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Abstract 

The objective of this work is to design a molecular generator capable of exploring known as well as unfamiliar areas 
of the chemical space. Our method must be flexible to adapt to very different problems. Therefore, it has to be able 
to work with or without the influence of prior data and knowledge. Moreover, regardless of the success, it should be 
as interpretable as possible to allow for diagnosis and improvement. We propose here a new open source generation 
method using an evolutionary algorithm to sequentially build molecular graphs. It is independent of starting data and 
can generate totally unseen compounds. To be able to search a large part of the chemical space, we define an original 
set of 7 generic mutations close to the atomic level. Our method achieves excellent performances and even records 
on the QED, penalised logP, SAscore, CLscore as well as the set of goal-directed functions defined in GuacaMol. To 
demonstrate its flexibility, we tackle a very different objective issued from the organic molecular materials domain. We 
show that EvoMol can generate sets of optimised molecules having high energy HOMO or low energy LUMO, starting 
only from methane. We can also set constraints on a synthesizability score and structural features. Finally, the inter-
pretability of EvoMol allows for the visualisation of its exploration process as a chemically relevant tree. 
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Introduction
One of the main objectives of chemical research is to find 
a molecule that has desired properties for a given appli-
cation. However, the molecular space being immeasur-
able, one needs to define strategies to efficiently explore 
its relevant parts. Even an incomplete enumeration of the 
chemical space limited to 17 heavy atoms (C, N, O, S and 
halogens) already leads to more than 160 billion com-
pounds [1]. To tackle this problem, we will see that many 
methods have been proposed, adapting recent advances 
in deep learning and in reinforcement learning, or using 

more classical optimisation methods such as evolution-
ary algorithms. Actually, fully automated de novo molec-
ular generation is a subject that has regained considerable 
attention [2, 3].

In the 1990–2000s, evolutionary algorithms were 
already used for de novo molecular generation [4]. To 
limit the number of steps and to improve the likeliness of 
the solutions, they were commonly based on the combi-
nation of fragments rather than mutating the molecules 
at atomic level. The interest in evolutionary algorithms 
has decreased with the emergence of deep learning for 
molecular generation, although very recently, a new and 
efficient fragment based method was designed [5]. In the 
mid 2010s, Aspuru-Guzik and coll. proposed two deep 
learning architectures, a Generative Adversarial Net-
work (GAN) and a Variational Auto Encoder (VAE) [6, 
7]. After the deep learning successes in image generation, 
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one could have hoped for a revolution in the molecular 
generation [8].

In fact, several deep learning architectures were then 
published for de novo molecular generation. Among 
them, autoencoders are trained to convert points of their 
latent space to SMILES [7, 9–11] or molecular graphs [12, 
13]. Their latent space can then be explored to provide 
new solutions. Recently, Yuan  et al. proposed a transfer 
learning approach to take advantage of the abundant data 
in pharmaceutical-type molecules and generate chemi-
cally feasible solutions for materials [14]. Other neural 
networks are designed to build sequentially molecular 
graphs [15] or molecular Cartesian coordinates [16]. We 
should mention here that Bayesian methods have also 
been proposed successfully even for organic materials 
to generate small gap molecules [17]. All these methods 
highly depend on training data. This causes an issue in 
terms of exploration ability, since the accessible chemical 
space is implicitly biased by the data.

Authors have therefore suggested to use reinforcement 
learning to push those boundaries and orient the search 
towards desired properties. GAN can be associated with 
reinforcement learning to optimise properties, while 
using their discriminator to evaluate the likeliness of the 
solutions [6, 18]. This setting provides credible molecules 
in the neighbourhood of the training dataset. Recur-
rent neural networks can also be tuned by REINFORCE 
[19] or Monte-Carlo Tree Search [20, 21] algorithms 
to optimise properties. Kwon et  al. proposed recently a 
reinforced VAE for the generation of molecular graphs 
[22]. Some authors also take advantage of the sequen-
tial nature of deep reinforcement learning to filter inva-
lid solutions at each step and thus guarantee the validity 
of the generated molecules [23–25]. These methods 
have been able to achieve higher performances by using 
increasingly complex architectures, which has led to a 
decrease in their interpretability. Furthermore, only the 
work of Zhou et  al. is independent of a starting dataset 
for training [24].

There is renewed interest with recent evolutionary 
methods leading to competitive results [26–28]. This 
interest is motivated by their simplicity as well as their 
higher level of interpretability. In evolutionary algo-
rithms, the chemical subspace to be explored can be 
defined through the choice of the domains and operators. 
These rules can be set by different approaches, such as a 
grammar [26, 28] or a statistical definition of mutations 
[27]. Recent evolutionary algorithms tend to use muta-
tions closer to the atomic level, as it allows a smoother 
exploration of the chemical space. The implementation 
of such methods was made possible by the emergence of 
tools such as RDKit, simplifying the programming and 
allowing for easy sanity testing of the molecules [29].

