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Abstract 

The development of drugs is often hampered due to off-target interactions leading to adverse effects. Therefore, com-
putational methods to assess the selectivity of ligands are of high interest. Currently, selectivity is often deduced from 
bioactivity predictions of a ligand for multiple targets (individual machine learning models). Here we show that mode-
ling selectivity directly, by using the affinity difference between two drug targets as output value, leads to more accu-
rate selectivity predictions. We test multiple approaches on a dataset consisting of ligands for the A1 and A2A adeno-
sine receptors (among others classification, regression, and we define different selectivity classes). Finally, we present 
a regression model that predicts selectivity between these two drug targets by directly training on the difference in 
bioactivity, modeling the selectivity-window. The quality of this model was good as shown by the performances for 
fivefold cross-validation: ROC A1AR-selective 0.88 ± 0.04 and ROC A2AAR-selective 0.80 ± 0.07. To increase the accuracy 
of this selectivity model even further, inactive compounds were identified and removed prior to selectivity prediction 
by a combination of statistical models and structure-based docking. As a result, selectivity between the A1 and A2A 
adenosine receptors was predicted effectively using the selectivity-window model. The approach presented here can 
be readily applied to other selectivity cases.
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Introduction
Computational modeling of small molecules in drug dis-
covery is typically focused on modeling their binding 
affinity or bioactivity. These models can be used to iden-
tify active compounds in silico, or to rationalize which 
chemical groups are correlated with bioactivity. Quan-
titative structure–activity relationship (QSAR) models 
can be applied to model compound activity for single 
proteins, whereas proteochemometrics (PCM) can be 
applied to model activity for multiple proteins in one sin-
gle model [1, 2]. Next to statistical models (e.g. machine 
learning), structure-based models are used to predict and 
rationalize compound activity. Methods such as docking, 

molecular dynamics, and free-energy perturbation (FEP) 
are widely applied to study binding and bioactivity [3–5].

Although modeling of activity is essential in drug dis-
covery, these models often do not take target selectiv-
ity into account. The ability to control promiscuity of 
potential drug candidates is crucial as off-target effects 
can be avoided this way. Whereas selective drugs are 
designed to be non-promiscuous, polypharmacological 
drugs are designed to interact with multiple targets [6]. 
The development of both polypharmacological and selec-
tive drugs requires predictions for more than one target. 
Polypharmacology and selectivity can both be modeled 
by machine learning or structure-based approaches that 
predict the affinity of compounds on multiple targets 
separately. The resulting bioactivity profile can subse-
quently be applied to match the desired on-target(s) and 
to avoid off-target effects. However, this indirect way of 
predicting selectivity based on predicted bioactivities 
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requires multiple model predictions to calculate one fea-
ture: the activity difference of a compound for one target 
over the other.

Here we explore selectivity modeling for the adenosine 
receptors, which are members of the class A G protein-
coupled receptors (GPCRs). The adenosine receptor fam-
ily, existing of subtypes A1, A2A, A2B, and A3, is involved 
in many physiological processes including cardiac control 
and inflammation [7]. The A1 and A2A adenosine recep-
tors (A1AR and A2AAR) both control cyclic adenosine-5′-
monophosphate (cAMP) levels in the cell. Activation of 
A1AR results in decreased cAMP levels, whereas A2AAR 
activation increases cAMP levels [8]. These contrary 
effects justify a need for computational models that can 
predict selectivity between these two subtypes. A novel 
method to model selectivity is presented in this study: 
namely to train machine learning models directly on the 
differences between experimentally determined affinities.

For the A2AAR many crystal structures are available 
in the Protein Data Bank [9]. More recently, protein 
crystal and cryo-EM structures for the A1AR have been 
obtained also [10–12]. The availability of structures for 
both proteins allows for a structure-based comparison 
of the subtypes to gain insights into selectivity. Previ-
ous studies revealed differences between the protein 
structures that correspond with ligand selectivity of spe-
cific chemical structures [10, 11, 13]. For example, the 
A2AAR-selectivity of reference antagonist ZM241385 
could be explained by a combination of three structural 
differences between the A1AR and A2AAR: a salt bridge 
at the binding pocket entry, a hydrophobic pocket in the 
A1AR, and a (de)stabilized water network [13]. Further-
more, the A1AR-selectivity of xanthine-based antagonists 
with a bulky substituent has shown to be caused by steric 
hindrance in the A2AAR by residue Met2707.35 (Thr2707.35 
in A1AR) [11].

In addition to the availability of crystal structures, 
many small molecule ligands have been experimentally 
tested for their activity on one or multiple adenosine 
receptors. This data has already been exploited to train 
bioactivity models using classification or continuous 
statistical models [14, 15]. However, direct modeling 
of selectivity in the adenosine receptors using statisti-
cal models has not yet been reported. Statistical models 
to predict selectivity are faster than predicting selectiv-
ity using time-consuming FEP approaches [5]. However, 
structure-based methods can give additional mecha-
nistic information on binding and selectivity of com-
pounds, and are in principle not dependent on available 
bioactivity data of ligands.

In this research a combined approach of QSAR mod-
eling and structure-based docking is presented to model 
bioactivity for the A1AR and A2AAR. Moreover, the 

selectivity between the A1AR and A2AAR is predicted 
directly by training on affinity differences (selectiv-
ity-window). This is in contrast to methods that were 
reported up till now that deduced selectivity from pre-
dicted bioactivities of separate models. Furthermore, 
by training a continuous model (regression), the degree 
of selectivity was calculated in addition to a selectivity 
class with predefined thresholds. Finally, to enhance the 
performance of the selectivity models, statistical bioac-
tivity models and structure-based docking were used to 
exclude inactive compounds.

Our study shows that continuous QSAR models can 
effectively predict selectivity between the A1AR and 
A2AAR. A model trained directly on the difference in 
affinity between the two proteins, the selectivity-window 
model, outperformed models that are generally used to 
predict selectivity: models that are trained on separate 
bioactivities for the A1AR and A2AAR.

