 45k and 9k with a random 
SMILES augmentation of five SMILES per molecule. The 
augmented smiles were deduplicated and the number of 
real augmentations may vary for each dataset. The data-
sets for ChEMBL and Zinc were subjected to the data 
preparation as described earlier for PubChem. The data-
sets were evaluated using architecture C with a biLSTM 
embedding layer of size 128 and 4 concatenated paral-
lel biLSTM encoding layers of size 64. The datasets for 

(1)T (A,B) =

∑

i
AiBi

∑

i
A
2
i
+

∑

i
B
2
i
−

∑

i
AiBi

× 100%

(2)

JSD(A,B) = H





�

d∈{A,B}

aidi



−





�

d∈{A,B}

aiHdi







Page 5 of 14van Deursen et al. J Cheminform           (2020) 12:22 	

Fig. 3  Property distributions for analyzed properties including size, topology, polarity and atom compositions. The data are shown for the training 
set (blue), early generation (orange) and late generation (green). The observed property shifts are due to the saturation for generation of molecules 
with smaller sizes (see also Fig. 4)
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Fig. 4  Global novelty analysis. For all sets of 2M generated compounds, the dataset has been split into 10k time points. a Plot showing the 
percentage of molecules at every time point t. b Cumulated number of unique molecules generated during the process. The final values for the 
three tested architectures are 1470,543 (73.5% efficiency) for LSTM–LSTM, 1566,535 (78.3% efficiency) for biLSTM–biLSTM and 1602,018 (80.1% 
efficiency) for biLSTM–biLSTM with 4 parallel-concatenated encoding layers

Fig. 5  Novelty analysis by atom count. The winning architecture is highlighted in bold (See “Methods”)
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ChEMBL and Zinc are available with the download of the 
source code [31].

Results
We evaluated the performance of LSTM and GRU layers 
on architectures A and B (Table  1). For both architec-
tures, the use of LSTM units led to higher percentages of 
valid SMILES strings and generated a very high percent-
age of valid SMILES (97%). All other computed metrics, 
i.e. percentage uniqueness and percentage training com-
pounds, showed only minor fluctuations between the 
tested architectures. The use of GRU and biGRU layers 
consistently showed weaker results than architectures 

with LSTM or biLSTM layers. These architectures were 
discontinued in this study.

We extended our analysis to all four architectures 
A–D, followed by an evaluation using the same qual-
ity metrics (Table  2). Several important results were 
observed. Firstly, the increase of the layer size in archi-
tecture A and B led to a lower and more stable num-
ber of epochs needed to complete training. The use 
of larger RNN layers did not significantly improve the 
generative performance of the model. Indeed, the prop-
erty match between the distributions of the generated 
set and the training set remained stable at 98% and 94% 
for SMILES length and HAC, respectively. Secondly, 
parallelization of the encoding layers (architecture C) 

Table 1  Comparison architecture A and B and comparing LSTM to GRU​

a  Length match for SMILES length distributions of the training set and generated set (See “Methods”)
b  HAC match for the atom count distributions of the generated set and training set (See “Methods”)

Architecture Layer size Best model epoch# Validity% Uniqueness% Training% Length match %a HAC match %b

A: LSTM–LSTM 256/256 12, 17, 20 96.7 ± 0.4 99.9 ± 0.1 15.0 ± 0.7 98.2 ± 0.9 94.0 ± 1.8

A: GRU–GRU​ 256/256 15, 15, 15 91.8 ± 0.7 99.9 ± 0.1 12.6 ± 0.8 98.3 ± 0.4 94.6 ± 1.3

B: biLSTM–biLSTM 256/256 6, 7, 10 97.1 ± 0.4 99.9 ± 0.1 13.1 ± 0.5 98.2 ± 0.6 93.9 ± 0.8

B: biGRU–biGRU​ 256/256 11, 11, 11 95.6 ± 0.6 99.9 ± 0.1 15.0 ± 0.5 98.3 ± 0.3 93.1 ± 1.4

Table 2  Comparison architectures A, B, C and D

Best architecture is highlighted in italics
a  Length match for SMILES length distributions of the training set and generated set (See “Methods”)
b  HAC match for the atom count distributions of the generated set and training set (See “Methods”)