The objective of our work is to design a molecular gen-
erator capable of exploring known as well as unfamiliar 
areas of the chemical space. Between drug-like genera-
tion and organic materials, the chemical space of inter-
est is different [30]. The molecular materials space is less 
known and has probably been only intensively searched 
around the few known successes. Thus, our method must 
be flexible to adapt to very different problems. Further-
more, we have previously found that quantum mechan-
ics datasets for small organic molecules (QM9 and PC9) 
present generalizability issues [31]. There is currently no 
reliable and diverse training dataset for organic materi-
als. Therefore, our method has to be able to work with 
or without the influence of prior data and knowledge. 
Moreover, the exploration should be as interpretable as 
possible to allow for structure property studies and for 
chemical interpretation of the building process. Evolu-
tionary algorithms are fitted to tackle this problem, as 
they are independent of starting data and as the defini-
tion of their search space is explicit.

In this paper, we present EvoMol, a new generic and 
simple molecular generation method using an evolution-
ary algorithm to sequentially build molecular graphs. To 
be able to search a large part of the chemical space, we 
define an original set of 7 local and chemically meaning-
ful mutations.

We calibrate our methodology using several properties 
of the literature that are classic and fast to compute. In 
this way we can also compare ourselves with state of the 
art methods. Targets are the QED [32], penalised logP 
[33], SAscore [34] and CLscore [35]. They are functions 
that encompass physicochemical properties and struc-
tural features to roughly estimate the drug-likeness and 
synthetic accessibility. We show that our method is able 
to optimise these properties to high scores. EvoMol even 
outperforms state-of-the-art methods on penalised logP 
optimisation. As a more complete benchmark, we use the 
set of goal-directed functions defined in GuacaMol [36], 
on which EvoMol provides very competitive results.

To demonstrate the flexibility of EvoMol, we tackle a 
very different objective issued from the organic molecu-
lar materials domain. Usually in this domain, the aim is 
to find a molecule with given electronic properties. It can 
be for example a desired HOMO or LUMO level or an 
UV-visible absorption / emission range. Such properties 
require quantum chemistry calculations to be precisely 
assessed. The objective function cost is therefore huge 
and increases rapidly with the molecular size.

We show that our method achieves excellent perfor-
mances on the optimisation of these electronic proper-
ties. We demonstrate that starting from methane, which 
has one of the lowest HOMO and highest LUMO in 
energies, our algorithm can generate sets of optimised 
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molecules i.e. having high HOMO or low LUMO ener-
gies. We can also set constraints on a synthesizability 
score and structural features. Finally, we propose a chem-
ically relevant visualisation tree to follow the exploration 
process.

Methods
Graph representation
Beyond the question of the method, the representation 
of the solutions plays a crucial role for molecular proper-
ties optimisation. Ideally, the representation should allow 
for the definition of a rich, interpretable and valid neigh-
bourhood while requiring small computational cost. In 
practice, such molecular representation does not exist, 
and a trade-off must be found.

Early methods mainly represent the molecules as 
SMILES [37], a linear text representation allowing easy 
processing with sequential methods using recurrent neu-
ral networks and reinforcement learning [19, 20]. Solu-
tions can also be directly derived from the grammar of 
SMILES [26]. However, methods building SMILES char-
acter by character cannot filter invalid solutions in inter-
mediate steps. The reason is that they need to explore 
the space of invalid solutions to perform ring closure and 
branching (bonding an atom with more than two other 

atoms). As a result, these methods do not guarantee the 
validity of their solutions. Another text representation 
named SELFIES was recently proposed as an alternative 
offering a validity guarantee, at the cost of an increased 
complexity [38]. It was successfully used for molecular 
generation [28].

The other common representation is the molecu-
lar graph. It can be extracted from the latent space of 
deep learning methods [12, 13, 22]. It can also be built 
sequentially, using reinforcement learning [15, 23–25] or 
using evolutionary algorithms [27]. Working sequentially 
allows for a strict control on the validity of the solutions. 
By filtering invalid actions at every step, the validity of the 
molecules can be guaranteed for each intermediate and 
final step. Furthermore, the sequential approach makes 
it possible to define a chemically meaningful neighbour-
hood of molecules which enhances the interpretability of 
the exploration. That is why we define our method using 
a molecular graph representation. It is worth noting here 
that our graphs consider hydrogens implicitly. It means 
that atoms are bonded with hydrogens until the defined 
valency is reached.

Algorithm 1 EvoMol algorithm
Input
S: a molecular search space Mutations, set of atoms, max number of heavy atoms, filters
f : objective function
Output
a population of N individuals
parameters
N: population size
BatchSize: number of replaced individuals at each step
MaxTries: maximum number of tries to find an improver of an individual
begin

P = InitPopulation() initialises the population with 1 up to N individuals
while the stop condition is not reached do

Sort the population P according to the objective function f
BatchToReplace = the BatchSize worst individuals of P
Current = the best individual in P
for Individual in BatchToReplace do

FI = f(Individual)
repeat

Improver = SearchNeighbour(Current, FI, MaxTries) examine up to MaxTries neighbours of Current to find a
solution with a score greater or equal to FI

if an improver is found then replace Individual by Improver in P
end if
Current = the next best individual in P

until an improver is found
end for

end while
end

Algorithm
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The behaviour of EvoMol is described in Algorithm 1. At 
first, the chemical subspace to explore is defined through 
the choice of the mutations on the molecular graph, the 
set of atoms, the molecular size limit and the filter rules. 
Then, the population is initialised with one or more mol-
ecules up to the maximum population size. The choice 
of the initial population is an often underestimated but 
crucial element of the knowledge available to the model. 
It can have a huge impact on the final performance of the 
model. The knowledge introduced in the form of an ini-
tial population can compensate ill-defined objective func-
tions for very specific and complex tasks (as we will see in 
"Case 2: GuacaMol" section).

