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Abstract 

With the rise of artificial intelligence (AI) in drug discovery, de novo molecular generation provides new ways to 
explore chemical space. However, because de novo molecular generation methods rely on abundant known mol-
ecules, generated molecules may have a problem of novelty. Novelty is important in highly competitive areas of 
medicinal chemistry, such as the discovery of kinase inhibitors. In this study, de novo molecular generation based 
on recurrent neural networks was applied to discover a new chemical space of kinase inhibitors. During the appli-
cation, the practicality was evaluated, and new inspiration was found. With the successful discovery of one potent 
Pim1 inhibitor and two lead compounds that inhibit CDK4, AI-based molecular generation shows potentials in drug 
discovery and development.
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Introduction
Chemical space is defined as the infinite universe of mol-
ecules [1], where unknown space is being explored and 
developed. Considering only drug-like molecules, the 
number of compounds in the drug-like chemical space 
is estimated to be 1060, which means that there are more 
drug-like compounds than there are atoms in the solar 
system [2]. In the drug-like chemical space, only a tiny 
proportion of molecules have been found as drugs, and 
for a long time, numerous efforts have been made to 
modify the drug map. After years of high-cost and time-
consuming trials exploring the drug space, computers 
started to be used to guide the exploration in the 1980s, 
when computer-assisted drug design (CADD) emerged 
[3]. However, even with the help of quantum approaches, 
which require massive calculation, the biological activity 
of compounds can hardly be predicted precisely. As no 

formula can be found to precisely describe the interac-
tions between molecules and their targets, automating 
drug research and development (R&D) through machine 
learning (ML) from a large number of samples represents 
a new option [4, 5]. In recent years, explorers of the drug 
map have started to think differently, and they are turning 
to artificial intelligence (AI) as an effective guide [6–8].

Inspired by the successful applications of deep learning 
in areas such as image recognition and natural language 
processing [9], researchers have increased their interest 
in the deployment of AI in drug R&D [10]. As reviewed 
in several articles [10–14], deep learning (DL) and AI 
have had significant effects on CADD. Especially, the lin-
ear form of molecules is similar to sequences in natural 
language processing and thus establishes a starting point 
for de novo molecular generation.

De novo molecular generation aims to produce new 
chemical space with certain properties, which has been 
greatly bolstered by NN-based algorithms, as intro-
duced recently [15]. Simplified molecular input line entry 
specification (SMILES) [16] and international chemical 
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identifier (InChI) [17] are two linear representations of 
molecules that have been applied to de novo molecular 
generation, and SMILES is more commonly used due to 
its simple grammar. During training, RNN-based mod-
els try to learn how sequences of training molecules 
are composed, so the models are able to regenerate the 
sequences after training. And even, the models can fur-
ther reorganize sequences, so to produce molecules that 
are structurally novel but similar to those known mol-
ecules. Although there are novel molecules generated, 
their fragments are mainly learned from the training mol-
ecules. To some degree, those structurally novel but simi-
lar molecules further enrich the chemical space around 
the training molecules, and the generated molecules rep-
resent the local chemical space around the training mole-
cules. In early studies [18, 19], transfer learning (TL) was 
adopted by RNN-based models to generate the chemical 
space around target molecules quickly and effectively. 
During TL, models are first trained with datasets provid-
ing a large number of molecules. Then, the models will 
be fine-tuned with target molecules. TL performed on 
molecules resembles a process during which the learned 
chemical space is transferring from those unrelated data-
sets to desired molecules. With this method, research-
ers have successfully discovered several compounds with 
moderate to high activity [20]. Details of generative mod-
els based on NNs have been recently reviewed [15].

Although various complex models designed for de novo 
molecular generation have been created, their real per-
formance in the exploitation of chemical space remains 
uncertain. Sometimes, complex models may not perform 
as well as expected [21]. In comparative studies [22, 23] 
on different generative models, simpler models such as 
models based on long short-term memory (LSTM) [24] 
are found to be more powerful than complex models, and 
simple RNNs with SMILES as inputs are one of those sat-
isfactory models. Generative models based only on sim-
ple RNNs remember or generalize the chemical space 
around target molecules directly, so simple models have 
been found to be effective tools for exploring the chemi-
cal space around target molecules [25, 26]. Notably, gen-
erative models are usually trained with a large number 
of data, which in turn could be at the expense of losing 
novelty. With a background of strict protection of intel-
lectual property (IP), such as Markush structures covered 
by IP, novelty and accuracy seem to be necessary issues 
for generative models [27]. To help relieve the uncer-
tainty in the models, their application in real tasks seems 
indispensable.