Architecture Merge mode Layer count Layer size Best model 
epoch#

Validity% Uniqueness% Training% Length 
match%a

HAC match%b

A: LSTM–LSTM – 1/1 64/64 54, 72, 63 95.4 ± 0.4 99.9 ± 0.1 12.0 ± 0.9 98.2 ± 0.3 94.0 ± 0.9

B: biLSTM–biL-
STM

– 1/1 64/64 20, 22, 28 96.5 ± 0.5 99.9 ± 0.1 12.5 ± 0.9 97.9 ± 0.5 94.9 ± 0.8

A: LSTM–LSTM – 1/1 256/256 17, 17, 20 96.7 ± 0.4 99.9 ± 0.1 15.0 ± 0.7 98.2 ± 0.9 94.0 ± 1.8

B: biLSTM–biL-
STM

– 1/1 256/256 6, 7, 10 97.1 ± 0.4 99.9 ± 0.1 13.1 ± 0.5 98.2 +/0.6 93.9 ± 0. 8

C: biLSTM–biL-
STM

Concatenated 1/4 64/64 10, 14, 16 97.0 ± 0.3 99.9 ± 0.0 11.9 ± 0.6 98.5 ± 0.3 97.4 ± 0.5

C: biLSTM–
biLSTM

Average 1/4 64/64 11, 15, 15 97.2 ± 0.3 99.9 ± 0.1 12.5 ± 0.3 98.6 ± 0.2 96.1 ± 0.7

C: biLSTM–
biLSTM

Learnable 
average

1/4 64/64 15, 17, 23 97.6 ± 0.2 99.9 ± 0.0 14.6 ± 0.2 97.4 ± 0.4 94.8 ± 1.2

D: biLSTM–
biLSTM

Concatenated 4/4 64/64 11, 11, 9 96.9 ± 0.3 99.9 ± 0.0 14.4 ± 0.5 97.4 ± 0.2 95.6 ± 1.2

D: biLSTM–
biLSTM

Average 4/4 64/64 15, 17, 14 96.7 ± 0.1 99.9 ± 0.0 11.9 ± 0.2 98.1 ± 0.5 95.3 ± 1.1

D: biLSTM–
biLSTM

Learnable 
average

4/4 64/64 12, 25, 18 95.6 ± 0.1 99.9 ± 0.0 10.4 ± 0.5 98.0 ± 0.2 96.2 ± 0.6

Influence of bidirectionality

 LSTM–LSTM Concatenated 1/4 64/64 20,17,31 96.8 ± 0.4 99.9 ± 0.1 13.4 ± 0.5 97.6 ± 0.8 94.8 ± 1.3

 biLSTM-
LSTM

Concatenated 1/4 64/64 9, 14, 9 97.1 ± 0.3 99.9 ± 0.1 13.2 ± 0.5 97.7 ± 0.9 95.5 ± 1.4
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provided a very good coverage of chemical space by 
generating a large number of new molecules. In par-
ticular, merging by concatenation improved the per-
formance of the generative model. The match between 
the property distributions for SMILES length and HAC 
improved to 98.5% and 97.4%, respectively. Merging by 
averaging or a learnable weighted average moderately 
improved the results of the HAC match by 0.8–1.5% 
compared to the architecture B. These results suggest 
that merging by concatenation is preferred.

Thirdly, architecture D with parallel embedding-encod-
ing layers (architecture D) displayed moderately inferior 
results in comparison with architecture C (HAC−1.9%). 
However, the results were still moderately better than for 
architecture B (HAC +1.5%), suggesting the use of mul-
tiple parallel encoding layers is beneficial to train a stable 
generator. These results also suggested that a single bidi-
rectional embedding layer was sufficient to describe the 
SMILES strings in the training space.

We have also tested two alternative architectures to bet-
ter understand the importance of the bidirectional nature 
of the embedding and encoding layers (Table  2, last two 
lines). Modification of the embedding layer from LSTM 
to biLSTM significantly reduces the number of epochs 
needed to obtain a stable generator. Indeed, when com-
paring the architectures LSTM–LSTM and biLSTM–biL-
STM (Table 2, last two lines), the number of epochs was 
decreased by half, from an average of 23 to 12 epochs. 
Introduction of bidirectional encoding layers improved the 
ability of the model to better reproduce the training space 

(HAC +1.9%). In conclusion, architecture C, a model 
based on a single bidirectional embedding layer followed 
by multiple concatenated bidirectional encoding layers, 
provided the best performance (in italics in Table 2).

