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Abstract 

We propose new invariant (the product of the corresponding primes for the ring size of each bond of an atom) as a 
simple unambiguous ring invariant of an atom that allows distinguishing symmetry classes in the highly symmetrical 
molecular graphs using traditional local and distance atom invariants. Also, we propose modifications of Weininger’s 
CANON algorithm to avoid its ambiguities (swapping and leveling ranks, incorrect determination of symmetry classes 
in non-aromatic annulenes, arbitrary selection of atom for breaking ties). The atomic ring invariant and the Modified 
CANON algorithm allow us to create a rigorous procedure for the generation of canonical SMILES which can be used 
for accurate and fast structural searching in large chemical databases.
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Introduction
The perception of the symmetry of atoms in molecular 
graphs is an important problem for chemoinformatics. 
The systems for the synthesis design use the constitu-
tional symmetry information to generate and evaluate 
the reaction pathways [1]. The constitutional symmetry is 
important for the interpretation of NMR and ESR spec-
tra. Computer-assisted structure elucidation systems also 
use this information [1]. The correct determination of the 
symmetry classes for the atoms in a molecular graph is 
a basis for finding a canonical ordering of the atoms in 
a molecule, which in turn is necessary for generating a 
unique representation of the molecule [1]. This approach 
is used in the canonicalization algorithms for the linear 
representations of the molecular graphs like SMILES [2–
5] and InChI [4, 6]. The canonical linear notations of the 

molecular graphs are widely used in the contemporary 
chemical databases since they allow to compare chemical 
structures as plain strings. These strings could be lexico-
graphically ordered, which allows using very fast binary 
searching in ultra-large databases of canonicalized linear 
representations of molecular graphs [1]. The accuracy 
and speed of search in millions of known and billions of 
virtual compounds for drug discovery relays on the cor-
rectness and the effectiveness of these algorithms.

The first algorithm for the symmetry perception of 
the atoms in the molecular graphs was developed in 
1965 by Morgan [7] for Chemical Abstracts Service. 
In the first phase of this algorithm, an initial value is 
assigned to each atom based on its local properties like 
degree, atomic number, and bond type. In a second so-
called relaxation step, these values are iteratively refined 
by summing up of the current values of the immediate 
neighbors of each atom and assigning this new value to 
the atom. The algorithm is terminated when a count of 
different values ceases to increase from the previous step 
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of the algorithm. This algorithm is a classical realization 
of the extended connectivity algorithm and works pretty 
well for most of the typical chemical structures. But in 
1975 Randić has pointed out [8] that issues exist with this 
algorithm: the same extended connectivity values can 
be assigned for nonequivalent atoms in some molecular 
graphs. Some of these issues are related to the fact that 
the sum of integers is not unambiguous function and 
addition various integers can give the same sum. This 
problem could be solved by a method described by Wein-
inger et al. [3] in 1989 by replacing summing at the refin-
ing step of the algorithm by the product of corresponding 
primes as an unambiguous function that can be easily 
shown from the prime factorization theorem. But the 
method of the corresponding primes is not universal: for 
some ‘pathological’ molecular graphs (one of them shown 
in Fig. 1) none of the extended connectivity algorithms, 
whose initial values assigned to each atom based on the 
local properties of atom only, can resolve all symmetry 
classes of these highly symmetrical molecular graphs 
[9]. This fact led lvanciuc to the statement [1] that only 
algorithms with an explicit determination of the graph 
automorphisms (an isomorphism of a graph with itself 
is called an automorphism) can accurately determine all 
symmetry classes in complex molecular graphs. Such 
algorithms, like Shelley-Munk algorithm [10], the HOC 
(Hierarchically Ordered Extended Connectivities) algo-
rithm [11], McKay algorithm [12] (which is implemented 
in open-source library nauty) and Faulon et  al. [13, 14] 
canonical signatures algorithm, are quite complex and 
computationally intensive since they use some sorts of 
the path enumerations and the label permutations. The 
simplified and adapted for the molecular graphs version 

of McKay algorithm (nauty) is implemented in InChI 
canonicalization algorithm [6]. Another approach is 
shown by Schneider, Sayle, and Landrum [5] in 2015 and 
is implemented in an open-source RDKit library. They 
use some nonlocal invariants of the atoms (the chirality 
invariant and the special high-symmetry invariant) for 
resolving the symmetry classes in the chiral structures 
and the highly symmetrical molecular graphs by their 
version of the extended connectivity algorithm. Using 
these invariants allows obtaining an accurate count of 
the symmetry classes in the chiral structures and ‘patho-
logical’ molecular graphs, respectively. But I would like to 
propose another (from my point of view, more obvious 
for the chemists) nonlocal invariants of the atoms for the 
same purposes.