Because the R&D of kinase inhibitors is part of a com-
petitive field in medicinal chemistry, a successful trial of 
RNN-based models could be persuasive. Proviral inte-
gration site for Moloney murine leukemia virus kinase 

1 (Pim1) and cyclin-dependent kinase 4 (CDK4) are two 
widely-studied kinases, and the online database ChEMBL 
[28] collects hundreds of known inhibitors for each of 
the two targets. In 2017, Abemaciclib was approved by 
the United States Food and Drug Administration (FDA), 
whose half maximal inhibitory concentration (IC50) val-
ues for Pim1 and CDK4 are 50 nM and 2 nM [29]. Addi-
tionally, both Pim1 inhibitors and CDK4 inhibitors show 
anti-tumor activities through affecting cell cycle [30, 31], 
and the two targets show potentials in treatment of renal 
cell carcinoma [32]. The both targets have abundant and 
potent inhibitors, namely, the chemical space of their 
inhibitors has been greatly exploited. Overall, exploring 
new chemical space of Pim1 inhibitors and CDK4 inhibi-
tors is challenging, which helps test the performance of 
those generative models.

In this study, we applied RNN-based generative mod-
els to generate potential inhibitors for Pim1 and CDK4. 
With RNN-based generative models, this study aims 
to explore spaces both near and far from the explored 
space. As shown in Fig. 1a, RNNs can be directly applied 
to generate molecules based on training molecules to 
realize exploration near the exploited space around the 
training molecules. However, the neighbor exploited 
space implies insufficient novelty. To solve this problem, 
we combined RNN-based generative models and virtual 
screening. According to structure–activity relationship 
(SAR) studies, the chemical space of active molecules 
could be local, so the larger local space enriched by vir-
tual screening may correspond to a higher probability of 
discovering novel active molecules. As shown in Fig. 1b, 
RNNs were applied to molecular generation based on 
molecules to be screened, so virtual screening can be per-
formed on the groups of similar molecules to the training 
molecules rather than the training molecules alone. The 
proposed idea was then validated in silico and in practice. 
During the application, details on the implementation are 
uncovered to help better improve the models used for de 
novo molecular generation. Finally, the models that we 
prepared successfully designed one potent Pim1 inhibitor 
and two novel lead compounds targeting CDK4.

Methods
Datasets prepared for generative models
All the molecules in our homemade datasets were down-
loaded from ChEMBL 24.1 (https​://www.ebi.ac.uk/
chemb​l/) [28]. Only inhibitors collected in the online 
database with certain IC50 values were considered, and 
the molecules were then sorted by their IC50 values from 
small to large. The first 500 molecules with smallest IC50 
values were downloaded respectively as active mole-
cules for the two targets. Without considering chirality, 
replicate molecules were then removed, and 448 CDK4 
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inhibitors and 453 Pim1 inhibitors were used for genera-
tor_1, generator_canonical and generator_random. TL 
was also applied in this study to pre-train generator_2, 
and the DrugBank 5.1.2 database [33] was downloaded. 
Molecules in DrugBank were sanitized, followed by 
removing their chirality with RDKit [34], and 7577 mol-
ecules were ultimately prepared.

SMILES sequences of CDK4 inhibitors, Pim1 inhibitors 
and drugs were then prepared with RDKit. All the mol-
ecules were sanitized, and their chirality was removed. 
Canonical SMILES sequences of the collected inhibi-
tors were used to train the generator_canonical. At the 
same time, randomized SMILES sequences belonging to 
those inhibitors were used to train the generator_1 and 
the generator_random, and the sequences were prepared 
as described before [35]. Meanwhile, the randomized 
SMILES sequences belonging to preprocessed molecules 
collected in drugbank were used to train the generator_2. 
During the preparation for the randomized sequences, 
the atom ordering of every molecule was changed ran-
domly to produce different SMILES sequences.

The SMILES sequences prepared for each model 
were mixed at random respectively before being input. 
Each sequence was ended with a “\n” symbol, and the 
sequences in each dataset were concatenated respec-
tively without padding to a fixed length. The “\n” sym-
bol separates two neighbor sequences, indicating both 
the end of a previous sequence and the start of the next 
sequence. The concatenated sequences were then divided 

into tokens. Tokens represent certain atoms, bonds and 
connections that appeared in SMILES sequences. In this 
study, the tokens used are c, C, n, N, o, O, s, S, p, P, F, I, 1, 
2, 3, 4, 5, 6, 7, 8, −, +, [, ], (, ), =, #, \n, [nH], [S+], [O−], 
[N+], [N−], Br, Cl and Si.

In each dataset, tokens of all the sequences were 
divided into 128 batches, and 128 batches of continu-
ous tokens were input through N times. Every time 64 
tokens in each batch were input, and there were a total 
of 128 × 64 tokens being input. Namely, 128 batches of 
tokens were input for 64 time steps every time. Tokens 
that are not included in the N × 128 × 64 tokens through 
N times of inputs will be ignored. Before being input, 
the tokens were encoded with one-hot encoding. Next 
tokens of current tokens being input were the targets for 
prediction during training, which were represented with 
one-hot encoding as well.