Lastly, we evaluated the influence of the number 
of parallel-concatenated layers in architecture C (see 
Table 3). Increasing the number of parallel encoding lay-
ers reduced the number of epochs required to converge 
the generator. Parallelization simultaneously improved 
the ability of the generator to reproduce the property dis-
tribution of the training space. However, after reaching 
a plateau (at 4–5 layers) the introduction of new paral-
lel layers did not further improve the model. Eventually a 
performance drop can be observed.

Overall, the best results were achieved with architec-
ture C using one biLSTM embedding layer and 4 paral-
lel concatenated biLSTM encoding layers. Using this 
architecture, an augmentation study was performed. 
Augmentation was done offline prior to training the net-
work. Randomized SMILES were generated using RDKit 
by setting option doRandom = True, which was recently 
introduced to improve regression and classification mod-
els for physico-chemical properties [22, 23]. As expected, 
the augmentation improved the percentage of generated 
valid SMILES while lowering the number of training 
epochs. The performed analysis indicated that a four-
fold augmentation provided the optimal result (Table 4). 
Additional augmentations only moderately improved the 
capability of the model to better reproduce the property 
space of the training set.

Table 3  Optimal number of parallel encoding layers in architecture C

a  Length match for SMILES length distributions of the training set and generated set (See “Methods”)
b  HAC match for the atom count distributions of the generated set and training set (See “Methods”)

Architecture Merge mode # Layers Layer sizes Best model 
epoch#

Validity% Uniqueness% Training% Length 
match%a

HAC Match%b

B: biLSTM–biL-
STM

– 1/1 64/64 20, 22, 28 97.1 ± 0.4 99.9 ± 0.1 13.1 ± 0.5 98.2 ± 0. 6 93.9 ± 0. 8

C: biLSTM–biL-
STM

Concatenated 1/2 64/64 19, 19, 19 97.8 ± 0.4 99.9 ± 0.1 12.5 ± 0.4 97.3 ± 0.4 96.1 ± 0.1

C: biLSTM–biL-
STM

Concatenated 1/3 64/64 12, 12, 12 97.2 ± 0.2 99.9 ± 0.0 12.2 ± 0.4 98.6 ± 0.3 96.9 ± 0.8

C: biLSTM–biL-
STM

Concatenated 1/4 64/64 10, 14, 16 97.0 ± 0.3 99.9 ± 0.0 11.9 ± 0.6 98.5 ± 0.3 97.4 ± 0.5

C: biLSTM–biL-
STM

Concatenated 1/5 64/64 8 95.9 ± 0.3 99.9 ± 0.0 13.5 ± 1.0 97.6 ± 0.2 97.2 ± 0.3

C: biLSTM–biL-
STM

Concatenated 1/6 64/64 8 95.9 ± 0.2 99.9 ± 0.1 10.1 ± 0.4 96.3 ± 0.3 93.9 ± 0.7

C: biLSTM–biL-
STM

Concatenated 1/7 64/64 7 96.8 ± 0.4 99.9 ± 0.0 14.0 ± 1.0 97.6 ± 0.6 95.9 ± 0.5

C: biLSTM–biL-
STM

Concatenated 1/8 64/64 6, 6, 6 96.2 ± 0.7 99.9 ± 0.0 13.6 ± 0.1 98.0 ± 0.7 94.8 ± 0.8

C: biLSTM–biL-
STM

Concatenated 1/16 64/64 5, 5, 5 95.9 ± 0.3 99.9 ± 0.0 13.5 ± 1.0 96.6 ± 0.7 93.1 ± 0.7
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After selection of the best architecture (C/BiLSTM–
BiLSTM/256-256/4 concatenated), we generated 2M 
SMILES strings. We computed 12 molecular proper-
ties (See “Methods”) at the beginning and end of the 
generation process. The computed distributions were 
compared to the distributions of the training space 
(Fig.  3). The distributions for the generated sets show 
a strong match to the distributions of the training set. 
As expected, we observed a shift for all distributions 
correlated to molecular size. This observation suggests 
that the generator starts to saturate the chemical space 
of smaller molecules with increasing number of gener-
ated molecules. Indeed, the distributions of molecules 
with sizes 5 and 6 were close to 0 after generation of 
250k and 1M SMILES, respectively. The reduced error 
observed for the Jensen-Shannon divergence on all dis-
tributions suggested that the property distributions of 

the created SMILES were stable after 2M generated 
SMILES (Table 5).