Results
Datasets
Information on compound-protein interactions (e.g. 
binding affinity and efficacy) was collected for the 
human A1AR and A2AAR. Public bioactivity data was 
extracted from ChEMBL version 23 [16] and supple-
mented with in-house data (see Additional file  1). As 
compounds with a ribose scaffold are often associ-
ated with agonistic activity and dicyanopyridines with 
partial agonism, these compounds were removed to 
generate an antagonist-focused dataset [17, 18]. Bio-
activity values were standardized to pActivity (con-
ceptually similar to the pChEMBL value, an ensemble 
from pKi/IC50/EC50/Kd values [19]), while simultane-
ously combining data from different labs and assays. 
The data was subsequently used to compile the follow-
ing compound datasets: an ‘A1AR bioactivity dataset’ 
(containing bioactivities of compounds on the A1AR), 
an ‘A2AAR bioactivity dataset’ (containing bioactivi-
ties of compounds on the A2AAR) and an ‘A1AR/A2AAR 
dataset’ (bioactivities of compounds tested on both the 
A1AR and A2AAR). The latter dataset included infor-
mation on the selectivity of compounds. Compounds 
were termed ‘selective’ when the difference in activ-
ity between the two proteins was more than 100-fold 
(e.g., A2AAR-selective when pActivity A1AR = 6.5 and 
pActivity A2AAR ≥ 8.5). The A1AR/A2AAR dataset con-
sisted of five classes: non-binder (pActivity A1AR and 
A2AAR < 6.5), A1AR-selective (pActivity A1AR ≥ 6.5 
and selectivity ≥ 100-fold), A2AAR-selective (pActiv-
ity A2AAR ≥ 6.5 and selectivity ≥ 100-fold), and dual 
binder (pActivity A1AR and A2AAR ≥ 6.5 and selec-
tivity ≤ tenfold). Additionally, compounds that had 
measured bioactivities for both the A1AR and A2AAR, 
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but did not fit into any of the classes of the A1AR/
A2AAR dataset, were termed ‘semi-selective’ com-
pounds. Compounds that only had measured bio-
activity for one receptor and were not present in the 
A1AR/A2AAR dataset, but were included in either the 
A1AR bioactivity dataset or A2AAR bioactivity dataset 
were termed ‘single points’. The distribution of activi-
ties in the different datasets was comparable (Table 1) 
and normally distributed in both the A1AR and A2AAR 
(Fig.  1). It should be noted that the total number 
of A1AR-selective compounds is about three times 
smaller than the number of A2AAR-selective com-
pounds (50 and 146 compounds, respectively).

Modeling A1AR/A2AAR subtype selectivity using 
classification QSAR models
Several QSAR models were created to study selectiv-
ity. Firstly, subtype selectivity for the A1AR and A2AAR 
was modeled using classification models. Addition-
ally, non-selective compounds (dual binders) and 
non-binders were modeled. The following four mod-
els were constructed: a 2-class model (A1AR-selective/
A2AAR-selective), two 3-class models (A1AR-selective/
A2AAR-selective/dual inhibitors on one hand, and 
A1AR-selective/A2AAR-selective/non-binders on the 
other hand), and a 4-class model (A1AR-selective/
A2AAR-selective/dual/non-binders). All models were 

Table 1  Dataset characteristics: number of  compounds, distribution of  activities and  chemical similarity 
within the dataset

Dataset Description Total number 
of compounds

Activity (pActivity) Similarity 
(tanimoto 
FCFP4)

Protein Min Median Max Mean

A1AR bioactivity dataset Compounds with measured activity for the A1AR 2774 A1AR 4.05 6.43 10.52 0.18

A2AAR bioactivity dataset Compounds with measured activity for the A2AAR 3123 A2AAR 4.00 6.91 11.00 0.18

A1AR/A2AAR dataset Compounds with measured activity for both the 
A1AR and A2AAR with classification A1AR/A2AAR/
dual/non-binder

1106 A1AR 4.33 6.52 10.52 0.19

A2AAR 4.30 6.83 10.80

Semi-selective compounds Compounds with measured activity for both the 
A1AR and A2AAR that do not fit into a class

855 A1AR 4.37 6.37 10.02 0.20

A2AAR 4.34 7.09 10.38

Fig. 1  Distribution of activities of the different compound classes for the A1AR (a) and A2AAR (b). The compounds from the A1AR and A2AAR 
bioactivity datasets that did not belong to any of the classes of the A1AR/A2AAR dataset are called “single points”
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validated with fivefold cross-validation, using the same 
(chemically clustered) test sets per iteration for each 
model (for details see Methods section). The perfor-
mance of the 2-class QSAR model was best for predict-
ing A1AR and A2AAR selectivity (receiver operating 
characteristic (ROC) 0.87 ± 0.06, and Matthews Corre-
lation Coefficient (MCC) 0.40 ± 0.13). Addition of dual 
and non-binder classes decreased model performance. 
ROC decreased to 0.76 ± 0.06 and 0.64 ± 0.09 for the 
A1AR and to 0.62 ± 0.09 and 0.65 ± 0.09 for the A2AAR. 
Likewise, MCC decreases to 0.22 ± 0.15 and 0.00 ± 0.07 
for the A1AR and to 0.20 ± 0.17 and 0.36 ± 0.12 for 
the A2AAR (Table 2). This indicates that the A1AR and 
A2AAR 100-fold selective compounds are sufficiently 
chemically distinct from each other to be correctly 
predicted by the model and that they show a clear 
structure–activity relationship. Conversely, dual and 
non-binders are suggested to share chemical similari-
ties with both the A1AR- and A2AAR-selective classes, 
making it more challenging for the model to differen-
tiate between these classes (Fig.  2). Furthermore, the 
sensitivity and the positive predictive value (PPV) were 
consistently higher for A2AAR-selective compounds 
than for A1AR-selective compounds, whereas specific-
ity and negative predictive value (NPV) were higher for 
A1AR-selective compounds.

The non-binder class contains compounds that are 
inactive at both receptors. However, these compounds 
are not well differentiated from the active classes 
(A1AR-, A2AAR-selective, and dual), as is observed by 
low MCC (0.15 ± 0.06) and poor ROC (0.57 ± 0.07) 
for the non-binder class. The next section therefore 

describes bioactivity modeling of the A1AR and A2AAR 
in an attempt to categorize non-binders.

Modeling A1AR and A2AAR bioactivity using classification 
and regression QSAR models
The bioactivity of compounds for the A1AR and A2AAR 
were modeled with both classification and regression 
models. Classification models categorize compounds 
with using a pre-defined threshold (here pActivity ≥ 6.5) 
as ‘active’ and compounds below that threshold are 
termed ‘inactive’. The model is trained on these activity 
classes and provides an activity class for test compounds 
as well. In contrast, regression models are not trained on 
classes, but on numerical bioactivity values. The output 
that is generated from a regression model is a bioactivity 
value, which can subsequently be assigned to an activity 
class. As can be observed in Table  1 where the median 
pActivity for the sets is shown, this value (pActivity 6.5) 
is applicable for these data sets and was previously also 
shown to be a relevant threshold leading to balanced 
classes [15].

Bioactivity classification and regression QSAR mod-
els were trained on the A1AR/A2AAR dataset, the 
same dataset that was used in the selectivity-classifi-
cation QSAR models described in the previous sec-
tion. Additionally, semi-selective compounds were 
added to increase the amount of training data. These 
semi-selective compounds have experimental activi-
ties for both receptors but do not fit into any of the 
four selectivity classes (e.g. a compound with pActivity 
A1AR = 7.0, pActivity A2AAR = 8.1). However, for bio-
activity modeling the selectivity class is irrelevant, and 
thus these compounds were now included to increase 

Table 2  Performance of selectivity classification models

Means of fivefold cross-validation with standard error of the mean (SEM). The class indicates the performance for that particular selectivity class: A1AR-selective, 
A2AAR-selective, dual (non-selective), and non-binders

MCC Matthews Correlation Coefficient, PPV positive predictive value, NPV negative predictive value, ROC receiver operating characteristic

Classification model Class MCC Sensitivity Specificity PPV NPV ROC

QSAR 2-class A1AR 0.40 ± 0.13 0.62 ± 0.16 0.76 ± 0.11 0.57 ± 0.12 0.86 ± 0.07 0.87 ± 0.06