RNN‑based generative models
All the models were built with TensorFlow 1.5.0 [36] as 
described before [19, 37]. The computations were per-
formed in a Linux (Ubuntu 18.04) personal computer 
with CPU only. Because previous studies [18, 19] had 
reported appropriate values of loss function for molecu-
lar generation, which indicate satisfying molecular gen-
eration, in this study the loss values reported before 
were set a goal. Before final training of each model, 
hyperparameters were adjusted until the loss function 
approached values reported before.

Fig. 1  Chemical space exploration with RNNs. a Direct chemical space exploitation around known active molecules. Generator_1 is used to 
generate SMILES sequences, after being trained with SMILES sequences of active molecules. b Chemical space exploration for an unknown space. 
RNNs and virtual screening are combined to realize virtual screening based on local chemical space. Molecules are generated with generator_2, 
which has been trained through TL
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In all the models, two stacked LSTM layers were used 
with the BasicLSTMCell function provided by Tensor-
flow, and dropout was used for outputs of each LSTM 
layer, with a keep probability of 0.8. The multi-LSTM 
layers were implemented by the dynamic_rnn function 
provided by Tensorflow. During each time step among 
the same epoch, the output states of the current time step 
were kept as the initial states for the next time step. The 
output of the multi-LSTM layers was finally connected to 
a fully connected layer, followed by conversion to prob-
abilities with softmax. During training, cross entropy of 
sequences was used as the loss function. The loss func-
tion was implemented by the seq2seq.sequence_loss 
function, which was provided by Tensorflow to calculate 
loss for sequences. The loss function was optimized by 
theTensorFlow ADAM optimizer [38], with a learning 
rate of 0.003. Meanwhile, a gradient norm clipping of 5 
was applied during training.

In the comparative study on the effects of diverse ran-
domized SMILES sequences, generator_canonical and 
generator_random were trained, and there were 256 units 
in each LSTM layer. Generator_canonical was trained 
with canonical SMILES sequences of the inhibitors men-
tined in part 2.1, while generator_random was trained 
with those randomized SMILES sequences. Genarator_1 
was trained directly with the randomized sequences of 
CDK4 inhibitors and Pim1 inhibitors to generate the 
chemical space around known inhibitors, and there were 
also 256 units in each layer. To perform virtual screen-
ing on the local chemical space around molecules to be 
screened, 512 units of each LSTM layer were used in 
generator_2. The generator_2 was pre-trained with the 
database preprocessed from DrugBank for 50 epochs, 
to improve the validity during molecule generation. The 
pretraining process took about 3 days, while the genera-
tor_1, the generator_canonical and the generator_ran-
dom were trained within 8 h, respectively.

During the sampling of tokens, the “\n” symbol was 
used as the first token, and tokens of next steps were 
sampled continuously with previously predicted tokens 
and final states as new inputs and initial states. A total 
of 200,000 tokens were sampled randomly according to 
their predicted probability corresponding to each pre-
defined token. Then, incorrect sequences and replicated 
molecules were removed with RDKit.

Evaluations on the generated chemical space
The generated chemical space was first described with 
the similarity between the generated molecules and the 
training molecules. The Tanimoto similarity index was 
used, and circular fingerprints with a radius of 3 were 
used to represent the molecules. The calculations were 
implemented with RDKit.

T-distributed stochastic neighbor embedding (t-SNE) 
[39] is a powerful algorithm that helps visualize high-
dimensional data to understand data structures. Mol-
ecules were represented with their circular fingerprints, 
which were then hashed into 1024-bit vectors. The 1024-
bit vectors of the generated molecules were projected to 
2-D space with t-SNE, which was performed with Scikit-
Learn [40].

Synthesis
Three molecules selected from the generated molecules 
produced by generator_1 were modified and synthe-
sized. The synthesis of MJ-1055 was based on methods 
reported before [41]. Detailed operations and spectra can 
be found in Additional file 1.

Pharmacophore models and molecular docking
Pharmacophore models and molecular docking were 
prepared to perform virtual screening based on the local 
chemical space

Active molecules and inactive molecules were prepared 
to validate the models. Active molecules were the 1000 
molecules downloaded as described in part 2.1, while 
inactive molecules of CDK4 and Pim1 were downloaded 
from ChEMBL 24.1 with a “>” symbol indicating their 
lack of activity. The chirality of both active and inactive 
molecules was considered, and duplicates were removed, 
which resulted in 499 CDK4 inhibitors, 499 Pim1 inhibi-
tors, 97 molecules inactive toward Pim1 and 53 mole-
cules inactive toward CDK4. Both active molecules and 
inactive molecules used for validating pharmacophore 
models and molecular docking were prepared with the 
preparation ligand module in Discovery Studio 3.0 (DS) 
[42].

During the construction of those models, the specific-
ity, sensitivity and area under the curve (AUC) were used 
to evaluate the models. The specificity and sensitivity of 
the models were calculated as follows:

The active molecules that are correctly predicted are 
defined as true positive, the inactive molecules that are 
correctly predicted are represented by true negative, and 
false positive and false negative are defined as their incor-
rectly predicted counterparts, respectively.