At this point, the main task of molecular generation 
starts. The population is sorted according to the objective 
function in order to select a batch of the molecules with 
the worst scores and to identify the best molecules that 
will be mutated. Several individuals are mutated at each 
step in order to maintain some diversity. Furthermore, 
duplicate molecules cannot be inserted in the population, 
so that the uniqueness of solutions is guaranteed. The 
equality test is performed by comparing canonical aro-
matic SMILES with RDKit [29].

To keep the method as simple as possible, we choose 
to mutate the best-scoring individuals and to replace 
the worst-scoring. We also adopt a first improver policy, 
meaning that we impose the mutated individuals to have 
a better score than the individuals they replace, although 
we also insert individuals with same score to allow for 
plateau exploration. We only search for an improver 
a maximum fixed number of times. If no improver is 
found, we start again the search on the next individual 
to be mutated, until the expected number of individuals 
are replaced during the step, or no individual is left to be 
mutated.

We define the mutation operator as a successive use of 
randomly selected actions on the molecular graph (see 
"Actions on molecular graphs" section) in order to accel-
erate the exploration and to give the method good abil-
ity to escape from local extrema. The random selection 
is made by drawing the action type first, then by draw-
ing the actual action, both with uniform laws to avoid 
assumptions on the chemical space. The number of 
successive actions is randomly drawn between 1 and a 
parameter defining the maximum value. As the optimisa-
tion is only guided by the objective function, our method 
is easily generalisable to multiple molecular optimisation 
problems.

EvoMol is able to start the optimisation with an initial 
population containing less individuals than the maxi-
mum allowed size. In this case, mutated individuals are 
simply added during first steps until the expected popu-
lation size is reached. The number of added individuals 

during each step of this process is bounded by the num-
ber of available individuals to be mutated. We use this 
process to perform the optimisation of molecular proper-
ties starting solely from the methane molecule, so that it 
is not biased by prior knowledge in the form of an initial 
population. Virshup et al. had already shown before, that 
starting from benzene and cyclohexane does not hinder 
the exploration of the chemical space [39].

Actions on molecular graphs
Among the actions on molecular graphs that we define 
and present in Fig. 1, three actions have a primary effect 
on the molecules. Append atom adds an atom with a sin-
gle bond to an existing atom of the graph. Remove atom 
removes an atom from the graph. Change bond changes 
the type of a bond. The possible bond types are none (no 
bond), single, double and triple. With these three actions, 
it is possible to reach a large portion of the molecu-
lar space. However, it require multiple steps to per-
form changes which could be considered as chemically 
rudimentary.

We therefore define a set of secondary actions, using 
sequences of primary actions to create small shortcuts in 
the chemical space in order to accelerate the exploration. 
It should be noted that these actions do not extend the 
accessible chemical space. Substitute atom type changes 
the type of an atom of the graph. Insert carbon corre-
sponds to the insertion of a carbon atom between two 
existing atoms sharing a bond. The initial bond between 
the two atoms is removed and the carbon atom is linked 
to them with two single bonds. Only carbon can be 
inserted, as it is the backbone of organic chemistry and in 
order to limit the action space size. Cut atom removes an 
atom sharing exactly two bonds with two atoms not shar-
ing a bond with each other. The two remaining atoms are 
then linked with a single bond. Finally, Move group relo-
cates a functional group to a different atom of the molec-
ular graph, while conserving the type of the removed 
bond. Functional groups are subgraphs only linked to the 
rest of the molecule by a single edge (a chemical bond). 
Fig. 1 illustrates examples of these actions on the 2-For-
mylpyridine molecule. Note that our actions are both 
constructive and destructive so that the research can be 
lead from any starting point.

The successive application of our defined actions can 
be followed in an exploration tree. We will see that this 
approach allows relevant and interpretable figures. So, we 
ruled out recombination operations between solutions, 
which would result in less readable visualisations. We 
do not design any specific action to handle aromaticity, 
which is considered implicitly through the Kekulé forms 
that can be created. To guarantee the validity of the gen-
erated molecules, we define two a priori filters discarding 
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actions leading to invalid molecular graphs, without a 
need to apply the actions to assess the validity. The first 
filter prevents the dislocation of the molecular graph by 
prohibiting the use of actions leading to the formation 
of additional connected components. The second filter 
prevents the use of actions leading to incorrect valences. 
Since hydrogens are considered implicitly, only hyperva-
lence leads to inconsistency. However, the implicitness of 

hydrogens complexifies the processing of charged atoms 
with our method. We do not define any action leading to 
their creation nor neutralisation, but we accept ions and 
zwitterions as input graphs by filtering the actions having 
an effect on the bonds of charged atoms, except for atom 
removal. Therefore, ionic subgraphs can be conserved 
or removed while actions are modifying the molecular 
graph.