The mathematical theory of canonical coding of the 
graphs with application to the molecular graphs is out-
lined in the review by Ivanciuc [1]. For further discus-
sion, we have to give the major definitions and facts 
from this review. A code of the labeled graph is a string 
obtained from graph by a set of rules. The code is a com-
plete representation of graph because the labeled graph 
can be reconstructed from code. The code is not a struc-
tural invariant, because different labelings of graph usu-
ally give different codes. An important property of codes 
is that the lexicographical relation between two strings 
induces an order of the codes. A rigorous method to 
derive the canonical code and automorphism partition-
ing of the graph with N vertices is to construct all N! per-
mutations, to generate their codes and compare them to 
extract the one-to-one correspondence. The permutation 
labelings corresponding to the canonical code are iden-
tified by a lexicographical comparison of the N! codes, 
followed by the selection of the maximal (or minimal) 
code. From the above definition it is clear that for a given 
molecular graph the canonical code is unique. This prop-
erty is used in graph isomorphism testing and in stor-
age, retrieval and comparison of chemical compounds, 
because two molecular graphs with identical canonical 
codes represent the same chemical compound. The pro-
cess of generation of the canonical code by investigating 
automorphism permutations is called canonical code 
generation by automorphism permutation (CCAP). Since 
for practical purposes N! permutations is a very large 
number, all coding algorithms use a heuristic approach to 
reducing (in a deterministic way, which does not depend 
on labeling of the molecular graph) the number of per-
mutation labelings that have to be investigated in order to 
detect the canonical labelings. A vertex graph invariant is 
any vertex property, computed on the basis of the graph 
structure, whose value does not depend on the graph 
labeling. Examples of vertex invariants are atomic num-
ber, the degree and distance sum. Any vertex invariant 
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Fig.1 ‘Pathological’ graph with the sizes of the smallest rings for the 
atoms
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can be used to obtain a preliminary partition of the ver-
tices from a molecular graph. Two vertices from differ-
ent atom invariant classes (AIC) cannot be automorphic, 
while two vertices from the same AIC are not necessarily 
automorphic. Despite numerous efforts, no vertex graph 
invariant is known which is sufficient to establish the 
automorphism partitioning, because for certain graphs 
non-automorphic vertices are partitioned in the same 
class. The process of atom partitioning in AIC induced by 
a certain atomic invariant is called graph invariant atom 
partitioning (GIAP), and represents an important step in 
the generation of the canonical code. The use of the GIAP 
step is based on the property that two atoms with distinct 
values for the same invariant cannot be automorphic. On 
the other hand, the assumption that atoms in the same 
GIAP class are automorphic is not correct. To determine 
the canonical code, each AIC resulting from GIAP proce-
dure is investigated to detect non-automorphic vertices 
by lexicographical comparison of all possible codes for 
this partitioning, followed by the selection of the maxi-
mal (or minimal) code.

Thus, a complete algorithm for canonical coding can be 
separated in 2 steps:

1. GIAP: compute a discriminant atom invariant and 
establish with it an initial atom partitioning.

2. CCAP: using the atom partitioning established in the 
first step identify canonical code by investigating all 
automorphism permutations.

Ivanciuc writes [1]: “Carhart pointed out that a rigor-
ous canonical coding and constitutional symmetry per-
ception algorithm must contain both GIAP and CCAP 
steps [9]. The same idea was formulated for the problem 
of graph isomorphism by Read and Corneil [15]. Even 
after these warnings, the illusion of obtaining a “better” 
and “faster” canonical coding algorithm by eliminating 
the step CCAP continued and one can still find in the lit-
erature papers that propose algorithms for the computa-
tion of vertex invariants, with the wrong assumption that 
vertices with identical values of the invariant are auto-
morphic and belong to the same orbit. Even when such 
AIC algorithms give vertex partitionings that coincide 
with the automorphism partitioning for a certain set of 
graphs, this fact is not a demonstration that the algo-
rithm can generate the automorphism partitioning for 
any graph. This type of “canonical coding” algorithm is 
incomplete, and its use in a chemical database, in synthe-
sis design or structure elucidation systems is unreliable.”

Since both published by Weininger et  al. [3] and by 
Schneider, Sayle, and Landrum [5] algorithms for canoni-
calizing of SMILES do not contain CCAP (canonical 
code generation by automorphism permutation) step, 

they are incomplete, i.e. for some molecular graphs they 
could give different canonical SMILES for the label per-
mutations of one molecular graph. Unlike them, the 
InChI canonicalization algorithm [6] is complete. So our 
main goal is to create a complete but fast algorithm for 
SMILES canonicalization. To achieve it, we propose an 
efficient GIAP procedure, which in almost all cases of the 
molecular graphs gives the correct partition of the atoms 
of the molecular graph into symmetry classes, followed 
by the CCAP step that will guarantee the uniqueness of 
the canonical code for a given molecular graph.

Methods
Herein, we discuss the use of the local invariants and 
propose nonlocal invariants and improvements of the 
refinement procedure that can resolve some ambiguities 
in the Weininger’s method of the corresponding primes 
[3]. Then, we describe a procedure to obtain a canoni-
cal absolute SMILES (with chirality). The material in this 
section is presented in the order in which the steps of our 
SMILES canonization algorithm are performed.