Because CDK4 and CDK6 are highly homologous and 
there is no crystal structure of CDK4 and its inhibitors, 
pharmacophore models of CDK4 inhibitors were built 
based on the complex structures of CDK6 and its inhibi-
tors. The models were built with the receptor-ligand 

Specificity = true negative/
(

true negative+ false positive
)

Sensitivity = true positive/
(

true positive+ false negative
)
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pharmacophore generation module in DS 3.0, and the 
receptor-ligand pharmacophore generation module 
has been introduced before [43]. During the building of 
models, the parameters were set as default. The Protein 
Data Bank (PDB) code of the complex structures used 
for modeling includes 5L2I, 5L2S, 5L2T, 4TTH, 4EZ5, 
4AUA, 3NUX, 3NUP, 2F2C, and 2EUF.

A docking model was also built based on a crystal 
structure of CDK4 (PDB code: 2W96) to help improve 
the performance of screening. LigandFit [44] provided 
by DS was chosen as the docking method, and the cavity 
centered with a coordinate (x = 8.03, y = 3.06, z = 75.12) 
was defined as the binding site. After molecular docking, 
the specificity and sensitivity were first calculated, and 
then, scoring functions including DOCK_SCORE, Lig-
Score1, LigScore2, -PLP1, -PLP2, Jain, LUDI, -PMF and 
-PMF04 were compared. The AUC values were calculated 
with the highest score among the poses of each molecule.

Pharmacophore models used to screen Pim1 inhibi-
tors were built based on complex structures of Pim1 and 
its inhibitors, and the PDB codes include 4MBI, 1YXU, 
4A7C, 4BZO, 4MBI, 4RPV, 4XHK, 5VUB, 2BIL, 2O63, 
3T9I, 3UIX, 4ASO, 4BZN, 4I41, 4IAA, 4JX7, 4MED, 
4RBL, 4RC2, 5NDT, 6BSK, 3DCV, 3F2A, 3JPV, 3MA3, 
4LM5, 5KCX, 5OL1, 5TEL, 5TEX, 5TOE, 5TUR, 2XJZ, 
3JXW, 3UMX, 5DIA, 5OY4, 5V80, 3VBQ, 4DTK, 4TYL, 
1YSK, 4K18, 4WRS, 4WSY, 4WT6, 5DGZ, 5DWR, 
5EOL, 5IIS, 5IPJ, 5KZI, 3BGP, 3BGQ and 4ENX. The 
number of minimum features was set to 3, and other 
parameters were set to default values.

Virtual screening based on local chemical space
Traditional models treat molecules individually, which 
makes them sensitive to small structural modifications of 
molecules. Compared to one molecule being the screen-
ing result of the traditional models, a number of screened 
molecules with the same core structure but diverse struc-
tural modifications indicate the core structure suits the 
models better.

RNN-based generators are good at generating a group 
of molecules that are similar to a training molecule. To 
some degree, the generated molecules are from the local 
chemical space around the training molecule. With the 
help of the RNN-based generators, virtual screening 
based on local chemical space can be realized which may 
further improve the traditional models. The proposed 
idea was evaluated in silico and in practice.

In the virtual part of the evaluation, results of the tradi-
tional models and results of the proposed method would 
be compared through rediscovering abemaciclib as a 
CDK4/Pim1 dual-target inhibitor. The traditional models 
were the pharmacophore model prepared for Pim1 and 

the molecular docking model built for CDK4, which have 
been prepared as described in part 2.5.

Inactive molecules of both CDK4 and Pim1 col-
lected as described in part 2.5 were screened with 
the traditional models. Finally, 6 of 150 inactive mol-
ecules were wrongly screened, and their ChEMBL 
IDs were CHEMBL1803075, ChEMBL2443138, 
CHEMBL1802357, CHEMBL497949, CHEMBL1802355 
and CHEMBL3985000. Namely, the traditional models 
are unable to distinguish abemaciclib from the six inac-
tive molecules.

To obtain the results of virtual screening based on 
local chemical space, the generator_2 pre-trained with 
the randomized SMILES of drugs from Drugbank 5.1.2 
was used to generate similar molecules of abemaciclib 
and the six inactive molecules. SMILES sequences of the 
seven molecules were randomized and randomly mixed. 
Then, the pre-trained model was trained with the ran-
domized sequences for 30 epochs to convergence, and 
new sequences were sampled every 10 epochs to gen-
erate similar molecules of the seven molecules as many 
as possible. During each sampling, 200,000 tokens were 
sampled as described in part 2.2. Repeated and invalid 
molecules were then removed with RDKit before virtual 
screening. Unique generated molecules e were then fur-
ther screened by the pharmacophore model of Pim1 and 
the molecular docking model of CDK4. After docking, 
because -PMF was validated as the best scoring func-
tion in part 2.5, the first 50% of molecules sorted by their 
-PMF scores were retained as the results of the proposed 
method in the first round.