Fig. 1 Application of the primary (append atom, change bond, remove atom) and secondary actions on the molecular graph of the 
2-Formylpyridine, using C, N, O or F atoms
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For some applications, it can be desired to mutate a 
molecule while freezing a set of its atoms. Our method 
can be easily adapted to this problem by defining a third 
filter with the following effect. Substitute atom type and 
cut atom can only be applied on a mutable atom. Change 
bond, insert carbon and move group can only be applied 
on a couple of atoms containing at least one mutable 
atom. This approach is illustrated by an example where 
we consider an optimisation of HOMO and LUMO 
energy levels for furane derivatives (see "Case 3: HOMO/
LUMO optimisation" section).

Experiments
As stated in the introduction, we assess our method using 
several properties commonly used as objective functions. 
QED is a metric evaluating the drug-likeness based on the 
similarity of the distributions of a set of properties with 
known drugs [32]. SAscore is defined as an estimation of 
synthetic accessibility based on the similarity with struc-
tural features observed in a subset of the PubChem [40] 
and penalising uncommon rings and numerous stereo 
centres [34]. It is usually ranged between 1 and 10. For 
comparison with previous methods, we optimise a nor-
malised version noted  SAscore‡ ranging between 0 and 1. 
For both versions, 1 is the best possible score. Penalised 
logP (plogP) corresponds to the octanol-water partition 
coefficient penalised by the SAscore and the presence of a 
large ring [33]. In the original article, these properties are 
normalised on a subset of the ZINC dataset [41], but it 
has also been optimised without normalisation [24]. Like-
wise, we note  plogP‡ the normalised version. We have 
adapted the implementations of You et al. and Zhou et al. 
respectively [23, 24]. We also use our method to optimise 
the recently proposed CLscore [35]. It is another drug-
likeness evaluation metric, based purely on the structural 
similarity with a subset of biologically active molecules 
in the ChEMBL [42]. To define the CLscore, weights are 
assigned on molecular subgraphs, named shingles, pro-
portionally to their representation in the chosen subset 
of ChEMBL. The score of a molecule is computed by 
performing the mean of the weights of its shingles. The 
shingles take into account the circular substructures but 
contrary to the SAscore, the CLscore does not penalise 
explicitly uncommon rings and numerous stereo cen-
tres. CLscore is computed adapting the Bühlmann et al. 
implementation. All properties use RDKit for their com-
putation [29].

The previous metrics, especially plogP and QED, have 
been widely used to compare the molecular generation 
methods. However, they are optimised using different 
search space definitions in terms of available atom types 
and maximum sizes of molecules. This can have a huge 
effect on the results, particularly for plogP. In this article, 

we only compare EvoMol with methods using a similar 
space search definition.

Because the optimisation of the previous properties 
can be trivial and in order to homogenise the evaluation 
of the methods, a benchmark named GuacaMol has been 
recently proposed [36]. We evaluate our method with its 
goal-directed benchmark, composed of 20 various maxi-
misation tasks (albeit mainly drug-generation oriented). 
These tasks have several generation purposes, including 
the rediscovery of known drugs, molecules similar to 
a specific target or all isomers of given formulas. Some 
tasks combine similarity and property objectives and 
some add structural constraints. All similarities are com-
puted using molecular fingerprints.

As a proof of concept in the domain of organic molec-
ular materials, we also use our method to optimise two 
electronic properties, the HOMO and LUMO energy 
levels. Contrary to the previously presented bench-
marks that depends on fast evaluations of fitness func-
tions, HOMO and LUMO energies depend on quantum 
mechanics calculations with a heavy computational cost. 
Here, geometric optimisations are carried out with the 
Gaussian09 program and default parameters [43]. The 
B3LYP hybrid functional and the small basis set 3-21G 
are chosen to reduce the computational cost [44]. We 
only perform DFT optimisation on molecules conserv-
ing the same SMILES after molecular mechanics 3-D 
coordinates generation using Open Babel [45]. Likewise, 
we consider a DFT result as valid only if the SMILES 
remained identical after the geometric optimisation.

For all these objective functions, different initial condi-
tions and parameters define our algorithm. We test the 
impact of the population size, its initial state, the atomic 
types set and the actions set. For QED, plogP, SAscore 
and CLscore populations sizes ranging from 1 to 457k are 
tested. For GuacaMol and electronic properties, we use 
either a relevant starting population (a ChEMBL subset 
or a furane core) or a simple methane molecule to assess 
the initial knowledge impact and to perform a demon-
stration in challenging conditions.

