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Abstract 

Here, we introduce the ChemicalToolbox, a publicly available web server for performing cheminformatics analysis. The 
ChemicalToolbox provides an intuitive, graphical interface for common tools for downloading, filtering, visualizing 
and simulating small molecules and proteins. The ChemicalToolbox is based on Galaxy, an open-source web-based 
platform which enables accessible and reproducible data analysis. There is already an active Galaxy cheminformatics 
community using and developing tools. Based on their work, we provide four example workflows which illustrate the 
capabilities of the ChemicalToolbox, covering assembly of a compound library, hole filling, protein-ligand docking, 
and construction of a quantitative structure-activity relationship (QSAR) model. These workflows may be modified and 
combined flexibly, together with the many other tools available, to fit the needs of a particular project. The Chemical-
Toolbox is hosted on the European Galaxy server and may be accessed via https​://chemi​nform​atics​.usega​laxy.eu.
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Introduction
Open-source software packages are now available for 
a wide range of cheminformatics applications, ranging 
from downloading [1, 2], manipulating, and processing 
small molecules [3–5], to protein-ligand docking calcu-
lations [6, 7], to quantum chemistry [8]. However, with 
the growth in the number of applications, the difficulty 
in combining these tools into easily usable, reproduc-
ible analysis workflows increases. Many tools require 
the user to possess some level of programming skill, or 
at least ability to use the command line; some also rely 
on unique file formats. Some tools require compilation 
of the source code for their use, which not only poses a 
challenge for computationally inexperienced scientists, 

but also muddies the waters if another user attempts to 
reproduce the analysis in another environment [9].

Use of technologies such as Conda [10] and contain-
erization (most notably Docker and Singularity [11–13]) 
helps to mitigate some of these issues. Conda enables 
reproducible analyses and simplifies installation, while 
containerization technologies provide a common work-
ing environment across operating systems. However, 
knowledge of the command line is still required to run 
software, and the user is responsible for maintaining 
the thorough records (e.g. through use of a traditional 
lab book) that are required for full reproducibility of 
analyses.

Here, we present the ChemicalToolbox, a modular, 
intuitive platform for cheminformatics analysis, built 
within the Galaxy system [14, 15]. It combines numerous 
open-source cheminformatics tools, and integrates them 
into an intuitive, web-based user interface; requested jobs 
can then be sent to a high-performace computing (HPC) 
cluster for execution. Thus, the user has access to a range 
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of useful tools and substantial compute resources, with-
out being exposed directly to the HPC environment, or 
to the command-line interface used by much cheminfor-
matics software. Tools can be run individually, or com-
bined into workflows, which can then be shared with 
collaborators. All tools are made publicly available on 
the European Galaxy server, under the subdomain https​
://chemi​nform​atics​.usega​laxy.eu. As an alternative, the 
ChemicalToolbox can also be easily installed on personal 
computers, clusters, and cloud services; once installed, 
the system can be accessed simultaneously by multiple 
users, using current standard web browsers.

The ChemicalToolbox provides a range of tools for 
different applications, as depicted in Fig.  1. Chemical 
structures can be accessed from online databases such as 
PubChem [2] and ChEMBL [1]. Manipulation of chemi-
cal structures can be performed with OpenBabel [4] and 
RDKit [3], while calculation of molecular descriptors for 
QSAR studies may be done using Mordred [16] or PaDEL 
[17], which rely on RDKit and the Chemical Develop-
ment Kit (CDK) [5] respectively. Protein-ligand docking 
may be performed using AutoDock Vina [6] and rDock 
[7]. Furthermore, the previously published BRIDGE plat-
form [18] extends the core functionality of the Chemi-
calToolbox into molecular dynamics, providing a suite of 
tools which draws on the GROMACS [19], AmberTools 

[20], Parmed [21], and MDAnalysis [22] software. Apart 
from tools, the Galaxy codebase has been extended to 
provide features particularly useful for cheminformatics. 
These include support for a range of filetypes commonly 
used for reporting chemical structures, including PDB, 
SMILES, InChI, SMILES, SDF/MOL and MOL2, as well 
as tools for interconverting between these formats, based 
on OpenBabel. The most common GROMACS filetypes 
have also been made available. Another feature integrated 
directly into the Galaxy codebase is the NGLviewer [23], 
which may be used for visualization of compounds and 
macromolecules. Furthermore, apart from the features 
of the ChemicalToolbox itself, the inherent flexibility of 
the Galaxy system allows combination of the Chemical-
Toolbox with existing platforms developed by research-
ers working in other related areas, such as the Galaxy 
Genome Annotation project, metabolomics (Workflow-
4Metabolomics [24], Metaboloflow [25]), proteomics 
(Galaxy-P [26]), and machine learning—enabling the 
development of new, transdisciplinary workflows.