After the first round application of the pipeline, the 
retained molecules suit the traditional models better. 
Based on the fact, cluster centers of the retained mol-
ecules indicate that the corresponding core structures 
of the cluster centers are more preferable by the tradi-
tional models, so next round of the method was then per-
formed to check the more preferable core structures. In 
the second round of enumeration and screening for simi-
lar molecules, the first screened molecules were clustered 
into 7 catalogs with the cluster ligand module in DS. The 
number of clusters parameter was set 7, while the other 
parameters were set as default so to cluster the molecules 
according to their Tanimoto distance for their functional 
connectivity fingerprints with a radius of 3. Then, with 
the randomized SMILES sequences of the seven cluster 
centers, the generator trained in the first round was fur-
ther trained for 20 epochs to convergence. During train-
ing, the similar molecules to the seven cluster centers 
were generated every 10 epochs, and unique molecules 
were retained. Finally, with the same virtual screen-
ing process as described in the first round, the unique 
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molecules were screened, and the screened molecules 
were the results of the second round.

To test the proposed method in practice, the aim was 
set to discover new CDK4 inhibitors. The screening was 
based on the specs_sc_10mg_Apr2019 database (https​
://www.specs​.net/), which is a virtual compound data-
base of molecules collected by Specs (Netherlands), and 
the compounds in the database are commercially acces-
sible. The database was filtered with the Lipinski and 
Veber rules, during which no violation was allowed, and 
molecules with a molecular weight greater than 300 
were retained, which corresponds to 105,934 molecules. 
The molecules were then prepared with the prepare 
ligands module in DS. The pharmacophore model and 
the molecular docking model built for CDK4 inhibitors 
were used to perform virtual screening, and -PMF was 
used as the scoring function during molecular docking. 
Because biological tests of all the preliminarily screened 
molecules could be costly, the first 10 screened molecules 
sorted by -PMF were molecules whose sequences were 
randomized. The generator_2 was then trained with the 
randomized sequences for 30 epochs to convergence, and 
sampling was performed every 10 epochs. Duplicates 
were then removed, followed by virtual screening with 
the pharmacophore model and the molecular docking 
model built for CDK4. Screened molecules after virtual 
screening were the final results.

Origin of compounds through virtual screening
The compounds were obtained from Specs, and their 
characteristics and purity can be searched at the Specs 
website (https​://www.specs​.net/).

Biological tests on the inhibitory activity of kinases
This service was provided by ChemPartner Co., Ltd, 
Shanghai, China. (http://www.chemp​artne​r.com/) with 
a mobility shift assay. In tests of CDK4, 10  nM CDK4 
(Carna) and 280  μM ATP (Sigma) were added, while 
2  nM Pim1 (Carna) and 740  μM ATP were added for 
tests on Pim1. FAM-P8 (GL Biochem) and FAM-P20 
(GL Biochem) at 3 μM were used as substrates for CDK4 
and Pim1, respectively. Other details of the tests were as 
described previously [45]. Staurosporine was tested as 
a positive control, which is a non-selective inhibitor of 
kinases.

Results and discussion
Generated chemical space with randomized SMILES 
sequences
As described previously, TL is often applied to gen-
erative models based on RNNs. Because it is hard for 
models to learn rules from a small quantity of data, TL 
helps improve molecule generation by pretraining with 

datasets that are large but not highly related. How-
ever, previous models ignore the diversity of SMILES 
sequences belonging to complex molecules, which helps 
enlarge datasets so that the enlarged datasets directly 
related to corresponding tasks can be appropriate inputs. 
In this study, models trained with or without randomized 
SMILES sequences were compared at the beginning, cor-
responding to generator_random and generator_canoni-
cal. Both models were trained to convergence (Fig.  2a), 
and they generated different diversities of their new 
chemical space. After sampling for 200,000 tokens, the 
generator_random produces more novel molecules as 
training continues, while the generator_canonical pro-
duces more replicates (Fig.  2b, c). Overall, the gener-
ated chemical space around the training molecules was 
developed better with the dataset of randomized SMILES 
sequences (Fig.  2d) than with the model trained with 
canonical SMILES sequences (Fig.  2e). It appears that 
SMILES randomization can further improve the novelty 
of generated molecules. In a recent report, it is also found 
that the randomized SMILES sequences help improve 
the RNN-based generative models [46]. Notably, SMILES 
randomization enables a great increase in the number of 
sequences, which helps solve the problem of data defi-
ciency. TL is frequently used in generative models based 
on RNNs.