Local invariants
Degree, atomic number, and bond type are used as the 
local invariants of atom in the original Morgan algo-
rithm [7]. Weininger has proposed to use number of 
connections, number of non-hydrogen bonds (degree), 
atomic number, the sign of charge, absolute charge, and 
number of attached hydrogens as the local invariants 
[3]. For complete representation of the local invariants 
of atom, we can classify them as properties of the atom 
proper (atomic number – count of protons in atomic 
nuclei, atomic mass—the sum of counts of protons and 
neutrons in atomic nuclei, charge—count of protons 
in atomic nuclei minus count of electrons of the atom) 
and properties of the nearest neighborhood of the atom 
(degree—count of explicit connections, count of attached 
hydrogens, connectivity—total count of connections, 
valence—the sum of bond orders of all connections). For 
use as an initial rank of the atom, we must combine all 
local invariants in the atomic vector in some order. Wein-
inger has pointed out [3] that a terminal atom is preferred 
to start of traversal of the molecular graph (if it is possi-
ble). For this reason, the degree of the atom must be at 
the start of a combined atomic vector (1 character). Next 
positions concatenated consecutively: atomic number 
(3 characters), count of attached hydrogens (1 charac-
ter), the sign of charge (1 character: ‘0′—for no or posi-
tive charge, ‘1′—for a negative charge), absolute charge (1 
character), connectivity (1 character), valence (1 charac-
ter), atomic mass (3 characters, ‘000′ if unspecified). The 
atomic vector of the local invariants has 12 characters.
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Chirality invariant
In SMILES, a designation of chirality depends on the 
enumeration order of atoms, and from this reason, sim-
ple parity symbols ‘@’ and ‘@@’ cannot be used as invari-
ant since its meaning changes with the transposition of 
the atoms. But we can determine the order of the atoms 
around a chiral center relative to the symmetry classes 
of its neighbors [16, 17]. To determine this order we 
should use the extended connectivity algorithm to the 
atomic invariants (local and ring and distance nonlo-
cal described further) without chirality designation and 
obtain the symmetry classes for the non-chiral structure. 
For all atoms with no chiral parity, the chirality invariant 
is equal to 0 (by definition). If two or more neighbors of 
the atom with the chiral parity have the same symmetry 
class then the chirality invariant of this atom is equal to 0 
too. If the order of the symmetry classes can be obtained 
by an even number of swaps from the direct ascending 
order of these numbers then the chirality invariant is 
equal to count of the sign ‘@’ in parity, and otherwise the 
chirality invariant is equal to 3—count of the sign ‘@’ in 
parity. Such a definition of the chirality invariant gives 
us the truly invariant property of the chiral atom that is 
independent of the order of atoms in SMILES because 
the symmetry classes of the atoms are independent of its 
order. This invariant can be concatenated to the atomic 
vector of each atom (1 character). After concatenation 
of the chirality invariant, we must recalculate all atomic 
ranks in molecular graph.

Thus, the complete atomic vector of each atom must 
contain 13 characters: 12 for the local invariants and 1 
character for the chirality invariant. Since all characters 
of the atomic vector are digits then we can transform the 
atomic vector to number.

Ring invariant of atom
If we use only traditional local invariants for each atom 
of the molecular graph from Fig.  1 we will obtain only 
two symmetry classes after the refinement procedure of 
the extended connectivity algorithm: one for the atoms 
with degree = 3 and another one for the atoms with 
degree = 2. But, there are three symmetry classes in this 
structure. How do we know that? Because eight atoms 
with degree = 2 belong to the 6-membered rings, but 
another four atoms with degree = 2 do not. This very 
simple observation gives us obvious nonlocal invariant 
for each ring atom—the ring size of the smallest ring to 
which this atom belongs (for non-ring atom this invari-
ant is 0 by definition). This value is invariant, i.e. it does 
not depend on the order of the atoms in molecular graph. 
Now, for molecular graph from Fig. 1, for the eight atoms 
with degree = 2 this invariant is 6, and for other four 

atoms with degree = 2 this invariant is 12. Taking into 
account the local invariants of each atom we obtain three 
symmetry classes for the atoms of this molecular graph at 
once and the refinement procedure does not change this.

But if we look at the structure in Fig. 2, we see that this 
invariant is insufficient because all atoms belong to the 
3-membered rings and therefore have the same ring size 
of the smallest ring to which this atom belongs.