A2AAR 0.40 ± 0.13 0.76 ± 0.11 0.62 ± 0.16 0.86 ± 0.07 0.57 ± 0.12 0.87 ± 0.06

QSAR 3-class A1AR 0.22 ± 0.15 0.25 ± 0.15 0.96 ± 0.02 0.31 ± 0.14 0.93 ± 0.02 0.76 ± 0.06

A2AAR 0.20 ± 0.17 0.33 ± 0.16 0.88 ± 0.02 0.35 ± 0.14 0.83 ± 0.04 0.62 ± 0.09

Dual 0.10 ± 0.09 0.81 ± 0.03 0.29 ± 0.10 0.75 ± 0.02 0.35 ± 0.08 0.58 ± 0.06

QSAR 3-class A1AR 0.00 ± 0.07 0.11 ± 0.05 0.88 ± 0.07 0.10 ± 0.06 0.91 ± 0.02 0.64 ± 0.09

A2AAR 0.36 ± 0.12 0.47 ± 0.14 0.85 ± 0.10 0.59 ± 0.11 0.85 ± 0.02 0.65 ± 0.09

Non-binder 0.07 ± 0.13 0.67 ± 0.11 0.39 ± 0.12 0.70 ± 0.05 0.37 ± 0.12 0.50 ± 0.09

QSAR 4-class A1AR 0.11 ± 0.10 0.12 ± 0.09 0.97 ± 0.01 0.18 ± 0.11 0.95 ± 0.01 0.70 ± 0.07

A2AAR 0.25 ± 0.16 0.29 ± 0.13 0.94 ± 0.02 0.39 ± 0.16 0.90 ± 0.02 0.67 ± 0.09

Dual 0.09 ± 0.05 0.51 ± 0.05 0.58 ± 0.08 0.50 ± 0.05 0.60 ± 0.02 0.58 ± 0.05

Non-binder 0.15 ± 0.06 0.51 ± 0.09 0.64 ± 0.06 0.47 ± 0.04 0.68 ± 0.05 0.57 ± 0.07
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model performance. Additionally, separate bioactivity 
QSAR models were trained on the A1AR and A2AAR 
bioactivity datasets. The validation test sets were 
composed based on chemical clusters and bioactiv-
ity of compounds; each subset contained both actives 
and inactives. These validation sets were not equal 
to the aforementioned (selectivity) validation sets as 
they were used for a different purpose: validation of 
bioactivity models instead of selectivity models. All 
bioactivity models were validated using the same cross-
validation test sets, regardless of the dataset that was 
used in training (A1AR/A2AAR dataset, A1AR bioactiv-
ity, or A2AAR bioactivity). The A1AR and A2AAR bio-
activity datasets contained more data points than the 
A1AR/A2AAR dataset as these sets also included single 
points (bioactivity measured only for one of the two 
receptors). The single bioactivity points were included 
in training, but excluded from validation to retain com-
parability of performance for the different models. Sin-
gle points that belonged to the same chemical cluster 
as the data points in the test set were also excluded 
from training to prevent bias. The regression models 
show good model quality in training, with a high R2 
(≥ 0.98) and low RMSE values (≤ 0.14). Unfortunately, 
when applied on the validation set, performances are 
lower than expected based on training performance 
(likely caused by the challenging test set based on 
chemical clustering). Nevertheless judging the model 

performance on classification validation metrics a real-
istic estimation can be made for the predictive perfor-
mance of the models.

The mean performances of all bioactivity models 
(based on fivefold cross-validation) were better for the 
A2AAR than for the A1AR, with an average ROC dif-
ference of 0.12 (Table  3). Furthermore, classification 
models performed worse than regression models, as indi-
cated by their lower values for enrichment (ROC) and 
MCC: average difference in ROC for the A1AR = 0.20 
and A2AAR = 0.07, and average difference in MCC for 
the A1AR = 0.07 and A2AAR = 0.03. Moreover, the MCC 
and ROC for A1AR bioactivity classification models even 
indicated performances worse than random (MCC < 0 
and ROC < 0.5). The best performing bioactivity mod-
els were based on regression, which reached an aver-
age performance (ROC score 0.60–0.70) for predicting 
bioactivities.

Modeling A1AR/A2AAR subtype selectivity using regression 
models
The application of the above bioactivity model 
approach was tested in modeling the selectivity of com-
pounds (i.e. modeling the affinity on the respective 
receptors and deriving selectivity from that indirectly). 
As the predicted bioactivities of the two bioactivity 
models are not correlated with each other, a separate 
validation was performed to indicate the performance 

Fig. 2  Chemical similarity of compounds of the selectivity classes A1AR-selective, A2AAR-selective, dual, and non-binders. The chemical similarity 
is visualized with t-SNE [20] based on FCFP4 fingerprints. a The used chemical clusters of the compounds: A1AR-selective, A2AAR-selective, dual 
binders, and non-binders. b Clusters based on chemical similarity; each color-symbol combination represents a unique cluster (136 clusters in total)
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of selectivity predictions. However, the cross-validation 
sets of the models in Table  3 were clustered based on 
bioactivity instead of selectivity classes, hence bioactiv-
ity models were retrained using differently composed 
cross-validation sets to justify comparison with a later 
discussed selectivity-window model. Regression bioac-
tivity models were selected as these outperformed the 
classification bioactivity models. Moreover, regression 

was preferred in selectivity modeling as with regression 
a quantitative value for selectivity can be derived.

Thus, bioactivity regression models were used to pre-
dict compound activity for the A1AR and A2AAR. Mod-
els were trained on the A1AR/A2AAR dataset including 
additional ‘semi-selective’ compounds. The difference 
in predicted bioactivity for the two receptors was calcu-
lated as selectivity value. Subsequently, selectivity classes 

Table 3  Performances of classification and regression bioactivity models for the A1AR and A2AAR

Query compounds were categorized based on post-classification of the bioactivity predictions: predicted pActivity < 6.5 = inactive and predicted 
pActivity ≥ 6.5 = active

MCC Matthews Correlation Coefficient, PPV positive predictive value, NPV negative predictive value, ROC receiver operating characteristic

Protein Model training 
type

Dataset 
in training

Validation set 
(only A1AR 
or A2AAR 
compounds, 
respective 
of the protein)

MCC Sensitivity Specificity PPV NPV ROC

A1AR Classification A1AR compounds 
in the A1AR/
A2AAR data-
set + semi-selec-
tive compounds

A1AR/A2AAR 
dataset + semi-
selective 
compounds

− 0.09 ± 0.06 0.44 ± 0.09 0.48 ± 0.11 0.46 ± 0.09 0.45 ± 0.06 0.41 ± 0.05

Classification A1AR bioactivity 
dataset

A1AR/A2AAR 
dataset + semi-
selective 
compounds

− 0.16 ± 0.05 0.39 ± 0.08 0.45 ± 0.10 0.42 ± 0.09 0.41 ± 0.06 0.39 ± 0.04

Regression A1AR compounds 
in the A1AR/
A2AAR data-
set + semi-selec-
tive compounds