A number of other workflow management systems are 
commonly used in cheminformatics; the most promi-
nent are Pipeline Pilot [27] and KNIME [28, 29]. Pipeline 
Pilot is a workflow management software developed by 
Accelrys Enterprise Platform and published as a propri-
etary application. It offers tools bundled into ‘component 

Fig. 1  Tools and visualizations available via the ChemicalToolbox. Colored boxes represent other related Galaxy communities, each with their own 
tools and workflows which can be flexibly combined with those of the ChemicalToolbox

https://cheminformatics.usegalaxy.eu
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collections’; two of which, the Chemistry and ADMET 
collections, provide similar functionality to the Chemi-
calToolbox. Pipeline Pilot is known for its user-friendly 
interface and ease of use for new users [30]. However, 
its proprietary nature makes reproducible research and 
sharing data very difficult or impossible, and the cost of 
purchasing a license is prohibitive for many research-
ers. KNIME, like the ChemicalToolbox, is open-source 
and free-of-charge, and also leverages well-known open-
source software such as the CDK [5, 31] and RDKit in its 
extensions. KNIME ‘nodes’ are analogous to Galaxy tools, 
and are assembled into workflows in a similar manner. 
However, unlike the ChemicalToolbox, the free version of 
KNIME is not scalable for usage with an HPC or cloud 
environment; for this, a commercial license for KNIME 
Server must be purchased. Furthermore, the experience 
of using KNIME is comparable to programming with a 
graphical interface; KNIME describes its workflows as a 
‘graphic equivalent to a script’. By contrast, the Chemical-
Toolbox explicitly aims for accessibility to users without 
programming experience, as the majority of life scientists 
do not possess these skills.

Offering a cheminformatics toolbox as part of Galaxy 
has a number of advantages. Firstly, the Galaxy platform 
is a well-developed, mature project, and while originally 
developed for genomics research, it is fundamentally 
agnostic regarding the field of research. The Chemical-
Toolbox allows chemists to also access the features pro-
vided by the Galaxy platform, including a curated body 
of training material provided by the Galaxy Training Net-
work [32]. Secondly, all ChemicalToolbox tools can be 
used via the European Galaxy server, which provides free 
access to generous computational resources for compu-
tational analysis, based on the de.NBI cloud [33] and the 
ELIXIR network [34]. However, the flexibility of the Gal-
axy system also allows users to download the Chemical-
Toolbox and run it locally or on their own server. There is 
already a small but active Galaxy computational chemis-
try community, constantly maintaining and contributing 
tools.

Implementation
While the ChemicalToolbox is primarily available via 
the European Galaxy instance, it has been designed as a 
dynamic cheminformatics platform, which can be imple-
mented in diverse working environments and architec-
tures. As it is built on top of the Galaxy framework, the 
ChemicalToolbox can be configured to run on diverse 
compute clusters, e.g. Kubernetes [35], TORQUE [36], 
DRMAA [37], Condor [38], or Pulsar [39]. This scalability 
allows users to perform compute-intensive cheminfor-
matics calculations, including filtering, converting, and 

calculating hundreds of physicochemical properties and 
descriptors for many millions of compounds in a matter 
of hours.

Any software tool that is parameterizable and can 
be executed through a terminal command line can be 
wrapped as a Galaxy tool and included into the Chemi-
calToolbox, regardless of the programming language 
used for the implementation of the algorithm. Using the 
Galaxy ToolShed, each tool can be installed through the 
user’s web browser by clicking on the required software—
analogous to the ‘app stores’ provided by companies such 
as Apple or Microsoft. Moreover, the associated depend-
encies are automatically downloaded, compiled, and 
made accessible within the Galaxy environment. As the 
Galaxy ToolShed supports tool dependency versioning, 
the ChemicalToolbox is able to keep track of tool ver-
sions, enabling reproducibility and maintaining software 
provenance over time. Tool execution triggers creation 
of a Conda environment or download of a container with 
all software requirements installed, all with the speci-
fied versions. When executing outdated workflows in the 
ChemicalToolbox, the user is notified about newer ver-
sions of the tools and is allowed to choose specific ver-
sions for execution.