To solve this issue, we can first calculate an invariant 
for each bond—the size of the smallest ring to which it 
belongs. We can use a breadth-first search (BFS) from 
the first atom incident with this bond to the second atom 
incident with this bond for obtaining the shortest non-
trivial path (if such path does not exist then this is non-
ring bond). After obtaining this ring invariant for each 
bond, we can choose for each atom minimal and maxi-
mal values of the ring sizes of the bonds incident with 
this atom. The minimal ring size of the bonds incident 
with the atom will be the ring size of the smallest ring to 
which this atom belongs, but maximal will be the maxi-
mum of the minimal ring sizes of the bonds incident with 
this atom. Both of these values will be invariants of each 
atom. For the molecular graph in Fig. 2, four atoms have 
these invariants equal to 3, but four other atoms have 
the minimal ring size 3, but the maximal ring size is 6. 
The minimal and maximal ring sizes of the bonds inci-
dent with the atom in combination with the local invari-
ants are usually sufficient for distinguishing all symmetry 
classes of the atoms in ‘pathological’ molecular graphs. 
But to avoid any possible ambiguity we propose to use the 
product of the corresponding primes for the ring size of 
each bond of the atom as unambiguous ring invariant of 
the atom (contribution for a non-ring bond to the prod-
uct will be 1). As an example, for the molecular graph in 
Fig. 2, this ring invariant will be 5*5*5 = 125 for the atoms 
with the maximum ring size of the bonds equals to 3 and 
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Fig.2 Complex graph with the minimal and maximal ring sizes of the 
bonds incident with all atoms
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5*5*13 = 325 for the atoms with the maximum ring size 
of the bonds equals to 6 (since 5 is third prime and 13 is 
the sixth prime number). The atomic ring invariant will 
be unambiguous since reverse factorization of it gives us 
such invariants as count of the ring bonds of the atom 
and the minimal sizes of rings to which all bonds of the 
atom belong.

Distance invariant of the atom
Unfortunately, our local and ring invariants are insuf-
ficient for the molecular graphs of the fullerenes from 
the article of Laidboeur et  al. [18]. For example, for the 
molecular graph in Fig. 3 (SMILES: C1(C2C3C4C15)C6C
7C2C8C3C9C%10C4C%11C5C6C%12C%11C%10C%13C
%12C7C8C9%13) our algorithm with the ring invariants 
of the atoms determines only one symmetry class for the 
atoms since all atoms of this molecular graph have degree 
equal to 3 and all bonds of this molecular graph belong to 
the smallest 5-membered rings while a complete search 
of the automorphisms gave us two symmetry class of the 
atoms [18].

To solve this problem, we tried to use various invari-
ants of the atom which reflect the topological distance of 
each atom from all other atoms in the molecular graph. 
The first invariant is the distance sum—the sum of the 
topological distances from the current atom to all other 
atoms in the molecular graph [1]. This is a powerful atom 
invariant but it is hampered by the degeneracy (i.e., two 
or more topologically distinct vertices can have identi-
cal numerical values) [1]. Another proposed distance 
invariant of the atom is the number of the outermost 
occupied neighbor sphere (NOON) of an atom [19]. This 
is the minimum number of neighbor spheres necessary 
to accommodate all atoms of a molecule starting at that 
atom (in fact, the eccentricity of the vertex in the molec-
ular graph—the maximum of the topological distances 
from the current atom to all other atoms in the molecular 

graph). For the determination of all topological distances 
from the current atom to all other atoms in the molecu-
lar graph we can use the breadth-first search (BFS) from 
the current atom. Our experiments showed that the 
weighted sum of the topological distances from the cur-
rent atom to all other atoms in the molecular graph has 
the best separation ability: we define the distance invari-
ant of the atom as the sum of the products of the count 
of the atoms which have the topological distance d from 
the current atom to  Nd, where N—some integer. For 
example, we can use N = 10, and thus the decimal digits 
of our distance invariant are the counts of the atoms in 
such topological distance from the current atom as the 
digit position number from the end of the decimal rep-
resentation (this is the same as the invariant ‘number of 
neighbors per level’ in the reverse order of the digits [5]). 
The NOON of the atom will be equal to the overall count 
of the digits in the decimal representation of the distance 
invariant. For example, for the 24-fullerene 12 atoms 
have the distance invariant equal to 25,763, but 12 other 
atoms have the distance invariant equal to 35,663 (but 
all atoms have the NOON equal to 5). Such defined the 
distance invariant of an atom with the refinement step 
allows us to easily determine all symmetry classes of the 
atoms in the fullerenes from the article of Laidboeur et al. 
[18], but, unfortunately, all our local, ring and distance 
invariants of the atoms are not sufficient for the accurate 
determination of all symmetry classes for some complex 
graphs (see ‘Results and Discussion’ section). This fact 
is a limitation of our symmetry perception algorithm 
(as well as all known symmetry perception algorithms 
without the explicit determination of the graph automor-
phisms [1]), but since we use the canonical code genera-
tion by the automorphism permutation for obtaining of 
the canonical SMILES (see ‘Introduction’ section), even 
approximate values of the symmetry classes allow drasti-
cally reduce the count of the necessary permutations for 
the rigorous canonicalization of SMILES [1].