A1AR/A2AAR 
dataset + semi-
selective 
compounds

0.09 ± 0.04 0.53 ± 0.09 0.56 ± 0.08 0.54 ± 0.09 0.54 ± 0.08 0.61 ± 0.03

Regression A1AR bioactivity 
dataset

A1AR/A2AAR 
dataset + semi-
selective 
compounds

0.04 ± 0.06 0.46 ± 0.08 0.58 ± 0.08 0.52 ± 0.10 0.52 ± 0.08 0.59 ± 0.05

Regression A1AR bioactivity 
dataset

A1AR bioactivity 
dataset

0.06 ± 0.07 0.49 ± 0.07 0.58 ± 0.08 0.53 ± 0.07 0.54 ± 0.06 0.60 ± 0.05

A2AAR Classification A2AAR compounds 
in the A1AR/
A2AAR data-
set + semi-selec-
tive compounds

A1AR/A2AAR 
dataset + semi-
selective 
compounds

0.11 ± 0.09 0.59 ± 0.10 0.50 ± 0.13 0.73 ± 0.05 0.39 ± 0.05 0.59 ± 0.06

Classification A2AAR bioactivity 
dataset

A1AR/A2AAR 
dataset + semi-
selective 
compounds

0.16 ± 0.11 0.57 ± 0.12 0.56 ± 0.13 0.75 ± 0.06 0.45 ± 0.09 0.61 ± 0.07

Regression A2AAR compounds 
in the A1AR/
A2AAR data-
set + semi-selec-
tive compounds

A1AR/A2AAR 
dataset + semi-
selective 
compounds

0.12 ± 0.10 0.69 ± 0.10 0.40 ± 0.08 0.70 ± 0.04 0.47 ± 0.10 0.64 ± 0.06

Regression A2AAR bioactivity 
dataset

A1AR/A2AAR 
dataset + semi-
selective 
compounds

0.21 ± 0.07 0.64 ± 0.10 0.56 ± 0.10 0.76 ± 0.04 0.46 ± 0.04 0.69 ± 0.05

Regression A2AAR bioactivity 
dataset

A2AAR bioactivity 
dataset

0.19 ± 0.07 0.63 ± 0.11 0.54 ± 0.09 0.70 ± 0.04 0.50 ± 0.05 0.69 ± 0.05
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(A1AR-selective, A2AAR-selective, dual) were assigned 
to the compounds based on the predicted selectivity 
according to the same categorization rules as used in 
classification previously. The application of the two com-
bined bioactivity models to deduce selectivity (two-step 
A1AR-A2AAR difference model) resulted in models with 
average performance. Although ROC scores were decent 
(0.75 ± 0.09 and 0.72 ± 0.15), MCC was poor (0.19 ± 0.16 
and 0.28* ± 0.12, *one failed validation) for both the 
A1AR and A2AAR, indicating that models were capable of 
ranking the compounds but less capable of explaining the 
whole data set (Table 4).

Continuing our single model approach to predict selec-
tivity we explored the usage of regression for a selectivity-
window model rather than classification. In contrast to 
the two-step A1AR-A2AAR difference model (regression), 
the single model to predict selectivity between the A1AR 
and A2AAR was based on the difference in affinity rather 
than the prediction of bioactivity and calculation of the 
resulting selectivity. The regression model was trained 
directly on the difference in bioactivity for both recep-
tors (pActivity A1AR − pActivity A2AAR = selectivity-
window) and predicts a quantitative score for the degree 
of selectivity of a compound (difference in pActivity). A 
positive score indicates A1AR-selectivity, a negative score 

A2AAR-selectivity, and a score close to zero indicates dual 
binders. The model was evaluated based on the ROC 
score and classification metrics (MCC, sensitivity, speci-
ficity, PPV, and NPV). The rules for classification of the 
A1AR-, A2AAR-selective, and dual binders were derived 
from the thresholds applied in the selectivity classifica-
tion models: A1AR ≥ 100-fold selective equals pActivity 
difference ≥ 2, A2AAR ≥ 100-fold selective equals pActiv-
ity difference ≤ − 2, and for dual binders (≤ tenfold selec-
tive) pActivity difference ≥ − 1 and ≤ 1.

The selectivity-window regression model was trained 
on the same data (A1AR/A2AAR dataset and semi-selec-
tive compounds) as the two-step A1AR-A2AAR difference 
model described above in which selectivity was deducted 
from two separate bioactivity models. The selectivity-
window outperformed the two-step A1AR-A2AAR dif-
ference model with increased ROC values for selectivity 
classes A1AR- and A2AAR-selective (ROC increase 0.07–
0.13) (Table 4).

Figure 3 shows example compounds that were misclas-
sified with the two-step A1AR-A2AAR difference model, 
but were correctly predicted using the selectivity-window 
model. The similarity (Tanimoto FCFP4) between the 
mispredicted compounds by the two-step A1AR-A2AAR 
difference model was 0.25, whereas the similarity within 

Table 4  Performances of selectivity modeling using the two-step A1AR-A2AAR difference model or the selectivity-window 
model

The class indicates the performance for that particular selectivity class: A1AR-selective, A2AAR-selective, and dual (non-selective). The query compounds were 
categorized based on post-classification of the selectivity predictions: A1AR-selective when pActivity difference ≥ 2, A2AAR-selective when pActivity difference ≤ − 2, 
and dual binder when pActivity difference ≥ − 1 and ≤ 1

MCC Matthews Correlation Coefficient, PPV positive predictive value, NPV negative predictive value, ROC receiver operating characteristic

*1/5 folds failed, **3/5 folds failed, ***4/5 folds failed

Model  Class MCC Sensitivity Specificity PPV NPV ROC

Trained on all double points, tested on all double points (non-binders and semi-selective compounds always true/false negative)

 A1AR-A2AAR difference A1AR 0.15 ± 0.13 0.17 ± 0.14 0.99 ± 0.00 0.18 ± 0.12 0.98 ± 0.01 0.76 ± 0.09

A2AAR 0.11 ± 0.07 0.19 ± 0.09 0.94 ± 0.02 0.15 ± 0.07 0.94 ± 0.01 0.67 ± 0.14

Dual 0.26 ± 0.05 0.76 ± 0.02 0.50 ± 0.07 0.68 ± 0.02 0.59 ± 0.03 0.66 ± 0.02

 Selectivity-window A1AR 0.07** ± 0.09 0.030.03 0.99 ± 0.00 0.10** ± 0.10 0.97 ± 0.00 0.87 ± 0.03

A2AAR 0.22 ± 0.12 0.15 ± 0.09 0.99 ± 0.00 0.42 ± 0.18 0.94 ± 0.01 0.74 ± 0.07

Dual 0.36 ± 0.06 0.85 ± 0.03 0.48 ± 0.03 0.69 ± 0.01 0.70 ± 0.06 0.70 ± 0.02

Trained on all double points, tested on only A1AR, A2AAR, and dual class

 A1AR-A2AAR difference A1AR 0.19 ± 0.16 0.17 ± 0.14 0.99 ± 0.00 0.28 ± 0.18 0.96 ± 0.01 0.75 ± 0.09