However, generative models trained with TL seem 
to learn from target molecules after being trained with 
many unrelated molecules. Though TL brings novelty 
in terms of the generated molecules, part of the gener-
ated molecules may be far from the chemical space of 
the target molecules, which may require the AI-based 
models to turn to traditional CADD models. As shown 
in Fig. 2c, a small number of molecules with a Tanimoto 
similarity index smaller than 0.6 were generated by the 
directly trained models so that novelty was partly real-
ized by the model trained directly with the dataset of ran-
domized sequences. In a direct way, randomized SMILES 
sequences help exploit the chemical space around tar-
get molecules. This characteristic may help RNN-based 
models generate molecules that are novel but similar 
to known molecules. In regard to the field of medicinal 
chemistry, reliable, automatic me-too drug design could 
be realized. Because the chemical space around known 
active molecules is always protected by strict IP, deter-
mining whether the method is practical requires a real 
application.

Direct chemical space exploitation around known active 
molecules
From the chemical space generated by generator_1, three 
molecules were selected due to their synthetic acces-
sibility. Among the three selected molecules, MI-4 has 

https://www.specs.net/
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the lowest similarity index, which indicates its novelty, 
and both MI-115 and MI-1055 show small modifica-
tions based on known inhibitors (Table 1). The originally 

generated molecules have some fragments that are diffi-
cult to attach, so the three molecules were further simpli-
fied as MJ-4, MJ-115 and MJ-1055 (Table 1). As the three 

Fig. 2  Training and molecule generation based on canonical SMILES sequences and randomized SMILES sequences. a The convergence of both 
models; the loss values were recorded every 200 steps. b, c Similarity of newly generated unique molecules to their closest inhibitors after training 
with canonical SMILES sequences (b) or randomized SMILES sequences (c) for 1000 steps and 2000 steps. d, e t-SNE plots of combined unique 
molecules generated through sampling twice after training with canonical SMILES sequences (d) or randomized SMILES sequences (e). 2-D 
coordinates of CDK4 inhibitors, Pim1 inhibitors and newly generated molecules are colored blue, green and yellow, respectively
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molecules are similar to known inhibitors, the synthesis 
of MJ-4, MJ-115 and MJ-1055 is based on the synthesis 
of similar inhibitors. Compared to the known inhibitors 
shown in Table  1, MJ-4 has a novel core structure, and 
both MJ-115 and MJ-1055 introduce hydrophilic frag-
ments into the known inhibitor structures. MJ-4 was syn-
thesized according to Additional file 1: Scheme S1, during 
which the Buchwald coupling reaction was performed 
using optimized conditions as previously reported [47]. 
To avoid the geometric isomerism of the disubstituted 
cyclohexane, MI-115 was simplified as MJ-115. The nov-
elty of MJ-115 lies in its hydrophilic amide group, and 
MJ-115 was synthesized according to Additional file  1: 
Scheme S2. During the simplification of MI-1055, the 
attachment of the 2,6-difluoro-4-hydroxyphenyl group 
through the Suzuki coupling reaction was found to be 
difficult, as mentioned in a recent study [48]. Compared 
to similar molecules, MJ-1055 retains the novelty of the 

substituted phenyl group, and MJ-1055 was synthesized 
according to Additional file  1: Scheme S3. Though the 
modified molecules were finally obtained, their modifi-
cations indicate the potential obstacles that the methods 
may have, such as the problem of synthetic accessibility.

MJ-4 shows weak inhibitory activity on CDK4 
(Table 2), which makes MJ-4 a novel lead compound to 
be further modified and optimized. The pyrrolo[3,2-d]
pyrimidine core is a new scaffold compared to that of 
known CDK4 inhibitors, among which the pyrrolo[2,3-
d]pyrimidine fragment is an important fragment. Future 
modifications will further extend the chemical space 
around MJ-4, which indicates that there might be ignored 
space worth fully exploiting even around those explored 
chemical spaces.

The activity of MJ-115 was obviously reduced (Table 2) 
when compared to that of its closest inhibitor in the 
training molecules. This disappointing result implies that 

Table 1  Three cases of newly generated molecules and their modifications

Generated molecule Closest molecule in training set Tanimoto 
similarity

Modified molecule

0.615

0.681

0.759
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the RNN-based generative model still needs help from 
accurate models designed for virtual screening because 
the generated molecules may not maintain desired activ-
ity. Luckily, in the case of MJ-1055, AI-based reorgani-
zation could help discover treasures around the space 
explored previously. MJ-1055 retains potent inhibitory 
activity on Pim1 by the attachment hydroxyl groups to 
the hydrophobic phenyl groups, and the IC50 of MJ-1055 
is 9.6 nM, as shown in Fig. 3a. Perhaps the model found 
that the hydroxyl-substituted phenyl moiety is still an 
active fragment among the training molecules, so the 
introduction of the group successfully maintains potent 
activity. Notably, because the phenyl moiety is consid-
ered a hydrophobic pharmacophore, the attachment of 
the hydrophilic hydroxyl group makes MJ-1055 different 
from similar molecules protected in a relevant Markush 
patent [41]. MJ-1055 also shows weak inhibitory activity 
on CDK4, with an IC50 of 25.3 μM (Fig. 3b), which sup-
ports the applicability and potential of RNN-based gener-
ative models in real tasks. Although not all the molecules 
retain high potency, they can still be defined as inhibi-
tors with weak or strong inhibitory activity. Even if the 
chemical space around the training molecules has been 
explored, RNN-based models trained with randomized 
SMILES sequences help make full use of the space, which 
would further improve the efficiency and accuracy of 
drug discovery.