Many kinds of calculations in computational chemistry 
can be easily parallelized; an example is protein-ligand 
docking, where each of thousands of compounds in a 
library needs to be assessed individually. In the Chemi-
calToolbox, this is achieved by the use of collections. 
A Galaxy collection allows related files to be grouped 
together and processed identically. Input files (for exam-
ple, a docking library in SDF format) are split according 
to defined parameters (the SDF delimiter), and when the 
AutoDock Vina or rDock tool is run on the resulting col-
lection, docking is performed for each element of the col-
lection separately and in parallel. Such a parallelization 
process is carried out automatically in the background, 
and can be easily parameterized and scaled-up by the 
server administrator responsible for maintaining the 
ChemicalToolbox as a suitable platform for high-perfor-
mance computing.

Results
Here we present a number of case studies which demon-
strate the capabilities of the ChemicalToolbox. For each 
case study, tools are chained together to form a ‘work-
flow’, which in the Galaxy system can be used much like 
an individual tool, thus enabling the flexible creation and 
combination of new functionalities as desired. Each of 
the workflows is published online under https​://usega​
laxy.eu/workf​lows/list_publi​shed and labelled with the 
‘cheminformatics’ tag, as are sample Galaxy histories for 
each of the workflows under https​://usega​laxy.eu/histo​

https://usegalaxy.eu/workflows/list_published
https://usegalaxy.eu/workflows/list_published
https://usegalaxy.eu/histories/list_published
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ries/list_publi​shed. Simplified schematic diagrams of the 
workflows are provided in Additional file 1, together with 
individual links to each workflow and history.

Hole filling and library optimization
The correct choice of chemical libraries is a crucial step 
in high-throughput virtual screening [40]. By using 
larger libraries, the chances of identifying hits increase, 
[41] along with the complexity and resources required 
for proper storage and testing. Moreover, it has been 
estimated that the chemical space contains more than 
10

60 molecules, a number impossible to handle cur-
rently or in the near future [42]. As a consequence, 
pre-filtered and focused libraries are commonly used in 
drug discovery, at the risk of exploring a minute por-
tion of the chemical space (from hundreds to millions 
of compounds) and leaving large regions of the chemi-
cal space unexplored. As a result, hole filling and library 
optimization have assumed a major role in the fields of 
cheminformatics and drug discovery.

Here we demonstrate a ChemicalToolbox workflow 
which can be used to optimize a compound library 
using hole-filling. Downloading all drugs listed on the 
Therapeutic Target Database [43] (TTD) provides a 
small library of around 20,000 compounds. For the 
purpose of this workflow, our aim is to ‘top-up’ this 
library to 50,000, ensuring that added compounds 
are located in more sparsely occupied regions of the 
chemical space. Initially, we download the entirety 
of the PubChem database, which serves as the source 
for the new molecules, before calculating molecular 
fingerprints (using the Chemfp library [44]) for both 
PubChem and TTD compounds. Taylor-Butina cluster-
ing [45] is then performed on the TTD and singletons 
are identified, i.e. clusters which contain only a single 
molecule; these are used as seeds for expansion of the 
compound library. We then perform a similarity search 
to identify PubChem compounds within a distance 
threshold of the TTD singletons just found, which 
yields a total of around 2 million. In order to select 
compounds evenly, we perform Taylor-Butina cluster-
ing once again on our pool of 2 million molecules. A 
single compound is then selected from each of 30,000 
different clusters, and added to the compound library, 
topping it up to 50,000.

Ligand library preparation
The preparation of ligand libraries is an important aspect 
of in silico high-throughput virtual screening, where 
small molecules are systematically tested in the catalytic 
or binding site of a protein (for example, via protein-
ligand docking) aiming at the selection of candidate 

compounds with specific structural and physicochemical 
features. We provide a ChemicalToolbox workflow which 
offers an efficient solution for the large-scale manage-
ment of data sets containing millions of molecules.

Initially, the workflow queries several freely available 
databases (including PubChem, ChEMBL and ZINC 
[46]) and automatically loads and converts all molecules 
to canonical SMILES for uniformity using OpenBabel. A 
specialist tool is used to extract all structures from the 
PubChem FTP site, while a general download tool can 
be used to access the other databases. After concatenat-
ing the resulting SMILES files and removing counteri-
ons and fragments, a final, cleaned dataset of almost 200 
million unique compounds in the SMILES format was 
obtained (databases accessed on 04.10.2019). It is worth 
mentioning that the ChemicalToolbox has been specifi-
cally designed to automatically handle many format files 
(SDF and SMILES in the present workflow) encoding 
from a few hundreds or thousands up to many millions 
of molecules.