A2AAR 0.28* ± 0.12 0.19 ± 0.09 0.98 ± 0.01 0.48* ± 0.15 0.91 ± 0.01 0.72 ± 0.15

Dual 0.25 ± 0.07 0.76 ± 0.02 0.57 ± 0.11 0.91 ± 0.02 0.28 ± 0.04 0.70 ± 0.05

 Selectivity-window A1AR 0.17** ± 0.23 0.03 ± 0.03 0.99 ± 0.01 0.50** ± 0.50 0.92 ± 0.01 0.88 ± 0.04

A2AAR 0.32* ± 0.15 0.15 ± 0.09 1.00 ± 0.00 0.75* ± 0.25 0.82 ± 0.03 0.80 ± 0.07

Dual 0.33 ± 0.11 0.84 ± 0.04 0.46 ± 0.06 0.80 ± 0.02 0.55 ± 0.10 0.66 ± 0.04

Trained on only A1AR, A2AAR, and dual class, tested on only A1AR, A2AAR, and dual class

 Selectivity-window A1AR − 0.05*** ± 0.00 0.00 ± 0.00 0.99 ± 0.01 0.00*** ± 0.00 0.92 ± 0.01 0.81 ± 0.05

A2AAR 0.23 ± 0.18 0.25 ± 0.12 0.94 ± 0.03 0.43 ± 0.22 0.83 ± 0.03 0.66 ± 0.11

Dual 0.04 ± 0.12 0.69 ± 0.05 0.35 ± 0.09 0.73 ± 0.03 0.32 ± 0.09 0.53 ± 0.08
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wrongly predicted compounds by the selectivity-win-
dow model was 0.58. This indicates that the two-step 
A1AR-A2AAR difference model is challenged by selectiv-
ity prediction of more diverse compounds and the selec-
tivity-window model underperforms on specific chemical 
scaffolds. The most frequently mispredicted scaffold by 
the selectivity-window model was N-(2-(furan-2-yl)-6-
(1H-pyrazol-1-yl)pyrimidin-4-yl)-2-phenoxyacetamide 
(see Additional file 2).

It should be noted that for the A1AR and A2AAR pre-
dictions MCC and PPV could not always be calculated in 
cross-validation, resulting in failed cross-validation folds, 
or iterations. This is explained by the lack of true/false 
positives in the particular cross-validation fold: PPV can-
not be calculated if there are no positives, MCC cannot 
be calculated without a PPV.

The selectivity-window model performed better than 
the three-class selectivity classification model validated 
earlier (Table  2). It was tested whether this increased 
performance was a result from the increased amount of 
data as the selectivity-window model included additional 
semi-selective compounds and non-binders, which the 
three-class selectivity classification model necessarily 
lacked as the affinity difference was not large enough to 
meet the classification cut-off. When these additional 
data points were excluded from the selectivity-window 
model, the ROC dropped from 0.78 to 0.67 (average over 
classes), which is comparable with the ROC of 0.65 of the 
three-class selectivity classification model. This observa-
tion clearly confirms a direct link between model quality 
and data availability and shows that the increased perfor-
mance of the selectivity-window model is attributed to 
additional data points. Hence it is advantageous to use 
continuous models in selectivity modeling as in this case 
more data can be included. In addition to the benefit of 

increased data availability, continuous selectivity models 
also provide the ability to calculate a selectivity ratio as 
opposed to the class only. This selectivity ratio indicates 
the degree of selectivity and therefore cannot only iden-
tify selective compounds, but can also differentiate highly 
selective compounds from weakly selective compounds.

Remarkably, metrics based on classification (MCC, 
sensitivity, specificity, PPV, and NPV) for the selectivity-
window model (without non-binders and semi-selective 
compounds) (Table  4) are lower for the A1AR-selective 
compounds and dual binders than metrics of the 3-class 
classification model (both trained on the same data) 
(Table 2), whereas ROC scores are comparable or higher. 
Therefore, the predictions of the selectivity-window 
model were compared with the experimentally meas-
ured selectivity values (Fig.  4). It was observed that the 
A1AR-selective compounds have consistently lower 
selectivity-window predictions than the experimental 
selectivity values. As a result, fewer compounds reached 
the A1AR-selective classification threshold, decreasing 
the number of the A1AR-selective positives drastically. 
From the 50 A1AR-selective compounds, none reached 
the threshold. Of all predictions, only three compounds 
reached the A1AR-selective threshold, which were dual 
binders instead of the A1AR-selective compounds. This 
deficiency of predicted positives explains the failed cross-
validation calculations for the A1AR-selective class.

To compensate, classification validation metrics 
were re-calculated post hoc using classification thresh-
olds that were adapted to compensate for the gener-
alization of selectivity for A1AR-selective compounds. 
Compounds were deemed A1AR-selective when 
the selectivity-window ≥ 0.5, A2AAR-selective when 
the selectivity-window ≤ −  2 (unchanged), and dual 
binder when the selectivity-window ≥ −  1 and  < 0.5. 

Fig. 3  Chemical structures of compounds with predictions by different selectivity models. The compounds were wrongly predicted with the 
two-step A1AR-A2AAR model and correctly predicted with the selectivity-window model. Predictions are indicated as: predicted A1AR-selective 
(A1AR), A2AAR-selective (A2AAR), and as dual binder (Dual) for ligands CHEMBL260788 (a), CHEMBL3596506 (b), and CHEMBL201750 (c)
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Using the new thresholds, values of the metrics for the 
A1AR-selectivity predictions improved: MCC 0.31 ± 0.10, 
sensitivity 0.45 ± 0.12, specificity 0.91 ± 0.02, PPV 
0.32 ± 0.06, and NPV 0.95 ± 0.01, indicating that the 
revised threshold improves the categorization of the 
A1AR-selective compounds. Not all A1AR-selective 
compounds were correctly categorized but the post hoc 
optimized threshold was considered adequate, as lower-
ing the A1AR-selective threshold further would increase 
sensitivity (by categorization of more compounds as 
A1AR-selective), but would also decrease PPV. Here, the 
correctness of predictions was prioritized over the num-
ber of predicted active compounds; hence PPV was pri-
oritized over sensitivity.

Removal of non‑binders to enhance performance
Although the selectivity-window model differentiates 
between the A1AR-, A2AAR-selective compounds, and 
dual binders, the model does not consider potential inac-
tivity of compounds. Consequently, non-binders can-
not be filtered using this model. Therefore, a consensus 

approach of statistical modeling and structure-based 
docking was applied to identify and exclude non-binders.

Bioactivity regression models described above for the 
A1AR and A2AAR were combined with docking of the 
A1AR/A2AAR dataset and semi-selective compounds into 
crystal structures of both proteins. Bioactivity predic-
tions for the A1AR and A2AAR, and selectivity-window 
predictions, were derived for the entire A1AR/A2AAR 
dataset and semi-selective compounds by assembling the 
predictions made during fivefold cross-validation of the 
previously trained regression models. Compounds were 
docked into crystal structures of the A1AR (PDB: 5UEN) 
[10] and the A2AAR (PDB: 5OLZ) [21], which resulted 
in docking scores for both receptors. Compounds were 
assigned a separate bioactivity label for the A1AR and 
A2AAR: compounds in the A1AR were labeled ‘active’ 
when predicted pActivity ≥ 7 and docking score ≤ −  9. 
Compounds in the A2AAR were labeled ‘active’ when pre-
dicted pActivity ≥ 7 and docking score ≤ − 10.

