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Abstract 

We report on a new cheminformatics enumeration technology—SIME, synthetic insight-based macrolide enumer-
ator—a new and improved software technology. SIME can enumerate fully assembled macrolides with synthetic 
feasibility by utilizing the constitutional and structural knowledge extracted from biosynthetic aspects of macrolides. 
Taken into account by the software are key information such as positions in macrolide structures at which chemical 
components can be inserted, and the types of structural motifs and sugars of interest that can be synthesized and 
incorporated at those positions. Additionally, we report on the chemical distribution analysis of the newly SIME-gen-
erated V1B (virtual 1 billion) library of macrolides. Those compounds were built based on the core of the Erythromycin 
structure, 13 structural motifs and a library of sugars derived from eighteen bioactive macrolides. This new enumera-
tion technology can be coupled with cheminformatics approaches such as QSAR modeling and molecular docking to 
aid in drug discovery for rational designing of next generation macrolide therapeutics with desirable pharmacokinetic 
properties.
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Introduction
Macrolides are at least 12-membered glycosylated mac-
rolactone rings [1] wherein 12- to 16-membered mac-
rolides are widely known as a family of antibiotics [2, 3] 
(e.g. erythromycin, pikromycin, clarithromycin, azithro-
mycin). Macrolides belong to a large family of protein 
synthesis inhibitors and other biologically activity mem-
bers known as polyketides: structurally diverse and 
complex natural products with important therapeutic 
properties [4]. They display diverse biological proper-
ties such as antibiotic, antifungal, antimicrobial, antican-
cer, and immunosuppressant activity [2]; they thus have 
gained a critical interest in the pharmaceutical industry 
to be pursued as starting points for the development of 

novel antibacterial agents [4]. The advancements in com-
binatorial biosynthesis have made it possible to geneti-
cally engineer biosynthetic pathways to natural products 
to produce unnatural/modified macrolides based on a 
molecular scaffold provided [5].

Macrocyclic structures are known for their ability to 
bind to large, featureless, almost undruggable protein 
binding pockets [6], and their unusual physicochemical 
properties commonly far exceed all of the thresholds, 
structural alerts, and other empirical rules for estimat-
ing druglikeness (such as Lipinski [7] and Veber [8]). In 
fact, the unique nature of the ring scaffold makes them 
highly desirable due to the resulting high structural pre-
organization and rigid conformations [9, 10]. The rigid-
ity of the macrocyclic backbone limits the flexibility of 
certain structural motifs, thereby reducing undesirable 
off-target interactions and the associated entropic costs, 
which sequentially increases binding affinity [6]. Macro-
cycles also possess “chameleonic” properties that enable 
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conformational flips driven by intra-hydrogen bonding 
and polarity of the solvent environment, yielding a sig-
nificant impact on bioavailability and permeability [11]. 
Additionally, they are known for their stability to pro-
teolytic degradation in intricate biological surroundings, 
higher membrane permeability and metabolic stability 
[9], which are important druglike properties. The mecha-
nistic insights and molecular properties that allow for 
such favorable bioavailability and pharmaceutical prop-
erties are not yet fully understood, which hinders the 
innovation and exploitation of this structural class for 
novel polyketide antibiotics [10, 12, 13]. Hence, studying 
macrolides has potential to yield important findings that 
could help identify vital key characteristics for novel drug 
designs and development. However, they are still under-
exploited in part due to limited tools and databases to 
investigate structural features and relationships of mac-
rolides. In fact, there has been little progress in the devel-
opment of newer macrolide drugs up until very recently 
[14]; even though the first macrolide, erythromycin, was 
discovered in 1952 [15].

The search for novel macrolide therapeutics can be 
facilitated by cheminformatics methods such as global/
local structural enumeration, and virtually screened 
chemical libraries which can be modeled against biologi-
cal targets of interest. Protein–ligand complex binding 
interactions and structure–activity relationships (SAR) 
can be extracted from such studies and used to opti-
mize lead compounds with enhanced inhibition poten-
cies and binding affinities. However, the actual lack of in 
silico macrolide libraries in public repositories has been 
a major challenge in researching this unique structural 
class.