Now, we have the 13-digit atomic vector, the numeric 
ring invariant, and the numeric distance invariant for 
each atom. We can sort all atoms of the molecular graph 
by the numeric values of their atomic vector, ring, and 
distance invariants and assign the rank in the results of 
sorting as the initial rank of each atom for the refinement 
step of the extended connectivity algorithm.

Refinement procedure
After obtaining the initial ranks for all atoms we can 
rank them to obtain consecutive small integer ranks, 
and this manipulation does not change their relative 
order. Further manipulations, in general, correspond 
to the CANON algorithm described by Weininger et al. 
[3], but some changes in this algorithm are necessary. 

Fig.3 Example of the 24-fullerene molecular graph for which the ring 
invariant is not sufficient
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If you look at the simple structure in Fig.  4 then you 
see that after obtaining the initial ranks we have four 
symmetry classes. If we follow the original descrip-
tion of the CANON algorithm then after first iteration 
we obtain products of the corresponding primes for 
the atoms:  CH3—7, CH—2*3*5 = 30,  CH2—5*7 = 35, 
O—3*7 = 21. After ranking of these integers we obtain 
new ranks (Fig. 4):

As you can see, there is a rotation of the ranks in the 
ring. This is an infinite loop of the ranks rotations that 
cannot give us stable symmetry classes of the atoms in 
such type of structures. The first idea for solving this 
problem is to multiply the corresponding prime of the 
current rank of each atom with the product of the corre-
sponding primes for the ranks of its neighbors. Employ-
ing this approach, the products for first iteration are: 
 CH3—2*7 = 14, CH—7*2*3*5 = 210,  CH2—3*5*7 = 105, 
O—5*3*7 = 105. After ranking we obtain that now O 
and  CH2 have the same rank, although previously they 
had different ranks! This issue arises since the prod-
ucts of primes are the unambiguous function only if 
we do not consider the transposition of the number 
in the product. But in the 3-membered rings, this fact 
led to the leveling of the previously different ranks. A 
solution to this problem for the 3-membered rings is 
to multiply the square of the corresponding prime of 
the current rank of each atom with the product of the 
corresponding primes for the ranks of its neighbors. 
Using this approach, the products for the first itera-
tion are:  CH3—(2*2)*7 = 28, CH—(7*7)*2*3*5 = 1,470, 
 CH2—(3*3)*5*7 = 315, O—(5*5)*3*7 = 525. After rank-
ing:  CH3—1, CH—4,  CH2—2, O—3. As you can see, the 
ranks are stable after such calculation for this structure. 
It could be easily proved that such a method of obtain-
ing new ranks from previous ones has never led to lev-
eling or swapping the previously different ranks in the 
3-membered rings. But for structure in Fig. 5, squaring 
the corresponding prime of the current rank does not 
help us: after the first round of the refinement, we have 
the previously different ranks leveled.

If we try to use the third power of the corresponding 
prime of the current rank for this structure then there is 
no leveling. Generally speaking, this issue arises when we 
have two or more neighbors of the atom with the same 
rank. Since in the molecular graphs we never have atom 
degree higher than 6 (structures like  SF6), we propose to 
use the eighth power of the corresponding prime of the 
current rank to guarantee that leveling or swapping the 
ranks in the structure never occurs at the refinement step 
(since 8 = 23, the eighth power can be calculated quickly). 
Another approach, for which one of the reviewers of this 
article pointed out, is using the comparator to track the 
previous rank and current rank which allows to split ties 
only within each cell of the partition. Such a comparator 
is also sufficient to prevent ranks swapping at the refine-
ment step.

Another issue with the original CANON algorithm 
is that it does not take into account the bond orders 
between the atoms. For example, it determined only four 
symmetry classes for the structure in Fig.  6 while there 
are five.

This fact has led to arbitrary choosing between the 
atoms and generation of the different SMILES by the tra-
versal of the molecular graph. The common workaround 
of this problem is to choose the bond at the branch point 
when generating the SMILES, for example, O’Boyle pro-
poses [4]: "Rule C: At each branch point, multiple bonds 
are favoured over single or aromatic bonds, and lower 
canonical labels over higher". Such a solution lets to avoid 
ambiguity of the generation of SMILES but does not 
solve the issue of the incorrect symmetry perception and 
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this fact can lead to the problems during the canonical 
traversal of other parts of the molecular graph. We pro-
pose to solve this issue by multiplying the eighth power 
of the corresponding prime of the current rank with the 
corresponding primes of the ranks of its neighbors in the 
powers equal to the orders of the bonds connecting the 
current atom with its neighbors.