Compounds with predicted selectivity-window ≥ 0.5 
or ≤ − 2, corresponding with A1AR- and A2AAR-selective, 

Fig. 4  Relationship between experimental selectivity versus predicted selectivity. Predicted selectivity values shown for the selectivity-window 
model. A1AR-selective classification thresholds shown as orange lines (dotted = old threshold, solid = new threshold)
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were subsequently filtered using the consensus bioactiv-
ity filter (Fig. 5). The PPV for A1AR-selective compounds 
drastically increases from 0.13 to 0.39 when the selectiv-
ity-window predictions were filtered using the consensus 
bioactivity filter for the A1AR. The A2AAR bioactivity fil-
tering also increased the PPV of A2AAR-selective com-
pounds; here docking and consensus filtering performed 
equally well (PPV A2AAR-selective: 0.80).

Non-binders that were not removed using the statistical 
filter only, but were filtered when the consensus approach 
was used, were inspected in the crystal structure of the 
A1AR. Some non-binders (e.g., CHEMBL1800792) did 
not adapt a favorable conformation when docked into 
the A1AR (Fig. 6). Moreover, an interaction with pocket 
residue Asn6.55 (Ballesteros-Weinstein numbering) was 
frequently not observed. This is an essential missing ele-
ment, as interaction with this residue has shown to be 
important for ligand binding to the A1AR and A2AAR [11, 
22]. However, some non-binders were able to make this 
interaction (CHEMBL372580), but nevertheless had a 
docking score that did not reach the set threshold (dock-
ing score ≤ − 9). The poses of the non-binders were com-
pared to those of an A1AR-selective (CHEMBL207824) 
and an A2AAR-selective compound (CHEMBL371436). 
Both selective compounds adapt a conformation that is 
able to make an interaction with residue Asn6.55. Further-
more, the poses also constitute the same aromatic inter-
actions (with Phe171EL2 in the A1AR and with Phe168EL2 

and His2506.52 in the A2AAR) as the co-crystalized ligands 
and adapt a similar scaffold orientation. Finally, the poses 
of the selective ligands have favorable docking scores 
(− 10.30 and − 10.91, respectively), supporting that these 
compounds are binders for the A1AR or A2AAR.

Validation of the selectivity‑window model on an external 
set
The predictive selectivity-window model (trained on 
A1AR/A2AAR dataset and semi-selective compounds) 
was challenged to predict the selectivity of compounds 
from an external validation set. This set contained 1482 
compounds of which a dose–response bioactivity value 
(Ki/IC50/EC50/Kd) was known for at least one of the two 
receptors. If an accurate bioactivity value was available 
for both receptors, the compound was classified accord-
ing to prior rules applied in this study. However, if an 
accurate bioactivity value for only one receptor was 
known, a less accurate bioactivity measurement (inhi-
bition as percentage displacement/efficacy/change) was 
used to identify inactivity for the missing receptor. The 
low accuracy of the bioactivity values makes this data 
less suitable for model training on the quantitative dif-
ference between activity on the two receptors, but suit-
able for classification validation. A pChEMBL value 
of < 4.5 or inhibition threshold of ≤ 50% (at 10 μM) was 
used to label inactive compounds, whereas a pChEMBL 
value of ≥ 6.5 was used to indicate active compounds. 

Fig. 5  Positive predictive value (PPV) of compounds predicted to be A1AR- or A2AAR-selective. The PPV depicts the number of experimentally 
validated selective compounds divided by the total number of predicted selective compounds. PPVs are shown when different filters are applied: 
no bioactivity filter, statistical bioactivity, bioactivity based on docking score, and consensus bioactivity (statistical bioactivity and structure-based 
docking)
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Fig. 6  Docked poses of compounds in their corresponding targets. Poses of two non-binders in the A1AR (CHEMBL1800792 in a and 
CHEMBL372580 in b), an A1AR-selective compound (CHEMBL204780 in c), and A2AAR-selective compound (CHEMBL371436 in d). Docked poses are 
compared to the co-crystalized ligands shown in orange. Hydrogen bonds between ligands and Asn6.55 are shown in yellow
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The selectivity-window model (see Additional file  3) 
was applied to the compounds in the external valida-
tion set, providing them all with a predicted selectivity 
score and, subsequently, a selectivity class. The valida-
tion encompassed all selectivity classes: A1AR- and 
A2AAR-selective compounds, dual binders and non-
binders. Since the selectivity-window model has no 
threshold for non-binders, non-binders were always 
considered either as true or false negative (never false/
true positive).

Without filtering inactives, the selectivity-win-
dow model performed average in the prediction 
of the A1AR-selective compounds (ROC 0.75) and 
A2AAR-selective compounds (ROC 0.66) in the external 
validation set (Table 5). However, application of the con-
sensus bioactivity filter resulted in an increase of the clas-
sification enrichment of the A1AR- and A2AAR-selective 
compounds. Although the ROC for A1AR-selective com-
pounds decreased after applying the bioactivity filter, 
PPV, and thus the fraction of true A1AR-selective com-
pounds compared to all predicted A1AR compounds, 
increased from 0.12 to 0.21. In addition, MCC increased 
slightly from 0.13 to 0.18. Inspection of the compounds 
showed that all non-binders were removed after filter-
ing the selectivity-window predictions with the con-
sensus bioactivity filter. The decrease in ROC for the 
A1AR-selective class was thus caused by the presence 
of dual binders only. Remarkably, sensitivity for the 
A1AR- and A2AAR-selective compounds was both 1.00 
(100%), whereas sensitivity for dual binders was 0.00 
(0%). Although dual compounds were present in the set 
that was filtered with the selectivity-window model, these 
compounds were wrongly categorized as either A1AR- 
or A2AAR-selective. The predicted dual binders prior to 
bioactivity filtering were, in fact, non-binders. However, 
these non-binders were correctly filtered out using the 
bioactivity filter, leaving the dual binder class without 
positive-predicted compounds. Note that the results do 
not specify dual binder enrichment, as the bioactivity 

predictions encompassed only compounds predicted to 
be A1AR- or A2AAR-selective.

Discussion
While QSAR models are widely applied in bioactivity 
modeling, they can also effectively be used in selectiv-
ity modeling. However, modeling of selectivity requires 
a substantial amount of data, as activities for more than 
one protein have to be measured. The amount of data 
that is available influences the performance of the selec-
tivity model as was observed for the performances of the 
selectivity-window models when trained on limited data. 
To increase the amount of data that is sufficient for selec-
tivity modeling continuous regression models can be 
applied instead of classification models. With regression 
not only compounds that belong to a defined selectivity 
class can be included, but also compounds of which there 
is some selectivity but not large enough to fit into a class. 
Another benefit of regression is that the degree of selec-
tivity can be provided in addition to the selectivity class 
of a compound.