Results and discussion
Case 1: QED, pLogP, SAscore, CLscore
The first case consists in optimising the set of fast met-
rics containing QED, both plogP versions,  SAscore‡ and 
CLscore. To provide a baseline, we run our algorithm 
to maximise each of these properties with a population 
size of 1, starting with the methane. This corresponds 
to a simple hill-climber algorithm with a first improver 
policy, as a unique solution is mutated until an improver 
is found. It means that a direct pathway must be found in 
the molecular space between the methane starting point 
and a molecule solution.
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We conduct our space exploration on molecules con-
taining C, N, O, F, P, S, Cl or Br atoms. For a fair com-
parison with other methods, we limit the sizes of the 
molecules to 38 heavy atoms. As the plogP is sensitive to 
the set of atoms, we perform a second run for its opti-
misation using only C, N, O or F atoms. The mutation is 
defined as the application of up to 2 successive actions, 
and the algorithm is ran for 1500 steps, with up to 50 
tries to find an improver at each mutation. All experi-
ments are ran 10 times and results are averaged.

The results of the single individual optimisation (see 
Table 1) show that this setting outperforms state-of-the-
art methods with comparable conditions on the plogP 
optimisation, even using only C, N, O and F atoms. For 
QED, very good values are obtained. We also evaluate 
our method with a better exploration ability, by evolv-
ing a population of 1000 individuals on the same bench-
mark, using the same parameters except for the number 
of replaced individuals per step which is raised to 10. The 
population is initialised with a single methane molecule.

The mean scores for SAscore and QED of all 1000 gen-
erated molecules are reported in Table  2. All scores are 
optimised to a high mean value, generally better than the 
literature. For all these objectives, our method is able to 
nicely generate optimised sets and by construction, all 
the solutions are different. It is clearly an improvement 
upon published methods. Besides, optimising a popula-
tion of 1000 individuals generally improves the top scores 
(see Table 1).

Beyond our ability to optimise an objective, it can be 
interesting to look at the efficiency in time or in the num-
ber of calls to the evaluation function of our method. 
Evolutionary algorithms have already demonstrated an 
ability to obtain good plogP values in 30 seconds when 
deep generative methods need several hours [27]. Evo-
Mol is able to find in 30 seconds a value of 10.34 ( ±0.43 ) 
in plogP on average over 10 runs with a population of 
a 1000. A score of 11.19 ( ±0.00 ) is obtained on a single 
molecule with a limit to 1000 for the number of calls to 
the evaluation function starting from the methane. In 
average only 400 evaluations are needed for this problem.

The evolutionary approach on molecular graphs is 
an efficient method to find needles in a haystack [46]. 
Thanks to our sequential and atom centred process, we 
can also visualise the progression of the exploration, 
allowing a better interpretation of the results (see Fig. 2). 
It shows the ability of our method to intensify over prom-
ising areas of the chemical space and to ignore others. 
In particular, it can be observed that the exploration of 
some areas close to the starting point was quickly aban-
doned, whereas the space of high-scoring solutions was 
intensively searched.

The same observation can be made from Fig. 3, which 
represents the top scoring molecules found for each 
property. It shows that the best solutions are quite 
similar to each other. Regarding specific properties, it 
appears that the QED leads to quite unrealistic mole-
cules in terms of drug-likeness, containing many differ-
ent hetero-atoms. QED is a multi-objective function that 
favours compounds with little bits of drug-likeness [32]. 
It rewards some hydrogen bonds donors and acceptors, 
some cycles and a medium logP. Therefore, we found chi-
meras that present a little bit of “everything”.

More interestingly, we can analyse more closely the 
solution for the plogP problem since it is a straightfor-
ward function. A maximised logP represents a soluble 
compound in octanol. The highest atomic contribution 
proposed by Wildman et al. [47] and used by RDKit, are 
iodine (0.886), phosphorous (0.861), bromine (0.846), 
chlorine (0.690) and aliphatic sulfur (0.648). Furthermore, 
taking into account the number of heavy atoms favours 
long alkyl chains to profit from the positive effects of the 
hydrogens. Therefore, the best scaffold will be based on 
primary and secondary aliphatic carbons (0.144 each). 
The penalised version includes the SAscore but the good 
score of the starting alkyl chain compensates the penalty 
received with the sulfur, phosphorous and bromine part. 

Table 1 Best scores for classical objectives

The values for state-of-the-art methods are reported from original articles. The 
results for EvoMol are the average of the maximum over 10 executions. ‡ The 
Symbol stands for normalised version of plogP

Method QED plogP plogP‡

ChemGE [26] 5.88

GB-GA [27] 7.40

GCPN [23] 0.948 7.98

MolDQN [24] 0.948 11.84

Zhang et al. [25] 0.954 12.96

EvoMol pop. 1 0.922 14.49 11.19

pop. 1000 0.948 18.06 13.79

EvoMol {CNOF} pop. 1 0.902 13.88 11.19

pop. 1000 0.948 13.88 11.19

Table 2 Mean scores and  proportion of  unique solutions 
for QED and the normalised version of the SAscore

The values for state-of-the-art methods are reported from [18]. Results for 
EvoMol are the average of the mean score over 10 executions

Method QED SAscore

Mean Unique % Mean Unique %

ORGAN [6] 0.52 69.4 0.83 45.9

MOLGAN [18] 0.62 2.2 0.95 2.1

EvoMol 0.948 100.0 0.95 100.0
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That is why we found long alkyl chains with H, C, N, O 
and F and some kind of complex surfactants when Br, Cl, 
S and P are also considered.