That was the rationale for our recent study in which 
we introduced a cheminformatics approach based on 
the concept of macrolide structural motif (SM; building 
blocks) to efficiently generate large in silico, screening-
ready libraries of macrolides with complex user-defined 
structural constraints [16]. We also reported on the 
resulting screening-ready chemical database V1  M con-
taining 1 million macrolide scaffolds with SMs extracted 
from eighteen experimentally confirmed macrolides. 
Two major weaknesses regarding the first approach were 
related to the exclusion of sugars (even though they have 
been shown to be critical for the biological activity [17]) 
and the actual synthetic feasibility based on biosynthetic 
engineering approach. The V1  M macrolide scaffolds 
did not contain sugars, a significant component some-
times contributing to one or two-thirds of the binding 
energy [17, 18]. In addition, all the SMs were added one 
after another; hence, it might result in the arrangement 
of chemical components that were unstable or couldn’t 
be synthesized via biosynthetic engineering techniques. 

However, a virtual screening library can only be truly use-
ful if the hit compounds discovered during the process 
can de facto be synthesized and experimentally tested.

Herein, we propose a more advanced, cheminformat-
ics enumeration approach with enhanced biosynthetic 
feasibility and full integration of various SMs as well as 
sugars of interest to scaffolds. This approach is inspired 
directly by the actual enzymatic assembly machinery of 
polyketides. The insights from the biosynthetic engineer-
ing studies of macrolide synthesis can be applied to our 
SIME (synthetic insight-based macrolide enumerator) 
technology to construct in silico chemical libraries that 
can in principle be experimentally synthesized. In this 
study, we also present the resulting V1B chemical library, 
the largest freely available virtual database of macrolides 
to date. V1B contains 1 billion fully assembled mac-
rolides with their attached sugars, constructed based on 
the scaffold of Erythromycin. We studied the distribution 
of important chemical properties known to affect drug 
efficiency, absorption and bioavailability such as molecu-
lar weight—MW, polar surface area—PSA, hydrophobic-
ity—SlogP, hydrogen bond acceptors—HBA, hydrogen 
bond donors—HBD, and rotatable bonds—NRB. The 
distribution of the aforementioned properties of V1B 
were compared to MacrolactoneDB, a database of exist-
ing macrolactones mined from public repositories from 
another study.

Overall, V1B was generated as a proof-of-concept study 
(1) to help illustrate the features of SIME, (2) to encour-
age computational and experimental synthetic scientists 
to custom design virtual chemical libraries of macrolide 
scaffolds suited for their project needs, and (3) to fur-
ther our understanding of macrolides for the pharma-
ceutical advancement and search of novel therapeutics. 
The V1B sample library is freely available in the Supple-
mentary Material of this manuscript (Additional file  1). 
Moreover, SIME  (and the full V1B library) is also freely 
available for download (http://www.fourc​hes-labor​atory​
.com/softw​are and https​://githu​b.com/zinph​/SIME). We 
believe this new virtual library of publicly available mac-
rolide scaffolds will enable and inspire other molecular 
modeling studies.

Results
Parameter settings for V1B
The structural core of Erythromycin with five possible 
SM and two sugar substitution points (Fig.  1) was used 
as the major scaffold template for generating V1B. The 
entire V1B database containing 1 billion compounds is 
freely available via GitHub (https​://githu​b.com/zinph​/
SIME). In our previous research, we compiled and stud-
ied eighteen experimentally confirmed bioactive mac-
rolides (BMs) from different studies [1, 18–25] and 
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extracted nine “common” and seven “rare” SMs from 
the scaffolds of 18 BMs (structures shown in Fig.  4 of 
[16]). The distribution analysis of SMs found in 18 BMs 
can be found in the cheminformatics study by Zin et al. 
[16]. Among the aforementioned SMs, we selected 13 
SMs; nine “common” SMs and four “rare” SMs (Fig.  2), 
as inputs for SMs of interest in SIME. We additionally 

extracted seven sugars from the same 18 BMs to incorpo-
rate into V1B macrolide scaffolds (Fig. 3).

To recapitulate, 13 SMs (Fig.  2) and seven sugars 
(Fig. 3) extracted directly from 18 BMs from the chemin-
formatics study by Zin et al. [16] were used to substitute 
and enumerate the novel macrolide structures in V1B. 
The option to enumerate all possible stereocenters at the 
connecting points to the macrolide core was enabled. The 

Fig. 1  Example structure of erythromycin core with possible structural motif and sugar replacement positions

Fig. 2  Structures of 13 SMs used to generate V1B Library



Page 4 of 15Zin et al. J Cheminform           (2020) 12:23 

number of maximal repeats for the same SMs per scaf-
fold was set to three, the minimal number of sugars per 
scaffold was set to one. The library size was restricted to 
1 billion molecules.