Virtual screening from the perspective of local chemical 
space
The cases mentioned above suggest that the chemical 
space of known inhibitors could be local. The idea that 
the chemical space of active molecules could be local is 
also supported by SARs, which are commonly used by 
medicinal chemists. In many cases, small modifications 
may affect the activity levels but not the property of being 
active molecules. With this belief, the hypothesis seems 
reasonable that, compared to a single molecule being 
screened out, a group of screened molecules which are 
generated based on the single molecule indicate that the 
single molecule is more likely to be active.

The best pharmacophore model of Pim1 was built from 
a complex structure with the PDB code 5TUR, and its 
specificity, sensitivity and AUC were 0.79, 0.87 and 0.806, 
respectively. The best pharmacophore model of CDK4 
was built from a complex structure belonging to CDK6 
(PDB code: 3NUP), whose specificity, sensitivity and 
AUC are 0.61, 0.84 and 0.73, respectively.

The performance of the pharmacophore model for 
CDK4 is just acceptable, so an additional molecular dock-
ing model for CDK4 was prepared. LigandFit achieves 
a specificity of 0.53 and a sensitivity of 0.85. The speci-
ficity is still unsatisfactory, which means that Ligand-
Fit could easily be confounded by inactive molecules. 
Scoring functions were then compared through receiver 
operating characteristic (ROC) curves (Additional file 1: 
Figure S1), and -PMF achieves the highest AUC of 0.821 
(Additional file 1: Table S1), which indicates that a higher 
-PMF score yields a larger probability of discovering a 
CDK4 inhibitor.

The proposed idea was first compared to traditional 
virtual screening methods in silico. Abemaciclib shows 
potent inhibitory activity on both CDK4 and Pim1. 
With the pharmacophore model built for Pim1 and the 
molecular docking model based on CDK4, not only 
abemaciclib was screened, but another six inactive mol-
ecules were wrongly screened as well, and they cannot 

Table 2  Inhibitory activity of  the  three synthesized 
molecules

The tests were performed with at least two replicates

Staurosporine was tested as the positive control. Its IC50 values for Pim1 and 
CDK4 are 46 nM and 30 nM, respectively

Compound Inhibition 
for CDK4 
at 10 μM (%)

Inhibition 
for CDK4 
at 100 μM (%)

Inhibition 
for Pim1 
at 10 μM (%)

MJ-4 10.96 ± 2.57 72.77 ± 1.24 < 10

MJ-115 35.82 ± 3.75 90.74 ± 1.28 10.38 ± 6.39

MJ-1055 21.06 ± 1.45 81.5 ± 2.2 99.64 ± 0.08

Fig. 3  Dose-response curves of MJ-1055 on CDK4 (a) and Pim1 (b). For each concentration, tests were performed with at least two replicates
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even be distinguished with -PMF (Table  3), which has 
been validated as an effective scoring function. Namely, 
the traditional models are unable to distinguish abe-
maciclib from the six inactive molecules.

With a trained RNN-based generator, instead of 
seven individual molecules, objects of the traditional 
models are seven groups of molecules similar to the 
seven molecules. The pre-trained generator_2 was 
trained with randomized sequences belonging to the 
seven molecules, and the similar molecules to the seven 
molecules were successfully obtained (Additional file 1: 
Figure S2) through sampling during training. After vir-
tual screening for the potential active molecules, mol-
ecules that are most similar to abemaciclib were kept at 
most, which is shown with t-SNE (Fig. 4a) and similar-
ity analysis (Fig. 4b).

After the first cycle of generating similar molecules 
and enrichment with virtual screening, the first 50% of 
screened molecules sorted by their -PMF score were 
kept as the potential active molecules. Compared to the 
preliminary generated molecules, the screened mol-
ecules meet the requirements of the virtual screening 
models better, which represent more ideal molecules 
with preferable structures. To find the core structures 
shared in the screened molecules, those molecules 
were represented by seven centers through cluster-
ing according to their structures, and the seven cluster 
centers represent more preferable core structures for 
the virtual screening models compared to the structures 
of the original seven molecules. Then, the second cycle 
of molecule generation and virtual screening was per-
formed to discover structures that are more preferable 
for the virtual screening models. With t-SNE (Fig.  5a) 
and similarity analysis (Fig. 5b), the space around abe-
maciclib was further emphasized as expected, while the 
local space near CHEMBL1802355 was also enriched. 
From the result of t-SNE (Fig.  5a), the screened mol-
ecules appear to be distant from CHEMBL1802355. 
Then, the closest molecule of CHEMBL1802355 based 

on Tanimoto similarity and the cluster center of the 
screened space around CHEMBL1802355 were found 
to check the new preferable structure for the virtual 
screening models. As shown in Fig.  6, both molecules 
possess extra guanidyl groups, and it is the same for 
most generated molecules in the local space around 
ChEMBL1802355. As guanidyl is a basic group, it con-
forms well to the positive pharmacophore in the model 
of Pim1 (Additional file  1: Figure S3), and the basic 
fragment matches well with the SAR reported in a 
study on Pim1 inhibitors [49], where ChEMBL1802355 
was found to lack activity and the introduction of basic 
fragments helps improve the inhibitory activity.