Pseudocode of the Modified CANON algorithm is 
following:

algorithm canon is
input: arrays of atoms and bonds of the molecular 
graph with the initial ranks
output: arrays of atoms and bonds of the molecular 
graph with the refined ranks
# Ranking for obtaining the consecutive small inte-
ger ranks
rank (atoms)
dist: = maximal rank of the atoms in the molecular 
graph
prevdist: = dist—1
# while the maximal rank of the atoms is lesser than 
the count of the atoms and the current maximal 
rank is # larger than the previous maximal rank per-
form the refinement
while dist < count of the atoms and dist > prevdist 
loop
# save previous ranks of the atoms and previous 
maximal rank of the atoms in the molecular graph
previous_ranks: = ranks
prevdist: = dist
foreach atoms loop
rank: = (prime (rank))^8
foreach bonds of current atom loop
rank: = rank * (prime (previous rank of the neighbor 
atom))^(order of the bond connecting the neighbor 
atom with current atom)
end loop
end loop
# Ranking for obtaining the consecutive small inte-
ger ranks
rank (atoms)
dist: = maximal rank of the atoms in the molecular 
graph
end loop
return atoms with refined ranks

The Modified CANON algorithm terminates when 
the count of the different values of the ranks ceases to 
increase from the previous step of the algorithm. After 
its termination, we must have the same ranks only on the 
symmetrically equivalent atoms, i.e. the ranks of atoms 
are their symmetry classes [3]. These symmetry classes 

can be used for the calculation of the chirality invariant. 
For acyclic and simple cyclic structures they also can be 
used directly for further generation of the canonical-
ized SMILES. If after the use of the Modified CANON 
algorithm the count of various ranks in the molecu-
lar graph is less than the count of atoms, then to obtain 
unambiguous order of the molecular graph traversal we 
need to perform breaking ties procedure, as Weininger 
et al. pointed out [3]. Our method for this is the same as 
described: doubling all ranks and reducing the value of 
the atom, which is tied, by one. The set is then treated as 
a new invariant set, and the previous algorithm for gen-
erating an invariant partitioning is repeated. But Wein-
inger et  al. assumption that “the double-and-tie-break 
step does not introduce ambiguity into the ordering since 
only otherwise equivalent atoms will be tied at any point” 
can be wrong in the general case. Ivanciuc pointed out 
[1]: “Two vertices from different atom invariant class 
cannot be automorphic, while two vertices from the same 
atom invariant class are not necessarily automorphic. 
Despite numerous efforts, no vertex graph invariant is 
known which is sufficient to establish the automorphism 
partitioning, because for certain graphs non-automor-
phic vertices are partitioned in the same class.” For this 
reason, we suggest that only a rigorous way to produce 
canonical ordering for any molecular graph is to generate 
permutations for all atoms with the same atom invariant 
class, obtain SMILES for each permutation by traversal 
and select lexicographically minimal (or maximal) [1]. 
Our approach to doing this is: after obtaining symme-
try classes choose the ring atoms with the maximal tied 
rank, perform tiebreaking for each of them, refine each 
partition by the Modified CANON algorithm, and save it. 
If these new partitions have ring atoms with tied ranks 
then repeat tiebreaking for each of them as long as the 
ring atoms with the tied ranks exist in the partitions. For 
all partitions with the completely partitioned ranks for 
the ring atoms, generate SMILES by the traversals and 
select the lexicographically minimal one as the canonical 
SMILES for this molecular graph.

After establishing the canonical order of the atoms by 
the Modified CANON algorithm with, possibly, the tie-
breaking further procedure to obtain canonical SMILES 
corresponds to described by Weininger et  al. [3] (pro-
cedure GENES): the structure is treated as a tree and a 
SMILES string is generated that corresponds to a depth-
first search (DFS) of this tree. The lowest canonically 
numbered atom is chosen as the starting point. This atom 
becomes the root of a tree for a subsequent DFS. Branch-
ing decisions are making by directs branching toward 
the lowest labeled atom at the fork in the branch. For 
the cyclic structures, Weininger et  al. have used a two-
pass method: on the first pass, the DFS algorithm detects 
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which bonds will become ring bonds (chords) and on 
the second pass, ring closure indicators (digits) could be 
appended to the chords node symbols.

After the second pass of the DFS algorithm, there is 
complete information about the canonical order of the 
atoms in the neighborhood of chiral centers. We use 
the third pass of the DFS algorithm to obtain canonical 
SMILES with the correct parity (absolute SMILES): if the 
canonical order of the atoms on the second pass of the 
DFS algorithm can be obtained by even number of swaps 
from the original order of atoms in the molecular graph 
then the parity symbol (‘@’ or ‘@@’) is preserved. If not 
then the parity symbol is inverted. We cannot use order 
relative to the canonical ranks for the correct designation 
of the chirality because of the structures that have only 
relative configurations and no chiral centers (structure in 
Fig. 7 for example).

For such structure, all chirality invariants are equal to 
0 and this fact has led to two possible traversals of this 
molecular graph. Previously described tiebreaking proce-
dure allows us to avoid this ambiguity by the selection of 
lexicographically minimal SMILES as the canonical one.