Since there are eleven out of 13 possible stereocent-
ers at the connecting points for SMs and seven out of 
seven for sugars, there are in fact 24 SMs (2 × 11 SMs 
with possible R, S configurations + 2 SMs without R,S 
configurations) and 14 sugars (2 × 7 with possible R, S 
configurations). Based on this, the possible chemical 
space of macrolides based on these given input param-
eters would contain 1.57 billion compounds; 24 total 
SMs at five substitution points with 3 repeatable SMs 
(243 × 23 × 22) × 14 total sugars in at least one of two 
substitution points (14 × 1 + 1 × 14 + 14 × 14). Since 
V1B contained 1 billion compounds, it covered 63.8% 
(  109

1,566,867,456
 ) of that possible chemical space.

Distribution of V1B molecular properties
To save time and computational power in conducting the 
distribution analysis of the entire V1B library, we applied 
a stratified random sampling to V1B and extracted 1 
million representative macrolides (V1B sample—freely 
available in the Supplementary Material of this paper). 
V1B was exported as 1000 output files, each of them 
contained 1M systematically enumerated macrolides. 
From each file, we randomly sampled 1000 macrolide 
structures, totaling a final set of 1M macrolides for dis-
tribution analysis. These 1 million macrolides should 
reasonably represent the macrolide structures from the 

entire V1B library. Nine macrolide structures randomly 
sampled from V1B are shown in Fig. 4.

As in the analysis of V1M library conducted by Zin 
et  al. [16], we studied the distribution of six important 
molecular properties for the V1B sample: molecular 
weight—MW, hydrophobicity—MolLogP, topological 
polar surface area—TPSA, hydrogen bond acceptors—
HBA, hydrogen bond donors—HBD and rotatable 
bonds—NRB (Fig.  5). More descriptive statistics on the 
aforementioned properties are provided in Additional 
file 2: Table S1. We also compared them to Lipinski and 
Veber’s rules of drug likeness and bioavailability even 
though most bioactive macrolides with reasonable bio-
availability disobey Lipinski’s rules (e.g., macrolides with 
MW > 500) [9].

MW followed a slightly bimodal distribution and 
ranged from 488.62 to 975.09  g  mol−1 with a mean 
of 761.25 ± 68.17  g  mol−1 (Fig.  5a, Additional file  2: 
Table  S1). 100% exceeded Lipinski’s  MW of 500. Mol-
LogP followed a gaussian distribution with a range 
from − 4.30 to 5.66, and a mean of 0.73 ± 1.24 (Fig.  5b, 
Additional file  2: Table  S1). Interestingly, less than 1% 
exceeded SlogP of 5. TPSA followed a gaussian distri-
bution ranging from 125.76 to 306.87 Å2 with a mean of 
213.09 ± 22.88  Å2 (Fig.  5c, Additional file  2: Table  S1). 
99.92% exceeded Lipinski’s TPSA of 140. HBA followed 
a slightly left-skewed distribution and ranged from 9 
to 22 with a mean of 15.91 ± 1.77 (Fig.  5d, Additional 
file  2: Table  S1). An overwhelming 99.7% violated HBA 
of at most 10. HBD followed a gaussian distribution with 

Fig. 3  Structures of seven sugars used to generate the V1B Library
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Fig. 4  Randomly picked example macrolide structures from V1B. The first set of digits correspond to the name of the files and the second set the 
row ID of the compound
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a range from 1 to 10 and a mean of 3.94 ± 1.35 (Fig. 5e, 
Additional file 2: Table S1). 12.53% disobeyed HBD of at 
least 5. NRB followed a gaussian distribution and ranged 
from 3 to 19 with a mean of 9.50 ± 2.00 (Fig.  5e, Addi-
tional file 2: Table S1). 30.82% surpassed NRB of 10.