Multiple QSAR regression models to derive selectivity 
for a panel of kinases were used by Sciabola et  al. [23]. 
First, regression bioactivity models were trained for every 
kinase in the panel. Next, bioactivity patterns were pre-
dicted for a set of compounds against all kinases, from 
which subsequently selectivity was derived. To compare, 
we repeated a similar approach was repeated by us in the 
current work. However, we also introduce the selectivity-
window model, which is a direct implementation of selec-
tivity. We show that this approach outperformed models 
that predicted selectivity indirectly by using separate bio-
activity models. Even though separate bioactivity models 
can include more data since compounds measured for 
just one protein can be considered, this approach did not 
increase model performance enough to outperform the 
selectivity-window model.

Nevertheless, an advantage of using separate bio-
activity models to deduce selectivity from is that 

Table 5  Performance of the selectivity-window model on an external validation set

The query compounds were categorized based on post hoc optimized classification of the selectivity predictions: A1AR-selective when selectivity-window ≥ 0.5, 
A2AAR-selective when selectivity-window ≤ − 2, and dual binder when selectivity-window ≥ − 1 and < 0.5

MCC Matthews Correlation Coefficient, PPV positive predictive value, NPV negative predictive value, ROC receiver operating characteristic

Model  Class MCC Sensitivity Specificity PPV NPV ROC

Selectivity-window A1AR 0.13 0.39 0.83 0.12 0.96 0.75

A2AAR 0.40 0.24 1.00 0.70 0.97 0.66

Dual 0.02 0.81 0.21 0.64 0.39 0.37

Selectivity-window and  
bioactivity filtered

A1AR 0.18 1.00 0.16 0.21 1.00 0.66

A2AAR 0.88 1.00 0.97 0.80 1.00 0.98

Dual – 0.00 1.00 – 0.28 0.72
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additional proteins can be added easily: the selectivity 
between the added protein and existing proteins can 
quickly be deduced from the results of the added bio-
activity model. In selectivity-window modeling mul-
tiple models need to be trained to predict selectivities 
of compounds against a panel of targets: one model for 
every target-target combination. However, while using 
separate bioactivity models can be more convenient, 
selectivity-window modeling may yield more accurate 
predictions. It should also be noted that automatically 
generating these models using scripting can be consid-
ered trivial. Therefore, when sufficient selectivity data 
is available it is worthwhile to apply selectivity-window 
modeling.

The higher accuracy of selectivity-window modeling 
compared to using multiple bioactivity models is sug-
gested to be influenced by the higher quality of the data 
used in selectivity-window modeling. In selectivity-
window modeling, selectivity is predicted based on data 
from biological experiments. Although biological experi-
ments are susceptible to error (on average an error of 
0.6 log units [24]), this data is more reliable than data 
derived from statistical models whose error by defini-
tion should be higher than the error of the data they were 
trained on. In practice the error of statistical models (and 
hence the error of predictions) varies around 0.5–1.0 log 
units [25, 26]. While this error may accumulate with the 
experimental error, there is also the possibility that mod-
eling can reduce part of the experimental error. An addi-
tional study is required to reveal how the modeling error 
behaves in combination with the experimental error.

The selectivity-window model by itself is not capable of 
distinguishing actives from inactives as it is trained on the 
difference only, which is different from the affinity. How-
ever, separate bioactivity models can be applied to filter 
potentially selective compounds from inactives, or non-
binders. A study by Zhao et al., where subtype selectiv-
ity between epigenetic targets HDAC1 and HDAC6 was 
modeled by classification of selectivity, utilizes a compa-
rable approach by first predicting selectivity, followed by 
bioactivity [27]. However, the selectivity model in that 
study is incapable of predicting the degree of selectivity 
as a classification model was used. Furthermore, only sta-
tistical models were used by the authors to predict bioac-
tivity of compounds. In the current study it was observed 
that implementation of statistical bioactivity models 
only increased the enrichment of selective compounds 
slightly. In contrast, addition of structure-based docking 
scores increased the enrichment of selective compounds 
substantially for both the A1AR and A2AAR. Moreover, 
structure-based docking performed equally well as the 
consensus model (statistical bioactivity and docking) for 
A2AAR-selective enrichment.

Conclusion
We demonstrated that continuous QSAR models can be 
applied to model selectivity on the A1AR and A2AAR. The 
selectivity-window model, which was trained directly on 
the difference in affinity between both receptors, outper-
formed a two-step A1AR-A2AAR selectivity model. In the 
two-step model, which is generally applied in selectivity 
modeling, selectivity predictions are derived indirectly 
by calculation of the difference between bioactivity pre-
dictions that resulted from two separate models. Even 
though the separate bioactivity models included more 
data, the performance did not increase enough to out-
perform our selectivity-window model. Furthermore, a 
combination of statistical bioactivity models and struc-
ture-based docking contributed to the enrichment of 
selective compounds and can be used to exclude non-
binders (which are not predicted accurately when directly 
predicting selectivity). In summary, we demonstrated 
that accurate selectivity predictions can be made for the 
A1 and A2A adenosine receptors by combining the selec-
tivity-window model and consensus bioactivity mod-
eling. This method can easily be applied to other protein 
targets (e.g., kinases) as well, provided sufficient data is 
available.

Methods
Training/test datasets
The dataset was compiled from publicly available data 
derived from the ChEMBL database [16, 28] (version 23) 
and in-house data from Leiden University (Leiden, The 
Netherlands). Compounds with experimental activities 
were collected for the human A1AR (P30542) and human 
A2AAR (P29274). The data derived from ChEMBL was 
filtered on confidence score 7 and 9, and a pChEMBL 
value ≥ 4. In-house data was filtered similarly: activity 
(Ki/IC50/EC50) ≤ 10−4 M. Ki values were prioritized over 
IC50 or EC50 values. Thus, for duplicates, when more than 
one type was available for a given compound-receptor 
pair, Ki values were kept and IC50 and EC50 values were 
discarded. The mean value was taken when multiple bio-
activity values of the same type were reported for a given 
compound-receptor pair (e.g., mean of multiple Ki values 
for the same compound). The standardized activity val-
ues are reported as pActivity values.

An antagonist-focused dataset was compiled from the 
filtered data by removing compounds with a ribose or 
dicyanopyridine scaffold. From this antagonist-focused 
dataset an A1AR/A2AAR dataset that contained only com-
pounds with activities measured on both the A1AR and 
A2AAR was derived. The compounds were assigned to the 
A1AR/A2AAR dataset after they were categorized into one 
of the following five classes: non-binders when pActivity 
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for both the A1AR and A2AAR < 6.5, A1AR-selective (pAc-
tivity ≥ 6.5 for the A1AR and activity compared to the 
A2AAR ≥ 100-fold), A2AAR-selective (pActivity ≥ 6.5 for 
the A2AAR and activity compared to the A1AR ≥ 100-
fold), and dual binders (pActivity ≥ 6.5 for both the 
A1AR/A2AAR and activity difference ≤ 10-fold). Com-
pounds with experimental bioactivities for both the 
A1AR and A2AAR, but that did not fit into any of the 
classes of the A1AR/A2AAR dataset, were termed “semi-
selective” compounds (855 bioactivities). The antagonist-
focused dataset contained 5897 activities, the A1AR/
A2AAR dataset included 1106 compounds, of which 50 
A1AR-selective and 146 A2AAR-selective. Additionally, 
the antagonist-focused dataset was split into two data-
sets for bioactivity modeling: the A1AR bioactivity data-
set (2774 compounds) and the A2AAR bioactivity dataset 
(3123 compounds).