The hypothesis was then further supported with a 
real test. The aim was preliminarily set to discover new 
inhibitors of CDK4. The pharmacophore model built for 
CDK4 and the molecular docking model aided by -PMF 
were used to perform virtual screening. Potential active 

Table 3  Virtual screening results of  the  six inactive 
molecules and abemaciclib

Molecules Pharmacophore 
model for Pim1

Molecular docking 
model for CDK4

-PMF

Abemaciclib √ √ 95.92

ChEMBL1803075 √ √ 85.1

ChEMBL2443138 √ √ 113.57

ChEMBL1802357 √ √ 105.94

ChEMBL497949 √ √ 91.07

ChEMBL1802355 √ √ 93.5

ChEMBL3985000 √ √ 85.91

Fig. 4  The filtered molecules after the first round of virtual screening 
with the pharmacophore model for Pim1 and the molecular docking 
model for CDK4 and -PMF. a t-SNE plot of CDK4 inhibitors (blue), Pim1 
inhibitors (green), abemaciclib (red), inactive molecules (magenta) 
and screened molecules (yellow). b Number of the most similar 
molecules compared to the seven target molecules
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molecules were first screened out. After one cycle of 
molecule generation based on the preliminarily screened 
molecules and virtual screening, the screened prefer-
able molecules for the virtual screening models were 
visualized with t-SNE (Fig. 7), and molecules (flagged in 
Fig.  7) from the large local space and small local space 

were obtained and tested. Among those molecules, only 
AF-399/37285031 is found as a new CDK4 inhibitor, 
with inhibition of 57.8 ± 5.0% at 10 μM, which proves the 
reliability of this method in practice. As shown in Fig. 7, 
the chemical space around AF-399/37285031 is retained 
through virtual screening, and the chemical space around 
several inactive molecules shown in Fig.  7 fails to be 
enriched. However, not all the molecules selected from 
the enriched chemical space show activity. The reason 
may be due to unreliable traditional models. Although 
those traditional models may be inaccurate, virtual 
screening from the perspective of groups of similar mol-
ecules still help improve the accuracy.

Conclusions
Among AI-based generative models, though powered 
by the simplest algorithm, models based on RNNs have 
proven their potential in de novo molecular genera-
tion. Although these models perform reorganization of 
sequences without optimization, key fragments con-
tributing to the activity can be effectively extracted and 
further assembled to afford novel and potentially active 
generated molecules. More importantly, an ignored detail 
that a complex molecule may have different SMILES 
sequences helps effectively generate molecules that are 
similar to training molecules, and the characteristic fur-
ther improves the models’ ability to exploit the chemical 
space around those training molecules, which may be 
helpful for the industry to solve IP issues. However, the 
models can still be further improved. During the appli-
cation of the models, synthetic accessibility and stability 
exhibited problems, perplexing us, which could represent 
the obstacles for AI-based generative models.

To explore new chemical spaces of active molecules, 
RNN-based models show their applicability. With vivid 
cases reported in this study, traditional virtual screening 
could be further improved from the perspective of local 
chemical space. On the one hand, the accuracy of virtual 
screening may be further improved. On the other hand, 
the cycle of molecule generation and virtual screen-
ing could guide discovery of ideal structures that match 
traditional models much better, which would help guide 

Fig. 5  The filtered chemical space after the second round of 
virtual screening with the pharmacophore model for Pim1 and the 
molecular docking model for CDK4 and -PMF. a t-SNE plot of CDK4 
inhibitors (blue), Pim1 inhibitors (green), abemaciclib (red), inactive 
molecules (magenta) and screened molecules (yellow). b Number of 
the most similar molecules compared to the seven target molecules

Fig. 6  Representative molecules in the transferred chemical space moving away from CHEMBL1802355. Molecules from left to right are 
CHEMBL1802355, the most similar molecule of CHEMBL1802355 and the cluster center of the chemical space to which CHEMBL1802355 belongs
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further structural modifications. In regard to new targets 
for which there is little knowledge of active molecules, 
virtual screening based on local chemical space shows 
priority when compared to traditional models that could 
be inaccurate without validation and to AI models des-
perate for abundant data.

Overall, RNNs deal with the raw representation of mol-
ecules well, and this feature makes RNNs good at explor-
ing the chemical space. With further improvement and 
application of the models, AI may realize more efficient 
and accurate drug discovery and ultimately bolster more 
fierce competition for the industry in the future.
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