Pseudocode of the canonical SMILES generation algo-
rithm is following:

algorithm canonsmi is
input: arrays of atoms and bonds of the molecular 
graph
output: canonical SMILES for this molecular graph
# determination of the local invariants of the atoms
local_invariants (atoms, bonds)
# rings detection in the molecular graph and deter-
mination of the sizes of the smallest rings for all 
bonds
rings_detection (atoms, bonds)
# aromaticity perception and transforming the 
atoms and bonds to aromatic (if necessary)
aromaticity_detection (atoms, bonds)
# calculation of the distance invariants for all atoms
distance_invariants (atoms, bonds)

# symmetry perception (using the local, ring and 
distance invariants and the Modified CANON algo-
rithm)
symmetry_detection (atoms, bonds)
# processing of the chiral centers and recalculation 
of the ranks of atoms (for the chiral structures)
chirality_processing (atoms)
# generation of all permutation of the atoms ranks 
by breaking ties on the ring atoms with same ranks
while ring atoms with the tied ranks exist in the par-
titions loop
breaking_ties (atoms)
# refinement of the partitions after breaking ties by 
the Modified CANON algorithm
canon (atoms, bonds)
end loop
# generation of the SMILES for each partition with 
the completely partitioned ranks
foreach partition loop
# selection of the lexicographically minimal SMILES
if cangen (atoms, bonds) < minsmi then min-
smi: = cangen (atoms, bonds)
end loop
# return of the lexicographically minimal SMILES as 
the canonical SMILES for this molecular graph
return minsmi

Results and discussion
Now, we discuss the computational complexity and the 
accuracy of the described algorithms.

Symmetry perception
We have the constant computational complexity for 
the determination of the local invariants and the chiral-
ity invariant of the atoms and the quadratic in a worst-
case computational complexity for the determination of 
the atomic ring invariant: the count of the bonds in the 
molecular graphs is approximately equal to the count 
of atoms and we must find the shortest non-trivial path 
between the atoms incident with each bond by the 
breadth-first search with the linear complexity in a worst-
case. For the same reason, we have the same quadratic 
in a worst-case computational complexity for the deter-
mination of the atomic distance invariants. The Modi-
fied CANON algorithm has the same computational 
complexity as Weininger’s original CANON algorithm 
[3] and thus we have O(N2 log N) general computational 
complexity for the procedure of the symmetry perception 
in the molecular graphs.

Use of the atomic ring invariant, the distance invariant 
and the Modified CANON algorithm allow predicting 
an accurate count of the vertex equivalence classes for 

N
1

5

3 4

6

2

43
Fig.7 Example of the structure with only dependent chirality and no 
chiral centers
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all graphs from the article of Razinger et al. [20] without 
any explicit determination of the graph automorphisms: 
for all test graphs in Fig.  6 in this article, we have the 
same count of the symmetry classes as in Table 1 [20] for 
HOC and Shelley-Munk algorithms. The correct counts 
of the vertex equivalence classes are also obtained for 
all “complex” graphs in Fig.  4 and all regular graphs in 
Fig. 8 in this article [20], as well for all counterexamples 
from Carhart’s [9], Figueras [21], Faulon’s [22] and Ouy-
ang’s et  al. [23] articles. Due to the explicit use of the 
bond orders in the main loop of the Modified CANON 
algorithm, we can correctly determine the count of the 
symmetry classes in the non-aromatic annulenes and 
fullerenes (Ivanciuc pointed out [1] to a issues for these 
classes for the classical Morgan algorithm).

For the determination of the limitations of our algo-
rithm for the symmetry perception, we also tested all 
3-regular graphs up to 14 vertices from the article [24] 
and other cyclic and regular graphs up to the degree 4. 
The results of testing are presented in the Additional files 
1, 2, 3, 4 and 5. We found several examples of the non-
planar regular graphs for which our invariants with the 
refinement by the Modified CANON algorithm cannot 
determine the accurate count of the symmetry classes 
such as the generalized Petersen graph G(7,2) (SMILES: 
C12C3C4C5C1C6C7C2C8C3C6C5C8C74) and 4-regular 
graphs (graphs with all vertices with the degree equal to 
4): the Chvátal graph [25], the Robertson graph [26] and 
the Brinkmann graph [27] (see the file 3 with 4-Regular 
Graphs in Supporting Information). This is known that 
these graphs are not vertex-transitive but our algorithm 
determines only one symmetry class for each of them. 
But the non-planar and especially 4-regular graphs usu-
ally are not of interest to the chemists since the chemi-
cal structures corresponding to these graphs cannot exist 
due to the sterical constrainings [22]. Also, we found in 
Table II of the article [10] of Shelley and Munk the exam-
ple of the molecular graph for which our symmetry per-
ception algorithm incorrectly determines the count of 
the symmetry classes (SMILES: C1OC23COC45COC11
COC67COC8(COC9(CO2)COC(CO1)(CO6)OCC(CO9)
(OC4)OCC(CO5)(OC7)OC8)OC3). Our algorithm (as 
well as the algorithm of Schneider, Sayle, and Landrum 
[5]) determines for this molecular graph only three 
equivalence classes of the atoms while, in reality, no ver-
tices are equivalent [10]. These facts once again prove the 
necessity of the step of the canonical code generation by 
the automorphism permutation for the robust algorithm 
of the SMILES canonicalization.