To better understand the distribution of macrolide 
chemical properties in a similar chemical scope, we com-
pared it to the same molecular properties from Macrolac-
toneDB [26], a recently developed database of ca. 13,700 
known macrolactones extracted from public reposito-
ries (e.g., ChEMBL, BindingDB, AfroDB, PDB). As it 
can be seen in the resulting density plots (Fig.  6), V1B 

macrolides fell within the well-populated regions of Mac-
rolactoneDB across all the molecular properties selected 
for assessment. This was especially true for MW and 
TPSA of V1B which were defiantly beyond Lipinski and 
Veber’s rules. This showed that though V1B might vio-
late one (or several) Lipinski and Veber’s rules commonly 
used for the assessment of drug likeness and bioavailabil-
ity of small molecules, V1B macrolides possessed molec-
ular properties within the reasonable ranges displayed 
by known bioactive macrolactones and macrolides. Of 
note, none of the key properties studied of V1B were 
found beyond those displayed by MacrolactoneDB, thus 

Fig. 5  Distribution of molecular properties in V1B: a MW—molecular weight, b MolLogP—calculated water/octanol partition coefficient, c TPSA—
topological polar surface area, d HBA—hydrogen bond acceptors, e HBD—hydrogen bond donors, f NRB—rotatable bonds
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confirming that V1B macrolides were generated struc-
tures with acceptable molecular properties being entirely 
within the chemical space displayed by the currently 
known macrolactones.

Discussion
One major goal of this study was to develop a more 
synthetic-friendly approach compared to the PKS enu-
merator from our previous study [16]. Herein, we have 
addressed this by developing a novel cheminformatics 
approach that closely follows the way synthetic chemists 
and biologists could potentially design novel macrolides. 

Fig. 6  Comparison between density plots of V1B and MacrolactoneDB for molecular properties: a MW—molecular weight, b MolLogP—calculated 
water/octanol partition coefficient, c TPSA—topological polar surface area, d HBA—hydrogen bond acceptors, e HBD—hydrogen bond donors, f 
NRB—rotatable bonds. Green rectangles indicate values within druglike regions based on Lipinski and Veber’s rules
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SIME can act as a powerful technology to design in sil-
ico macrolide libraries with biosynthetic feasibility. This 
is done by exploiting the knowledge from enzymatic 
assembly lines that construct macrolides in Nature, and 
from artificial biosynthetic pathways to diversify mac-
rolides; especially the insights into what extenders can 
be inserted or manipulated throughout the macrolide 
scaffolds. These libraries can then be computationally 
screened via cheminformatics approaches such as QSAR 
modeling and 3D molecular docking against interest-
ing biological targets to identify lead compounds which 
can indeed be experimentally tested. Importantly, the 
insights gained from such experimental results can 
be used to validate and improve the cheminformatics 
approaches along with other existing in silico techniques 
such as prime macrocycle conformational sampling [27], 
ConfBuster [28], LoopFinder [29]. Additionally, such 
generated ensembles of macrolides can be further probed 
and examined for binding profile studies, ligand–protein 
interactions, conformational arrangements using classic 
cheminformatics simulations such as molecular dynamic 
simulations, docking and modeling. This can provide 
important biological insights into macrolides and expand 
our knowledge of this structural class and help us design 
more effective macrolide therapeutics.

It is also important to note that both PKS enumera-
tor [16] and SIME are vital in their own way for inves-
tigating the chemical space and features of macrolides. 
Though SIME can generate VS-ready macrolides that can 
be more synthetically feasible, PKS enumerator can be 
used to diversify and generate large ensembles of novel 
macrolide scaffolds that can be virtually screened against 
protein targets still. Though these macrolides may be less 
synthetic-friendly with current biosynthetic technol-
ogy, binding studies, important protein–ligand interac-
tions and SAR studies can still be extracted to advance 
hit optimization efforts. The findings from such studies 
can then be used to guide the direction of synthetic biol-
ogy towards prioritized novel scaffolds. Thus, PKS enu-
merator can be useful in expanding the chemical scope of 
macrolides, discovering their pharmacokinetic features 
and directing synthetic efforts for certain biological tar-
gets. In a future when highly complex enzymatic assem-
bly lines responsible for the production of polyketides can 
be easily assessed and modified as needed to create novel 
macrolides, PKS enumerator would be a highly effective 
and useful technology for efficient screening, identifica-
tion and SAR studies of macrolactones/macrocycles that 
can in reality be synthesized and experimentally tested. 
Meanwhile, the SIME technology can leverage the find-
ings and discoveries from synthetic biology of polyke-
tides to efficiently generate new synthesizable macrolide 

analogues and help aid in identifying those with high 
therapeutic potential and extracting SAR knowledge.