We have also tested our ability to generate large sets 
of molecules with greater chemical feasibility. For this 
we have chosen the recently proposed CLscore [35]. The 
CLscore is defined as a structural similarity measure with 
a subset of 457,139 ChEMBL compounds. Therefore, we 
impose a population of this size (457,139) with a CLs-
core maximisation objective, starting solely from meth-
ane. The number of replaced individuals per step is set to 
4572, i.e. 1% of the population size. By this way we obtain 
a top score of 6.641 and a very high mean of 5.260. As a 
reference, Bühlmann et al. consider a CLscore value ≥ 3.3 
as relevant, since the ChEMBL subset on which the score 
is defined has its peak at 3.9 [35]. Note that the CLscore 
distribution on all 1.9 millions small molecules of the 
ChEMBL 25 present a peak around 4.5 when our 457k 
solutions correspond to the upper part of this distribu-
tion (see Fig. 4).

It appears that EvoMol was able to generate a large 
set of compounds that are more ChEMBL-like than 
ChEMBL. Jokes aside, our method has clearly intensified 

the right part of the distribution and could provide a 
clever way to generate millions ChEMBL-like solutions. 
It might also be more relevant to optimise the CLscore 
to a value between 3 to 5, as it corresponds more or less 
to the peak in its distribution. Please note, it can be easily 
achieved with an alkane with few exotic chemical envi-
ronments. All generated SMILES are available in Addi-
tional file 1.

With respect to the synthesizability functions, EvoMol 
achieves its goal. The optimised SAscore and CLscore 
compounds, represented in Fig.  3, correspond to either 
cycloalkanes or small alkanes. Indeed, the alkyl chemi-
cal environment is very common in both PubChem and 
ChEMBL. Since the SAscore and CLscore reward such 
fingerprints or shingles in the molecule, our method 
obtains very high scores with such solutions. Both met-
rics can be used to assess a synthetic accessibility. In a 
way, this experiment is a success as it converges to almost 
actual raw materials.

With all these simple metrics, we demonstrate the 
efficiency of the optimisation performance of EvoMol. 
However, in chemistry most of the proposed objective 
functions like the logP are more relevant when optimised 

Fig. 2 Exploration tree of a QED optimisation run after 700 steps. The starting point (methane) is represented as a large dot indicated with the 
arrow. Edges represent mutations that lead to an improvement in the population. Solutions are coloured according to their score
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to a given range based on statistics [22, 32, 36]. But in this 
case, the problem becomes even more under-constrained 
and corresponds to tons of solutions.

The overall interest of these solutions can be con-
sidered as weak, as they are either well known or unre-
alistic. Though it could be tempting to blame a method 
for such results, we believe the main issue rather lies in 
the evaluation metrics. Actually, more satisfying results 
could probably be obtained by tweaking the exploration 
process so that it leads to a desired subset of the chemi-
cal space. However, the fact that high scoring solutions 
are disappointing raises questions about the metric itself, 
especially when used as an objective function to be max-
imised. The GuacaMol benchmark, tested in the fol-
lowing part, defines most of its objective functions as a 
combination of properties optimised to specific values.

Fig. 3 The three best scoring molecules found while optimising a set of simple properties using a population size of 1000. Shown examples are 
drawn randomly if the best score is held by several molecules. They are sampled from the final population of a randomly selected execution among 
the 10 performed runs for each property.  plogP‡ examples are not shown as they are very similar to the plogP examples

Fig. 4 Distribution of the CLscore in ChEMBL 25 (blue) and in the 
dataset generated with EvoMol containing 457,139 molecules 
(orange)
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Case 2: GuacaMol
The second case consists in optimising the goal-directed 
benchmarks proposed by GuacaMol [36]. Its 20 optimi-
sation tasks consist in, for 6 of them to find identical or 
similar molecules to known drugs, for 2 of them to gener-
ate isomers, and for the other 12 to find solutions satis-
fying multiple objectives. The tasks are defined in order 
to provide a various and broad benchmark. Even if this 
benchmark is more a drug-design approach, it is for now 
the best comparison tool for molecular generation.

Graph GA, originally designed by Jensen [27] is the 
genetic algorithm evaluated in the GuacaMol article. 
We apply the same methodology, using as initial popu-
lation for each task the 100 best scoring solutions from 
the filtered dataset provided by GuacaMol. This dataset 
excludes the molecules that are too close to the targets. 
To evaluate the influence of the domain specific knowl-
edge introduced with the initial population, we also 
perform a run with methane as starting point. Finally, 
we perform another run using only primary molecular 
graph actions (append atom, remove atom and change 
bond, see Fig. 1) to study the relevance of the secondary 

actions. For all GuacaMol experiments, we raise the max-
imum size of solutions in number of heavy atoms to 50. 
The other parameters are the same as in case 1, except 
for the experiments starting from methane and using 
only primary actions, which are allowed up to 3 actions at 
each mutation to give them better ability to escape from 
local extrema. We also raise their steps limit to 3000, 
since they need more processing to lead to the same 
state. As before, we run all experiments 10 times, to study 
their variability.