We have also analyzed the ability of the models to 
generate new molecules. For all datasets, the number of 
new molecules decreases slowly over time. The novelty 
rates after generating 2  M compounds are 66.3, 73.3% 
and 75.4% for architectures A (LSTM–LSTM 256/256), 
B (biLSTM–biLSTM 256/256) and C (biLSTM–biLSTM 
256/256 1/4), respectively. We observed further that the 
novelty rate for architecture A was systematically lower 
than the novelty rate for architectures B and C. These 
results suggest that the use of bidirectional LSTM units 
is beneficial to maintain a high degree of generativity for 
the trained model. We also evaluated the total number 
of generated molecules over time (Fig.  4b). The genera-
tion efficiency of the model was as percentage of valid 
unique molecules. After 2M, architecture A with two 

Table 4  Augmentation effect on  architecture C biLSTM–biLSTM with  layer sizes 64/64 and  4 concatenated encoding 
layers

a  Length match for SMILES length distributions of the training set and generated set (See “Methods”)
b  HAC match for the atom count distributions of the generated set and training set (See “Methods”)

Smiles Augm. Best model epoch# Validity% Uniqueness% Training% Length match%a HAC match%b

Canonical 1 9, 9, 7 96.6 ± 0.5 99.9 ± 0.1 16.2 ± 1.5 93.3 ± 0.3 92.0 ± 0.5

Random 1 10, 14, 16 97.0 ± 0.3 99.9 ± 0.0 11.9 ± 0.6 98.5 ± 0.3 97.4 ± 0.5

Random 2 5, 5, 5 97.3 ± 0.1 99.9 ± 0.0 13.9 ± 0.5 97.7 ± 0.4 94.5 ± 0.8

Random 3 4, 6, 4 97.9 ± 0.3 99.9 ± 0.0 13.6 ± 0.5 98.8 ± 0.1 96.5 ± 0.2

Random 4 4, 3, 4 98.2 ± 0.4 99.9 ± 0.0 11.6 ± 0.5 98.8 ± 0.3 97.1 ± 0.2

Random 5 4, 4, 4 98.3 ± 0.3 99.9 ± 0.0 11.2 ± 0.5 97.3 ± 0.7 96.6 ± 0.3

Random 10 4, 4, 4 98.3 ± 0.3 99.9 ± 0.0 14.2 ± 0.5 98.4 ± 0.4 98.2 ± 0.5

Table 5  Percentage match measured as  continuous Tanimoto (Tan; Eq.  1) or  Jensen-Shannon Divergence (JSD; Eq.  2) 
between the distributions of the training space and generated compounds at early (10k) and late stage (2M) generation

Tan 10k Tan 2M JSD 10k JSD 2M

Size:

 SMILES length 94.1 ± 0.4 84.6 ± 0.1 0.170 ± 0.004 0.252 ± 0.000

 Heavy atom count (HAC) 98.8 ± 0.2 94.1 ± 0.1 0.058 ± 0.004 0.142 ± 0.000

 Molecular Weight (MW) 97.4 ± 0.2 92.7 ± 0.1 0.124 ± 0.002 0.187 ± 0.000

Polarity:

 logP 99.6 ± 0.0 99.1 ± 0.0 0.042 ± 0.002 0.055 ± 0.001

 TPSA 99.6 ± 0.1 95.7 ± 0.1 0.044 ± 0.001 0.097 ± 0.000

Topology:

 Rotatable bond count 99.5 ± 0.1 96.5 ± 0.0 0.042 ± 0.002 0.099 ± 0.001

 Fraction cyclic 99.2 ± 0.2 95.6 ± 0.1 0.051 ± 0.002 0.106 ± 0.000

 Fraction conjugated 99.6 ± 0.1 99.7 ± 0.1 0.047 ± 0.003 0.084 ± 0.000

 Fraction aromatic 99.7 ± 0.1 99.5 ± 0.1 0.060 ± 0.002 0.109 ± 0.001

Composition:

 Fraction carbon 98.6 ± 0.2 97.0 ± 0.0 0.061 ± 0.003 0.106 ± 0.000

 Fraction nitrogen 99.6 ± 0.2 96.1 ± 0.1 0.097 ± 0.004 0.132 ± 0.000

 Fraction oxygen 99.4 ± 0.1 99.4 ± 0.1 0.050 ± 0.003 0.058 ± 0.001
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consecutive LSTM–LSTM produced 1470,543 unique 
molecules with an efficiency of 73.5%. Architectures B 
and C with bidirectional embedding and encoding layers 
have generated 1566,535 (78.5% efficiency) and 1602,018 
(80.1% efficiency) unique molecules, respectively. The 
use of bidirectional layers was thus highly beneficial to 
improve the efficiency of the generation process.

As expected, the novelty decreased over time as a 
result of saturation of the chemical space and gradually 
moves from smaller to larger molecules (Fig. 5). Addi-
tionally, the results for the novelty rate showed a subtle 
shift when moving from architecture A to architectures 
B and C. These results are in line with earlier observa-
tions that bidirectional RNN layers improve the perfor-
mance of the deep generative models.

Lastly, we measured the impact of the training set size 
on the performance of the GENs. This evaluation was 
done to investigate whether a well-defined architecture 
could autonomously learn the alphabet and grammar of 
the SMILES strings without the need for didactic feed-
back from either a discriminator or through reinforce-
ment learning. In this comparison we tested models 
developed with PubChem, ChEMBL 24 and Zinc15 data-
sets using 9k, 45k and 225k unique molecules (Table 6). 
The results for all datasets showed clear improve-
ments for the number of valid molecules and moderate 
improvements for the percentage match of heavy atom 
count with increasing training set size. Indeed, the per-
centage of valid molecules for PubChem increased from 
81.3 to 98.3%, from 74.2 to 94.6% for ChEMBL and from 
77.2 to 95.2% for Zinc. The small differences between the 

datasets was expected and can be explained by the fact 
that we used a focused library for the PubChem data-
set while the training sets of ChEMBL and Zinc were 
selected by chance. Measures for other properties are rel-
atively stable with increasing size. These results confirm 
the hypothesis that a large training set is beneficial to 
learn the SMILES alphabet and grammar of the training 
data. Large datasets also significantly shortened the num-
ber of epochs needed to train a GEN. Examples of gener-
ated molecules for the models trained with ChEMBL 24 
and Zinc15 are displayed in Fig.  6a, b, respectively. The 
small set of selected examples clearly demonstrates that 
the autonomously learning generator can easily handle 
complex SMILES and generates SMILES with a vivid 
curiosity and open-mindedness. Consequently, the gen-
erators are well equipped to explore new areas of chemi-
cal space.

Discussion
Our goal was to obtain powerful SMILES based molecu-
lar generator, which can generate a high degree of valid 
novel molecules within the property space of the train-
ing set. To obtain such a generator, we modified an ear-
lier LSTM-based architecture [6]. Key modification is 
the introduction of an EarlyStopping mechanism with an 
online generator used to perform a statistical quality con-
trol at every epoch. This new feature allowed us to bet-
ter monitor the learning process of the generator and to 
apply an overfit control [20]. Using this method, we can 
now select the earliest stable model capable of generat-
ing a very high percentage of valid molecules. Indeed, 

Table 6  Impact of the training set size on GENs performance

a  Size of the augmented dataset after 5 random attempts per SMILES and de-duplication to unique SMILES. Real augmentation factor varies depending on dataset
b  Length match for SMILES length distributions of the training set and generated set (See “Methods”)
c  HAC match for the atom count distributions of the generated set and training set (See “Methods”)

Dataset 
and evaluated 
size

Augmented size 
with real factora

Best model epoch # Validity% Uniqueness% Training% Length match%b HAC match%c

PubChem225k

 9k 54,624 (4.8) 10, 10, 10 81.3 ± 0.9 100.0 ± 0.0 0.3 ± 0.1 97.7 ± 0.0 90.5 ± 0.0