We also analyzed the distribution of important chemi-
cal properties of 1 million compounds that have been 
selected with randomly stratified sampling approach 
from the whole V1B database. Molecular weight, topo-
logical polar surface area and hydrogen bond acceptors 
of V1B macrolides overwhelmingly breached Lipinski’s 
and Veber’s rules of drug likeness and bioavailability. 
However, their properties were found to be within the 
chemical scope of MacrolactoneDB, an umbrella struc-
tural database of bioactive macrolactones. One may point 
out that macrolide scaffolds from V1M generated by PKS 
enumerator in the first study were shown to display a 
majority of the molecular properties well-within Lipin-
ski’s and Veber’s rules including MW and TPSA and high 
chemical similarity to experimentally confirmed bioac-
tive molecules [16]. However, in that study, the sugars 
were not included and only the macrolide scaffolds were 
considered; both for V1M and 18 reference bioactive 
macrolides (BMs). The exclusion of sugars significantly 
impacted the range of chemical properties displayed by 
both V1M and 18 BMs, thus their properties fell within 
Lipinski’s and Veber’s druglike and orally bioactive space. 
If, however, the sugar components were accounted for, 
the molecular properties such as MW of V1M and 18 
BMs would be increased by approx. 352  g mol−1 since 
macrolide antibiotics often contain two sugar moieties 
such as Cladinose (MW of 176.21 g mol−1) and Desosa-
mine (MW of 175.23 g mol−1) [30].

Importantly, it should be noted that 3D structures of 
macrolides are highly important for their chemical prop-
erties and biological activities. The 2D molecular descrip-
tors used in this study were generated by RDKit software 
[31] and used to calculate the physical chemical proper-
ties of the enumerated compounds. However, properties 
such as TPSA, logP or logS can be considerably affected 
by the 3D conformational arrangements and chameleonic 
properties usually displayed by macrocyclic structures 
[32]. For example, we found that experimental logP val-
ues of several bioactive macrolides such as azithromycin 
[33], clarithromycin [33] and erythromycin [33], Carbo-
mycin [33], were at least 1.5 log units higher than the cal-
culated MolLogP values (see Additional file 2: Table S2). 
However, for many other bioactive macrolides such as 
oleandomycin and yylosin, the calculated MolLogP val-
ues were found to be much more reliable (within 0.8 log 
unit compared with experimental logP). All the values 
of calculated MolLogP and experimental logP [33] for 
these bioactive macrolides are given in Additional file 2: 
Table  S2. Henceforth, the distributions of computed 
molecular properties such as MolLogP and TPSA for 1 M 
samples of V1B given in this paper need to be seen as 
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overall trends. Again, this is directly due to the fact that 
those molecular properties are largely modulated by 3D 
conformational arrangements of macrolides [32], and the 
full characterization of the conformation space for the 
entire library was beyond the scope of this paper.

In fact, the conformational analysis of macrocycles still 
remains a highly challenging problem and there needs to 
be further research, method developments and experi-
mental validations in that area. We actually encourage 
interested readers to consult further studies regarding 
specific macrocyclic structures and their conformational 
arrangements such as the conformational control of mac-
rocycles by remote structural modification by Appavoo 
et al. [34], the prediction of the bioactive conformations 
of macrocycles using molecular dynamics and docking by 
Ugur et al. [35], or the conformational exploration study 
of dissymmetric macrolides antibiotics by Belaidi et  al. 
[36]. SIME generates macrolide structures in SMILES 
format that can be further processed to generate 3D con-
formations by using cheminformatics tools (e.g., Prime 
macrocycle conformational sampling [27], ConfBuster 
[28]).

Regarding the implementation of the SIME software, 
we plan to further optimize the algorithm in the future 
to boost the efficiency in generating libraries and mem-
ory storage (e.g., GPU acceleration). We will take into 
consideration user feedback and incorporate new, better 
options in our software to help scientists design better 
in silico macrolide libraries to be used for VS screening, 
modeling and other cheminformatics studies. We expect 
to figure out the details on stereochemistry specificity for 
SMs and sugars at the connecting points to the scaffolds 
in the near future to better accommodate the findings 
from biosynthetic chemists. The best potential of SIME 
in exploring and understanding such complex and enig-
matic structural class of macrolides can only be achieved 
through collaboration between experimental and chem-
informatics scientists.