The results can be found in Table 3. In addition to the 
GuacaMol baseline models, Graph GA [27] and SMILES 
LSTM [48], we compare ourselves to two recent methods, 
namely CReM [5] and MSO [9]. The three first columns 
for EvoMol correspond to the mean scores obtained on 
10 runs for each initial conditions and parameters. The 
best run column contains the values of the run with best 
total score across all 30 runs. All generated  SMILES 
across all runs are availalbe in Additional file 2. The best 
scores column corresponds to the best score for each 
single benchmark independently of the run. First, it 
can be observed that the execution of EvoMol starting 

Table 3 Results on the GuacaMol benchmark

SMILES LSTM and Graph GA values are reported form the GuacaMol article. Values for CReM and MSO methods are reported from their respective articles. Values in 
the three first EvoMol columns correspond to the mean scores on 10 executions for different initial conditions and parameters. The best run column reports the values 
of the best execution. The best scores corresponds for each task to the best encountered value during all executions independently of the run and thus, the totals in 
this column are virtual

Benchmark SOTA methods EvoMol

SMILES 
LSTM

Graph GA CReM [5] MSO
[9]

Primary 
actions

All actions From 
Methane

Best run Best 
scores

Celecoxib rediscovery 1.000 1.000 1.000 1.000 0.714 0.978 0.923 1.000 1.000

Troglitazone rediscovery 1.000 1.000 1.000 1.000 0.936 1.000 0.676 1.000 1.000

Thiotixene rediscovery 1.000 1.000 1.000 1.000 0.852 0.876 0.695 1.000 1.000

Aripiprazole similarity 1.000 1.000 1.000 1.000 1.000 1.000 0.964 1.000 1.000

Albuterol similarity 1.000 1.000 1.000 1.000 1.000 1.000 0.878 1.000 1.000

Mestranol similarity 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C11H24 0.993 0.971 0.966 0.997 1.000 1.000 1.000 1.000 1.000

C9H10N2O2PF2Cl 0.879 0.982 0.940 1.000 1.000 0.998 1.000 1.000 1.000

Median molecules 1 0.438 0.406 0.371 0.437 0.446 0.455 0.455 0.455 0.455

Median molecules 2 0.422 0.432 0.434 0.395 0.411 0.417 0.286 0.417 0.417

Osimertinib MPO 0.907 0.953 0.995 0.966 0.959 0.955 0.911 0.969 0.978

Fexonadine MPO 0.959 0.998 1.000 1.000 0.966 1.000 0.981 1.000 1.000

Ranolazine MPO 0.855 0.920 0.969 0.931 0.943 0.966 0.967 0.957 1.000

Perindopril MPO 0.808 0.792 0.815 0.834 0.809 0.845 0.789 0.827 0.884

Amlodipine MPO 0.894 0.894 0.902 0.900 0.874 0.867 0.796 0.869 0.906

Sitagliptin MPO 0.545 0.891 0.763 0.868 0.943 0.915 0.946 0.926 0.966

Zaleplon MPO 0.669 0.754 0.770 0.764 0.791 0.791 0.771 0.793 0.810

Valsartan SMARTS 0.978 0.990 0.994 0.994 0.999 0.998 0.000 0.998 1.000

deco hop 0.996 1.000 1.000 1.000 1.000 1.000 0.607 1.000 1.000

scaffold hop 0.998 1.000 1.000 1.000 0.989 1.000 0.655 1.000 1.000

total 17.340 17.983 17.919 18.086 17.632 18.060 15.298 18.210 18.415

total MPO only 5.637 6.202 6.214 6.263 6.286 6.339 6.160 6.341 6.544
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from methane has an important liability on some tasks, 
although it performs very well on others. Especially, it 
obtains a null score on the Valsartan SMARTS bench-
mark. This can be easily explained, as this problem is 
defined as a geometric mean containing a binary con-
straint on the presence of a complex structure. Therefore, 
our model with no prior knowledge is not guided to find 
the structure and remains at the lowest score. A single 
molecule with this structure as a starting dataset would 
be sufficient to allow our method to go beyond this mini-
mum. This benchmark illustrates the importance of a 
well-defined evaluation function, which conditions per-
formance as much as actions.

The 6 rediscovery and similarity tasks are designed to 
recreate the developed structure of a molecule, even a 
complex one. We can observe that these objective func-
tions based on ECFC4 or FCFC4 can lead the methane 
up to or in the neighbourhood of such compounds, albeit 
not all the time and with difficulty. It is an interesting task 
if we want to search around a specific three dimension 
architecture. In our case, it is a very complicated objec-
tive since we restrict ourselves to atom-centred opera-
tions, when these evaluation functions are based on 
chemical functions fingerprints. They are therefore not 
continuous or smooth enough to methodically guide our 
method. We need too many actions and very specific 
actions to get out of local optimums.