T‑distributed stochastic neighbor embedding (t‑SNE)
The chemical similarity of the A1AR/A2AAR dataset was 
plotted using t-SNE [20]. Compounds were described 
using FCFP4 fingerprints (fixed-length array of bits 
2024). Two dimensions were calculated: t-SNE com-
ponent 1 and t-SNE component 2. The settings were as 
follows: maximum number of iterations 5000, theta 0, 
perplexity 30, momentum 0.5, final momentum 0.8, and 
learning rate 10. Additionally a t-SNE was conducted 
showing the distribution of chemically clustered com-
pounds using affinity propagation (FCFP4) [29].

External validation set
An external validation set was created by using com-
pounds that had been newly added in ChEMBL version 
24 and 25. Furthermore, compounds with confidence 
score 6 and 8 from previous ChEMBL versions were 
added. Additionally, less accurate bioactivity meas-
urements (e.g., % displacement) were used to identify 
inactives. These less accurate bioactivities included bio-
activities measured as percentage displacement, efficacy 
and change. If a pChEMBL value was known for both 
receptors, the compounds were categorized into the 
selectivity classes A1AR-selective, A2AAR-selective, dual 
binder, and non-binder according to the same rules as 
used for the A1AR/A2AAR dataset. If a pChEMBL value 
was known for only one of the two receptors, less accu-
rate measurements (displacement/efficacy/change) were 
used to identify if the compound was marked as inactive 
for the other receptor. Subsequently, a selectivity class 
could be assigned. A pChEMBL value of < 4.5 or inhi-
bition threshold of ≤ 50% (at 10  μM) was used to label 
compounds as inactive and a pChEMBL value of ≥ 6.5 
was used to identify active compounds. Subsequently 

the selectivity class was derived from these bioactiv-
ity classes: A1AR-selective if active on the A1AR and 
inactive on the A2AAR, A2AAR-selective if inactive on 
the A1AR and active on the A2AAR, and non-binder if 
inactive on both the A1AR and A2AAR. Again, com-
pounds with ribose and dicyanopyridine scaffolds were 
excluded, resulting in an external validation set of 1482 
compounds.

Machine learning
QSAR bioactivity and selectivity models were con-
structed using the R XGBoost model component in 
Pipeline Pilot (version 18.1.0.1604) [30]. The following 
settings were applied for both classification and con-
tinuous models: maximum number of trees 1000, learn-
ing rate 0.3, maximum depth 7, data fraction 1.0, and 
descriptor fraction 0.7. Compound descriptors were 
calculated within the component and included ALogP, 
molecular weight, number of H-donors, number of 
H-acceptors, number of rotatable bonds, number of 
atoms, number of (aromatic) rings, and FCFP6 finger-
prints (fixed-length array of bits 2024). The workflow to 
train the selectivity-window model in Pipeline Pilot is 
included in Additional file 3 (trained with the dataset in 
Additional file 1). A comparable model training protocol 
in KNIME [31] is added in Additional file 4 (trained with 
Additional file 5).

Cross‑validation
The models were validated with fivefold cross-validation 
where they were trained on 80% and tested on 20% of the 
dataset. The A1AR/A2AAR dataset was split into five sub-
sets that each contained all four classes (A1AR-selective/
A2AAR-selective/dual/non-binder) and the A1AR bioac-
tivity dataset and A2AAR bioactivity dataset were both 
separated into five subsets considering an active/inactive 
distribution (Table 6). This consideration of class-distri-
bution ensured that every subset contained each (bioac-
tivity) class, which allows for balanced model training 
and validation. Chemical similarity of compounds was 
also considered; the A1AR/A2AAR dataset and bioactiv-
ity datasets were each split into five subsets with every 
set covering different chemical structures. In order to 
create five chemically distinct subsets, each selectivity/
activity class was clustered into ten clusters with the 
cluster molecules component in Pipeline Pilot (based on 
FCFP4). Subsequently, the smallest and largest clusters 
were combined into one group. This was done recur-
rently until all clusters were divided into five groups with 
every group containing 2 clusters per class. Finally, the 
resulting groups of each selectivity/activity class were 
distributed equally, resulting in five chemically distinct 
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subsets comprising all selectivity/activity classes. The 
model performances were evaluated using the follow-
ing metrics: MCC, Matthews Correlation Coefficient; 
sensitivity; specificity; PPV, Positive Predictive Value; 
NPV, Negative Predictive Value; and ROC, receiver 
operating characteristic [32, 33]. The (traditionally clas-
sification) metrics MCC, sensitivity, specificity, PPV, and 
NPV, were either derived from the classification models 
directly, or calculated from the output of the regression 
models.

Protein preparation and docking
Protein crystal structures were prepared with the pro-
tein prep wizard in Maestro 11, Schrödinger Suites 
2017-4 [34]. First, modified amino acid residues were 
mutated back to wild type. Next, the protein was pre-
pared by filling in missing side chains, adding hydro-
gens, and creation of disulfide bonds. Compounds were 
prepared for docking using LigPrep from Schrödinger 
Suites 2017-4. Different tautomers were generated 
and compound charges were calculated at pH 7.4. 
Docking was performed with Glide from Maestro 11, 
Schrödinger Suites 2017-4. SP (standard precision) 
was used in docking and 10 poses per compound were 
generated.
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Table 6  Properties of  different subsets in  the  A1AR/A2AAR dataset, A1AR bioactivity dataset, and  A2AAR bioactivity 
dataset

Dataset Subset Chemical 
similarity 
(Tanimoto 
FCFP4)

Number 
of compounds

Number 
of actives 
(pActivity ≥ 6.5)

Number 
of inactives 
(pActivity < 6.5)

Number 
of A1AR-
selectives

Number 
of A2AAR-
selectives

Number 
of dual 
binders

Number 
of non-
binders

A1AR/A2AAR 
dataset

1 0.26 362 n.a. n.a. 11 52 146 153

2 0.21 261 n.a. n.a. 11 38 111 101

3 0.20 171 n.a. n.a. 12 21 86 52

4 0.21 156 n.a. n.a. 10 20 70 56

5 0.19 156 n.a. n.a. 6 15 66 69

A1AR 
bioactivity 
dataset

1 0.23 718 501 217 n.a. n.a. n.a. n.a.

2 0.20 551 304 247 n.a. n.a. n.a. n.a.

3 0.20 524 281 243 n.a. n.a. n.a. n.a.

4 0.19 477 261 216 n.a. n.a. n.a. n.a.

5 0.19 504 306 198 n.a. n.a. n.a. n.a.

A2AAR 
bioactivity 
dataset

1 0.25 1463 994 469 n.a. n.a. n.a. n.a.

2 0.22 467 263 204 n.a. n.a. n.a. n.a.

3 0.23 460 312 148 n.a. n.a. n.a. n.a.

4 0.20 416 256 160 n.a. n.a. n.a. n.a.

5 0.19 317 191 126 n.a. n.a. n.a. n.a.
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