Conclusions
In this study, we implemented SIME, an efficient chemi-
cal library generation software to generate virtual screen-
ing-ready macrolide libraries with enhanced biosynthetic 
feasibility. As proof-of-concept, we utilized SIME to 
construct V1B, the largest publicly accessible library of 
1 billion in silico macrolides based on the core of Eryth-
romycin structure, 13 SMs and six sugars extracted from 
eighteen bioactive macrolides from the previously con-
ducted study [16]. This new enumeration algorithm relies 
on the biosynthetic engineering concept of macrolides 
and insights from such fields to explore and design in sil-
ico library of highly biosynthesize-able macrolides. That 
is highly valuable because the entire library including the 

lead macrolides predicted by cheminformatics tools such 
as virtual screening and/or QSAR modeling can in fact 
be biosynthesized and tested for experimental activities. 
The highest potential and success of this polyketide enu-
meration technology in drug discovery can be achieved 
through collaboration between cheminformatics and bio-
synthetic studies of macrolides. This can highly impact 
and contribute to the future studies in search of novel 
bioactive macrolides.

Methods
User controls of SIME
SIME takes three major inputs: (1) macrolide core, (2) 
structural motifs (SM), and (3) sugars, along with some 
other user-defined constraints. Users can input the core 
macrolide structure indicating positions of replace-
ment for sugars and SMs. The macrolide core must be 
in SMILES format with possible replacement points for 
SMs designated as asterisks ‘[*]’ and sugars as ‘[*sugar*]’. 
For example, the erythromycin core with possible places 
for replacements (see Fig.  1) should be formatted as 
‘CC[C@H]1OC(= O)[*][*sugar*][C@H](C)[*sugar*][*]
C[*]C(= O)[*][C@@H](O)[*]1’. Structural motifs and 
sugars can be uploaded as separate.txt files containing 
the SMILES of SMs and sugars in each line (see soft-
ware repository for examples of input files). Each SM or 
sugar should start and end with [*R*] which are connec-
tion points to the rest of the core macrolide ring struc-
ture or SMs or sugars. One should ensure that between 
‘[*R*]’s are the SMILES entailing the desired SM or sugar 
in SMILES format. The structures of SMs and sugars 
used to generate V1B are shown in Figs. 2  3 respectively, 
and the corresponding input text files for SMs and sug-
ars have been provided in the supplementary material of 
this paper. The structures and IDs of SMs used to gen-
erate V1B library were directly extracted from PKS enu-
merator [16], and the sugar structures were derived from 
18 bioactive macrolides from the same cheminformatics 
study conducted by Zin et al. [16].

The first parameter in designing the macrolide library 
was to limit the number of repeated structural motifs in 
each macrolide (i.e., # maximum number of repeats for 
SMs). An illustration has been provided in Fig. 8. There 
might be multiple points of interest for inserting SMs 
in the macrolide cores and it is likely that macrolides 
with the same SMs in all these points of interest might 
be produced. The users can limit the chemical space of 
macrolide library by choosing the maximum number of 
SM repeats allowed at those positions. All SMs of inter-
est can then be incorporated into the macrolide cores 
in the specified positions and may repeat maximally up 
to that user-defined number per scaffold to enumerate 
macrolides.



Page 10 of 15Zin et al. J Cheminform           (2020) 12:23 

We additionally incorporated a second parameter to 
control the number of sugars at the specified positions. 
A graphical illustration has been provided in Fig.  9. A 
macrolide core may have three (or more) positions at 
which sugars can be added. However, users may not 
want macrolides with sugars added in all the positions. 
This option allows users to specify the minimal num-
ber of sugars to add in those positions for the generated 

macrolides. Users may choose to add at least two sugars 
to those scaffolds, so the library will contain macrolides 
with two or three sugars. The rest of the positions which 
were specified for sugar(s) will have hydroxyl groups 
attached.

The third parameter is the library size, the total num-
ber of macrolides of the generated library. In the output 
smile files, each file is limited to at most 1 million. In V1B 
library, there are in total 1000 files, each containing 1 
million macrolides. The fourth and fifth parameters are 
options to enumerate all possible stereocenters of the 
connecting atoms for selected SMs and sugars in each 
scaffold respectively (graphical illustration in Fig.  10). 
The joining atoms with defined stereocenters in selected 
SM and sugar are detected by the algorithm and both R 
and S configurations for those SMs and sugars can be 
generated at the connecting atoms upon user’s choice. 
However, joining points with undefined stereocenters are 
undetected for generation of both R and S configurations. 
Currently, the backend of SIME is built on RDKit which 
hasn’t yet obtained the functionality to detect, manipu-
late or fix R or S configuration at a given stereocenter. As 
such, the present SIME algorithm does not identify R or S 
configuration and generates both when a stereocenter is 
detected at the joining point.