 45k 218,124 (4.8) 5, 5, 5 95.6 ± 0.7 99.9 ± 0.1 2.6 ± 0.5 99.0 ± 0.0 94.7 ± 0.0

 225k 1088,864 (4.8) 4, 4, 4 98.3 ± 0.3 99.9 ± 0.0 11.2 ± 0.5 97.3 ± 0.7 96.6 ± 0.3

Chembl24

 9k 35,928 (4.0) 44, 43, 45 74.2 ± 1.9 99.0 ± 0.2 0.2 ± 0.2 81.9 ± 5.4 95.9 ± 1.0

 45k 179,888 (4.0) 5, 6, 5 91.9 ± 1.9 100.0 ± 0.0 0.2 ± 0.1 90.6 ± 2.8 97.6 ± 1.4

 225k 896,214 (4.0) 9, 6, 6 94.6 ± 0.1 100.0 ± 0.0 1.4 ± 0.3 88.4 ± 1.6 98.1 ± 0.6

Zinc15

 9k 32,546 (3.6) 24, 21, 21 77.2 ± 1.0 100.0 ± 0.0 0.0 ± 0.0 82.2 ± 3.3 91.2 ± 1.1

 45k 163,929 (3.6) 10, 7, 11 90.4 ± 1.1 100.0 ± 0.0 0.1 ± 0.1 87.6 ± 1.2 92.6 ± 1.1

 225k 820,747 (3.6) 4, 6, 6 95.2 ± 0.3 100.0 ± 0.0 0.3 ± 0.1 90.4 ± 1.2 93.5 ± 1.2
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Fig. 6  Generated SMILES strings for Selected examples from ChEMBL24 and Zinc evaluated in Table 6. a 12 molecules generated by the model 
after training with 225k randomly selected ChEMBL24 molecules. b 10 selected examples of SMILES generated after training the model with 225k 
randomly selected molecules from Zinc15



Page 12 of 14van Deursen et al. J Cheminform           (2020) 12:22 

within a few training epochs, we reached very high per-
centages of valid SMILES produced by the generator 
(95.9–98.3%). Our analysis showed that the decision to 
stop training early based on the percentage of valid mol-
ecules, did not affect the capability of the model to gener-
ate SMILES with a high degree of novelty. The use of this 
EarlyStopping-mechanism may also be beneficial for use 
with RNN-based predictive models to partially freeze lay-
ers from further optimization.

Selection of LSTM in architecture with parallel encod-
ing layers, allowed us to reduce the number of hyper-
parameters in the network, while maintaining a stable 
generator with excellent generation results. We also 
explored the merging of the parallel layers using concat-
enation, averaging or by learnable average. The results 
were clearly in favor of concatenation. A comparison 
between the results for architectures C and D shows that 
a single biLSTM embedding layer is sufficient to describe 
the training set.

Using the best architecture, we tested the effect of 
SMILES augmentation to further improve the ability of 
the model to generate a higher percentage of valid mol-
ecules and/or better reconstruct the property space. Our 
results demonstrated that augmentation increased the 
percentage of valid molecules from 97.0 to 98.3%. The 
models developed using high augmentation provided 
nearly perfect reconstruction of the property space (97.1 
to 98.2%). Increasing augmentation affected, however, 
the novelty rate in the generated molecules.

The herein introduced GENs generated SMILES strings 
with equal or better quality when compared to the 
recently published RNN-based SMILES generator [7, 14, 
25, 41]. Contrary to the earlier work, GENs reached these 
results using a significantly smaller training sets and a 
small number of training epochs. Using an examination 
mechanism as EarlyStopping method [20] thus proves 
highly advantageous to control the training of deep gen-
erative models.

In a typical GAN architecture two networks compete, 
i.e. a Generator and a Discriminant. To our knowledge 
the closest method to our GEN is SeqGAN [42]. Seq-
GAN is modeling the generator as a stochastic policy. 
The reward signal coming from the discriminator is 
judged on a complete sequence, and gradient is passed 
back to the intermediate state-action steps using Monte 
Carlo search. Recent introduction of the Wasserstein 
distance in GAN (WGAN) improves the generator [43, 
44] by using a smooth metric for measuring the distance 
between two probability distributions.