Generation of the canonical SMILES
The procedure of the graph traversal by the depth-first 
search has linear computational complexity. But in 

the case of the symmetrical structures, we must per-
form the procedure of breaking ties and such count of 
the graph traversals as the count of the partitions with 
the completely partitioned ranks for the ring atoms 
that we get after breaking ties. This count depends on 
the structure of the molecular graph, but for a great 
majority of “usual” chemical structures with N non-
overlapping bilaterally symmetrical rings, it will be 
 2  N. We prefer to start the breaking ties from the ring 
atoms with the highest ranks since they have as a rule 
higher degree and thus tiebreaking on them gives us 
faster symmetry breaking in the original molecular 
graph after the refinement procedure. For the complex 
molecular graphs with overlapping symmetrical rings, 
the count of traversals is hard to predict, but usually it 
is not very large, since the refinement by the Modified 
CANON algorithm after tiebreaking drastically reduces 
this count. If the algorithm of the symmetry perception 
determined accurately all symmetry classes of the atoms 
then the count of traversals equal to the order of the 
automorphism group of the molecular graph, if not—
then the count of traversals will be more than the order 
of the automorphism group. As examples: for the struc-
ture in Fig.  1 (SMILES: C1CC2CCC1CCC3CCC(CC3)
CC2) we have 16 traversals, for the structure in Fig.  2 
(SMILES: C12C3C1C4C5C4C5C23)—16 traversals too, 
for the adamantane (SMILES: C1C2CC3CC1CC(C2)
C3)—24 traversals, for the cubane (SMILES: C12C3C-
4C1C5C2C3C45)—48 traversals, for the buckmin-
sterfullerene  (C60)—120 traversals, for the generalized 
Petersen graph G(7,2) (SMILES: C12C3C4C5C1C6C-
7C2C8C3C6C5C8C74) with inaccurate determination 
of the symmetry—28 travesals. Since the traversals are 
independent of each other, they can be easily parallel-
ized in the computation. We must say that for almost 
all structures without chirality investigated by us all 
generated SMILES are the same for each structure. For 
this reason, it can seem redundant to generate all tra-
versals, but in very rare cases of the graphs (such as the 
structure C12C3C4C5C1C6C7C2C8C3C6C5C8C74) 
this is not true and thus the rigorous way to obtain 
canonical SMILES is to generate SMILES by all travers-
als and select the lexicographically minimal SMILES as 
the canonical one [1]. This is particularly necessary for 
the structures with only relative (dependent) chirality 
since all chirality invariants on their atoms are equal 
to 0 and they can have several equal traversals which 
led nevertheless to the different SMILES. For exam-
ple, for structure in Fig.  7 we have two traversals and 
one of them has led to SMILES C[C@H]1CC[C@H]
(N)CC1, but another one has resulted in SMILES 
C[C@@H]1CC[C@@H](N)CC1. We have no other rule 
of choice between these pair of SMILES except to select 
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the lexicographically minimal SMILES as canonical, i.e. 
C[C@@H]1CC[C@@H](N)CC1 will be the canonical 
SMILES for this structure.

It should be emphasized that our procedure of the 
generation of the canonical SMILES is complete. It con-
tains the graph invariant atom partitioning step (the cal-
culation of the atomic local and nonlocal invariants and 
refining them by the Modified CANON algorithm for 
obtaining the symmetry classes of the atoms) and the 
canonical code generation by the automorphism per-
mutation step (the tiebreaking procedure, refinement 
of the partitions by the Modified CANON algorithm, 
and the generation of SMILES by deep-first traversal for 
each partition). This means that regardless of the accu-
racy of the symmetry determination, it is mathematically 
provable that our procedure always gives the same (lexi-
cographically minimal) canonical SMILES for all label 
permutations of one molecular graph [1]. The only draw-
back is that in the rare worst cases (molecular graphs 
with many disjoint symmetrical ring systems) the travers-
als count could have an exponential dependence on the 
number of rings in the molecular graph. This fact reflects 
the computational complexity of the graph automor-
phism partitioning problem which is well known in the 
mathematical graph theory for a general case [15].

Conclusion
We propose new invariant (the product of the cor-
responding primes for the ring size of each bond of an 
atom) as a simple unambiguous ring invariant of an atom 
that allows distinguishing symmetry classes in the highly 
symmetrical molecular graphs using traditional local and 
distance atom invariants. Also, we propose modifications 
of Weininger’s CANON algorithm to avoid its ambigui-
ties (swapping and leveling ranks, incorrect determina-
tion of symmetry classes in non-aromatic annulenes, 
arbitrary selection of atom for breaking ties). The atomic 
ring invariant and the Modified CANON algorithm allow 
us to create a rigorous procedure for the generation of 
canonical SMILES which can be used for accurate and 
fast structural searching in large chemical databases.
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