Since very large chemical libraries of macrolides can 
be generated, output files are sorted in a folder called 
“LIBRARIES”. The files in the folder are time stamped and 
named numerically in this format “timestamp_mcrl_*. 
smiles” wherein * stands for the current file number and 
timestamp is replaced with the actual time stamp in the 

Fig. 7  Graphical user Interface of SIME

Fig. 8  Graphical illustration of the first parameter in SIME; # maximal repeat for SMs



Page 11 of 15Zin et al. J Cheminform           (2020) 12:23 	

format of “year–month–date–hour–minute–second”. 
Additionally, the program outputs an information file 
entailing all the user parameters applied to generate the 
program along with the macrolide core, sugars and struc-
tural motifs that users have selected.

Implementation details
The inputs for SIME are (1) macrolide core, (2) SMs, (3) 
sugars, (4) parameters 1-4 (Fig. 2) and the required for-
mats for the first three inputs are provided in User Con-
trols of SIME. The output is a folder containing smiles 
files each of which contains a maximal of 1 million mac-
rolide structures encoded in chemical SMILES format. It 

can be divided into three major sections: (I) initial pro-
cessing, (II) template preparation and (III) enumeration 
and creation of macrolides. The graphical illustration for 
the simplified workflow of SIME is provided in Fig. 11.

In the first section of initial processing, sugars are 
processed. The program loads sugars from a selected 
file (currently set to default sugar file). If users choose 
not to enumerate both R and S configurations of sug-
ars at joining points (parameter 5th), connection points 
[*R*] for each sugar are stripped and then appended to 
‘Sugars’ list. If users select 5th parameter, the function 
ENUMERATE_sugar_stereocenters (FSG_RS, Table  1) 
is performed for each sugar to generate both R and S 
configurations of sugars at joining points. These sug-
ars are then appended to sugar list. Another list ‘Full_
List’ is created by adding a hydroxyl to ‘Sugars’ list. In 
step 2, SMs are processed. The file containing SMs of 
users’ choice is loaded into the program (currently from 
default SM file). If users choose not to enumerate both 
R and S configurations of SMs at joining points (4th 
parameter), connection points [*R*] for each SM are 
stripped and then appended to structural_motifs list. 
If users select the 4th parameter, the function enumer-
ate_SM_stereocenters (FSM_RS, Table  1) is performed 
for each SM to generate both R and S configurations at 
joining points and then appended to structural_motifs 
list.

In section II, the 2nd parameter, minimal repeat 
for sugars, is addressed. Wherein sugars are not used 
at sugar positions of interest in the macrolide core, a 
hydroxyl functional group is used in its place. Thus, two 
lists of ‘Sugars’ and ‘Full_List’ were made in the first 
section of initial processing. ‘Full_List’ contains ‘Sugars’ 
and a hydroxyl group. The total possible arrangements 
of ‘Sugars’ or ‘Full_List’, according the 2nd parameter 
(Fig. 7), to be inserted at sugar positions of interest in 
the macrolide core template are determined using the 

Fig. 9  Graphical illustration of the second parameter in SIME; minimal # of sugars

Fig. 10  Graphical illustration of the fourth parameter in SIME; 
enumerate all possible stereocenters. Upon detection of 
stereocenters at the connecting atom present in SM011, SIME 
generates both R and S configurations for the joining atom upon 
user’s request
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function generate_dummy_sugar_templates (FGDST, 
Table 1).

In the third section of template preparation, the core 
macrolide is processed and prepped for the creation of 

new macrolide structures. The graphical illustration for 
the simplified workflow for this section is provided in 
Fig. 11. Of note, the default for core macrolide is set to 
erythromycin core provided in Fig. 1 and as of now, only 