In GENs, a discriminator is absent and is replaced by 
an independent examiner. The examiner applies a sta-
tistical assessment on the quality of the generator out-
put after every epoch. GANs typically need full datasets 

to perform a sound evaluation. The proposed examina-
tion mechanism is based on a single generative model 
for SMILES string generation. Its generator mechanism 
is autonomously learning the training set and it is not 
influenced by the feedback from the examiner. This also 
differentiates GENs from GANs or models with rein-
forcement learning (RL), which both require a feedback 
mechanism. Nevertheless, as demonstrated in this work, 
GENs achieve spectacular results on the reconstruction 
of the chemical space of the training set with a vivid curi-
osity and open-mindedness. The latter is expected to be 
the result of the GEN methodology allowing the gen-
erator to acquire the knowledge by self-directed learn-
ing while being independently examined and stopped as 
soon as it has acquired a sound level of knowledge [20].

GENs are open to accommodate any neural network 
and early-stopping mechanism and can be used for other 
modeling questions. Additionally, training can be easily 
continued in GENs and are thus open to transfer learning 
(TL) [45].

If we treat SMILES as text, one can notice that SMILES 
contain two major graph conversion challenges, ring and 
branch representation in 1D. They can be considered 
as analogs of grammar and conjugation in natural lan-
guages. However, SMILES only contain a small amount 
of unique characters, i.e. chemical “words”. Based on the 
excellent results we observed using GENs, we believe that 
this limiting number of words, can be deciphered very 
quickly by neural networks when selecting an appropri-
ate architecture. Moreover, over-training deep generative 
models will even lead to the loss of the novelty of gen-
erated structures. The latter problem is also a classical 
issue known to GANs. In our opinion, a generator should 
learn the domain space but at the same time it must also 
have sufficient freedom to apply the extracted rules and 
maintain diversity of generated answers. The latter has 
been proposed by introducing the examination mecha-
nism in GENs. The optimal examination mechanism in 
GEN needs to be defined and fine-tuned on a case-by-
case basis. It is important to highlight, that the inde-
pendent quality mechanism introduced in this work does 
not influence the generator. In summary, the introduced 
GENs are a welcome addition to recent developments in 
artificial intelligence (AI). GEN can learn by itself and its 
ability to generalize the knowledge is checked by a quality 
test. This is very similar to IBM’s Watson [46] passing the 
physician exams, proving that AI can acquire the same 
level of knowledge as any other Homo Sapiens student of 
a college (http://ibm.com/watso​n).

http://ibm.com/watson
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Conclusion
The main goal of a generator is to produce a set of 
SMILES with a high degree of novelty while staying 
focused on the property space of the training set. By 
small adjustments to an existing architecture we obtained 
remarkable results for both these goals. Our GENs auton-
omously learn the alphabet and grammar of SMILES 
strings to generate valid molecular SMILES within the 
property space defined by the training set. The exami-
nation mechanism allows us to stop training after a few 
epochs. The winning architecture used an ensemble of 
smaller networks, capable of achieving similar results as a 
large network [47]. The analysis of different architectures 
showed that the use of a bidirectional embedding layer 
followed by multiple parallel encoding layers is essen-
tial for stable generation results. SMILES augmentation 
increased the volume of the training set and accuracy 
of produced models without the need for a larger set of 
diverse molecules. In this study we analyzed performance 
of global generation models by focusing on their valid-
ity, novelty and coverage of the generators. The proposed 
approach can be also used via transfer learning to gener-
ate compounds for specific scaffolds (see e.g. [14–17]).

The introduced early-stopping mechanism of the 
generators allows maintaining a high degree of nov-
elty thanks to online statistical quality control, measur-
ing the percentage of valid SMILES. The EarlyStopping 
mechanism is easily adaptable and open to accommodate 
other quality metrics such as distribution overlap, multi-
objective targets or other models. GENs can thus be eas-
ily adapted to address other tasks. After EarlyStopping, 
training of the GENs can be continued to tackle new 
challenges [45]. The code including example notebooks 
is distributed freely [31] under a Clause-3 BSD License 
(https​://opens​ource​.org/licen​ses/BSD-3-Claus​e).
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