Protein‑ligand docking
A common aim in cheminformatics is assessing the inter-
actions of compounds with a protein. Protein-ligand 
docking involves estimating the interaction energy and 
the optimal recognition pose of a given ligand in complex 
with a protein [47, 48]. The ChemicalToolbox contains 
a number of tools which can be used for protein-ligand 
docking, including docking software AutoDock Vina and 
rDock. The fpocket tool can also be used for automatic 
identification of pockets which are suitable for docking 
[49].

Firstly, a protein structure and a compound library 
are created, either uploaded by the user or downloaded 
directly from online databases such as the PDB or 
ChEMBL. These can be processed using the Filter tool, 
which can apply either a commonly-used ruleset, such 
as Lipinski’s rule-of-five [50], or a set of user-defined 
properties. In this case, we use two very different sys-
tems as illustrative examples: the Hsp90 chaperone pro-
tein (structure published under PDB accession code 2brc 
[51]) and the β2-adrenergic receptor (structure published 
under PDB accession code 3pds [52]). Identification of 
a binding site allows the definition of a 3D box which is 
searched (using AutoDock Vina, though rDock is also 
available) to find a variety of possible binding positions 
for each of the compounds in the library. Results can be 
extracted from the output SD files and plotted, or used 
for further analysis.

https://usegalaxy.eu/histories/list_published
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Machine learning for predicting small molecule protein 
interactions
The Galaxy platform contains tools from multiple dis-
ciplines, which offers the opportunity to conduct inter-
disciplinary analyses. Recently, a suite of statistical and 
machine learning tools has been made available. This 
allows the development of quantitative structure-activity 
relationship (QSAR) models in the ChemicalToolbox.

As an illustrative example, we have published a Galaxy 
workflow for constructing a random forest classifier for 
predicting the activity of compounds as agonists of the 
estrogen receptor alpha signaling (ERα ) pathway. Data 
are downloaded directly from the relevant PubChem 
assay, which forms part of the Tox21 program [53]. Ini-
tially, tools based on OpenBabel are used to remove 
counterions or small fragments from the compound 
library, as well as any duplicated molecules. For the 
remaining 7459 compounds, over 1800 two- and three-
dimensional molecular descriptors are calculated using 
the Mordred tool [16] and 21 selected as features for 
building the classification model. A training/test split of 
0.7/0.3 was used and a classification model built using the 
random forest method (in this case, the number of trees 
used by the classifier is 100) based on the descriptor val-
ues calculated for the training data. The random forest 
algorithm is applied using the implementation published 
as part of the scikit-learn Python library [54]. Aside from 
generation of a model that can be applied to new data, 
the effectiveness of the model can be tested and the 
results visualized in the form of a ROC curve, precision, 
recall and f-score plots, and confusion matrix. Here, an 
AUC value of 0.72 is achieved, which is reasonable con-
sidering the simple approach to feature and parameter 
selection applied here.

Training material
In addition to publishing the workflows described 
above, we have also created online tutorials providing 
an introduction to the features of the ChemicalTool-
box, made available via the Galaxy Training Network 
[32], which already provides a range of introductory 
and advanced training material for analysis on the Gal-
axy platform. These tutorials may be found under https​
://train​ing.galax​yproj​ect.org/train​ing-mater​ial/topic​s/
compu​tatio​nal-chemi​stry. For example, the tutorial on 
protein-ligand docking follows the workflow described 
above, using a small library of ligands downloaded from 
ChEMBL and docking them to the Hsp90 protein using 
AutoDock Vina. In addition, the tutorial guides the user 
through several other analyses of the compound library, 
using OpenBabel-based tools to visualize compounds 
and convert between different formats as required, and 

performing Taylor-Butina clustering based on calculated 
chemfp fingerprints.

The Galaxy computational chemistry community has 
developed a number of other more specialized tutori-
als, mainly focusing on molecular dynamics simulation 
and analysis. Other tutorials cover free energy per-
turbation and the application of machine learning to 
cheminformatics.

Conclusions
We have prepared the infrastructure and software for 
the ChemicalToolbox, a Galaxy-based cheminformat-
ics webserver available via https​://chemi​nform​atics​
.usega​laxy.eu, and made a number of workflows avail-
able which demonstrate its capabilities, together with 
accompanying online introductory tutorials. Such a 
project can by its nature never be complete or com-
prehensive; new scientific advances will always result 
in the development of new software and new analytical 
approaches. However, the ChemicalToolbox is already 
sufficiently developed to be used to perform novel and 
interesting analyses, as well as for pedagogical pur-
poses. We hope that the work published so far will 
provide a useful resource for chemists and cheminfor-
maticians alike. With this publication, we hope to grow 
the Galaxy computational chemistry community fur-
ther and to provide an impetus for further development 
of the ChemicalToolbox.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-020-00442​-7.
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