Fig. 11  Graphical illustrative workflow of the core SIME. Sections I, II, III and IV are explained in the implementation details of “Methods” section
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the first single macrolide core provided in the text file 
is considered. In step 1, the function remove_SM_digits 
(FRSMD, Table 1) is applied to the core macrolide smile 
string. It strips the labeled digits from the SM positions 
of interest if there are any. For example, FRSMD converts 
‘–[1*]–[2*]–[3*]—[*sugar*]–[*sugar*]’ into ‘–[*]–[*]–
[*]—[*sugar*]–[*sugar*]’. In step 2, string_splitter (FSS) 
is applied to the output smile from step 1 to split into 
different fragments. There may be fragments in which 
sugar positions of interest may be embedded. Thus, in 
step 3, all the fragments are assessed for the presence of 
sugar positions of interest and again split at those sugar 
positions into more fragments. The fragments are then 
cleaned up for further processing. In step 4, structural_
motifs from section I are inserted at SM positions of 
interest in the macrolide core template. In step 5, based 
on the arrangements of sugar lists calculated in section 
II, ‘Sugars’ and ‘Full_List’ are inserted at sugar positions 
of interest in the macrolide core template. Now, the 
lists of SMs and sugars are prepped and placed at the 

right positions of the macrolide core template, thus it is 
ready to proceed into the section IV.

During section IV, macrolides are enumerated and 
created in SMILES format based on the prepped mac-
rolide core template from section III. The cartesian 
products (CP) of all the fixed fragments, ‘structural_
motifs’, ‘Sugars’ and ‘Full_List’ at the specified posi-
tions are generated to enumerate possible macrolide 
structures. During this enumeration process, the pro-
gram checks if the total number of repeatable SMs in 
the macrolide (1st parameter in Fig. 7) is satisfied after 
the enumeration of a macrolide. If so, the program 
proceeds to check whether the library size has been 
achieved. If not, the next cartesian product is enumer-
ated and a new macrolide structure is created. This pro-
cess continues until the desire library size is achieved 
or the internal memory capacity is full.

The full code of SIME (and the link to download the full 
V1B library)  is freely available for download at https​://
githu​b.com/zinph​/SIME

Table 1  Helper functions for SIME. The descriptions for each function were provided to help understand the simplified 
workflow of SIME algorithm provided in Fig. 11

Helper functions Description

ENUMERATE_sugar_stereocenters (FSG_RS) Take in sugar strings that start and end with [*R*] and return a list of sugars with two different stereo-
centers for the joining carbon

enumerate_SM_stereocenters (FSM_RS) Takes a list of SMs. For SMs with identified stereocenters at the joining point, both R and S configu-
rations for those SMs are generated and added to the all_possible list. For SMs with undefined 
stereocenters at joining points or without stereocenters, they will remain unchanged and added to 
the all_possible list. Returns the all_possible list

remove_SM_digits (FRSMD) Takes a given smile and locates SM points of interest indicated with [1*], [2*], etc. Returns the smile 
string with all SM points of interest with removed digits

Input — > ’1[1*]234[2*]5[3*]6’
Output — > ’1[*]234[*]5[*]6’

string_splitter (FSS) Splits a given string into fragments based on a symbol provided and returns a list containing the 
fragments. For example:

input — > string = ’1[*]234[*]5[*]6’, symbol = ’[*]’
output — > [‘1’, ‘[*]’, ‘234’, ‘[*]’, ‘5’, ‘[*]’, ‘6’]

insert_SMs (FiSM) Takes in a smile template resulted from string_splitter and replace the ‘[*]’ symbols with a list of SMs

generate_dummy_sugar_templates (FGDST) This function takes two parameters: smile template, minimal sugars in each macrolide (default is 
one sugar). For simplification purposes, it generates a list of all possible sugar dummies as ‘SUGARS’ 
(intended for only sugars) and ‘Full_List’ (intended for sugars + hydroxy) for the number of sugars 
specified in the given smile template. For example, if there are two sugar positions identified in the 
given core with at least one sugar allowed, this function will output this result: [(‘SUGARS’, ‘Full_List’), 
(‘Full_List’, ‘SUGARS’)]. It means that the first and second locations for sugars in one template allow 
for the list of ‘SUGARS’ and ‘Full_List’ (sugar + hydroxyl) respectively. The second template allow for 
the full list and the list of sugars in the first and second locations designated for sugars respectively

replace_SYMBOLsugars_with_dummies (FRSSD) This function takes two inputs: sugar_dummy_order and smile_template_with_sugar_symbols. 
It splits the given template at [*sugar*] positions wherein the correct dummies (‘SUGARS’ and 
‘Full_List’) are inserted

insert_sugars_to_dummies (FIStD) This function takes the smile template with specified ‘SUGARS’ and ‘Full_List’ after *** function. It then 
replaces ‘SUGARS’ with an actual list of sugars, and ‘Full_List’ with the list of sugars and a hydroxyl 
group

https://github.com/zinph/SIME
https://github.com/zinph/SIME
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