Compared to the methods of literature, EvoMol has 
better results on isomers benchmarks ( C11H24 and 
C9H10N2O2PF2Cl ), for which a set of different solutions 
satisfying a molecular formula must be found. This shows 
again its ability to intensify thoroughly over areas of the 
chemical space, thanks to the local mutations. For the 
median objectives that are composed of two competing 
goals, we obtain good results. This can be useful in the 
optimisation of materials, which is often based on a bal-
ance between antagonistic properties.

In the end, the most interesting objectives are the 
multi-property objectives (MPO). On the one hand, 
no method seems to find the best solutions on these 
benchmarks, resulting in high variability between the 
methods (see Table  3). On the other hand, they cor-
respond to chemically more realistic problems, as they 
are defined as the optimisation of specific properties in 
the neighbourhood of target molecules. Actually, they 
include some similarity. Less constraining than the task 
of rediscovery, it can represent in the case of molecular 
organic materials a constraint on a piece of molecule or 
chemical functions. The MPO include also criteria on 
physico-chemical properties or composition. Generally 
there is the logP which is based on atomic contributions 
depending on the chemical environment. We have seen 
that this objective is easily achieved. The other property 

often used is the Topological Polar Surface Area (TPSA) 
which focuses on the chemical environments of nitrogen 
and oxygen (RDKit version). There may be some redun-
dancy with the ECFCs4 associated with these atoms in 
the goal of similarity. Sometimes specific targets have 
been added such as cycle number, chemical formula, flu-
orine number.

It can be observed in Table 3 that EvoMol outperforms 
all methods on these MPO benchmarks. It obtains the 
best total MPO score of the literature starting from the 
ChEMBL population and a score in par with state-of-the-
art methods starting from methane. Furthermore, the 
column best scores shows that EvoMol can find top scores 
on 6 of these 7 benchmarks. Evolutionary algorithms are 
known to be very effective methods to solve combinato-
rial optimisation problems with contradictory objectives 
such as the MPO benchmarks. EvoMol is therefore very 
fitted for these tasks.

The Sitagliptin MPO task consists in finding an isomer 
of Sitagliptin with the same logP and TPSA values but as 
different as possible in terms of ECFC4 fingerprints. Evo-
Mol succeeds in finding a molecule with by far the best 
score (see Table 3). The Sitagliptin and our best score are 
represented in Fig. 5. Our method was able to find radi-
cally different chemical environments for the N and O, 
even adding a sulfur atom, while maximising the logP 
and TPSA scores. Interestingly our best solutions come 
from experiments using the methane molecule as a start-
ing point. Not having prior knowledge, allows here to 
explore more efficiently the remote chemical space of the 
Sitagliptin.

The results for the task Perindopril MPO, which con-
sists in finding a molecule similar to the Perindopril with 
two aromatic rings, deserves also a thorough analysis. Its 
structure and our best solution are drawn in Fig. 6. The 
alkyl part is correctly reproduced whereas the two satu-
rated rings include one extra carbon each. The addition 
of a peculiar bicycle of O, N and P considered by RDkit 
as 2 aromatic rings (NNP and NPO) allows for the best 

Fig. 5 Study of Sitagliptin MPO benchmark. a Sitagliptin molecule. 
b Best score found using EvoMol. Scores are reported under the 
molecules : Sitagliptin MPO score (similarity score, logP score, TPSA 
score, isomer score)
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score in this sub task. Surprisingly if we consider the real 
Perindopril molecule with the small aromatic part or 
with two aromatic rings instead of the saturated ones, the 
similarity score drops (see compounds C and D of Fig. 6). 
So, it can be observed that the most similar molecule to 
the Perindopril according to the fingerprint similarity 
score is not the solution that includes the Perindopril. As 
this score is an average over all atom environments, the 
addition of any new environment absent from the Per-
indopril has a huge impact. Therefore, EvoMol finds the 
smallest possible aromatic ring in order not to degrade 
the similarity score too much and increase the number of 
alkyl carbons to compensate.

It appears that the fine definition of a property profile 
(MPO) is difficult. Furthermore, the choice of finger-
prints and Tanimoto distances does not correspond to 
a chemical neighbourhood as defined by the actions on 
the molecular graph. Even more problematic, it does not 
seem possible to us to define chemically interpretable 
actions to make our neighbourhood correspond to the 
distances between fingerprints. Therefore, it is not a good 
objective function to guide our method towards improv-
ing solutions.

With atom centred actions, EvoMol is a quite uncon-
strained molecule generator. The chemical soundness 
of the solutions has to be verified. In GuacaMol, a com-
pound quality measurement is provided. 77% of the 
GuacaMol initial dataset pass this test. In this test evo-
lutionary algorithms do not perform as well as RNN 
methods. For our method (all actions model), 34% pass 
the quality check, quite similarly to comparable methods 
[36]. However, this score covers a wide variety of situa-
tions depending on the benchmark. For instance, most 
isomers of C11H24 pass the quality filter (more than 98%). 
In the case of Perindopril, where the aim is to obtain a 
similar solution, 84% of the proposed solutions are con-
sidered as valid. On the contrary, when the aim is to find a 
molecule chemically opposed to Sitagliptin, EvoMol only 
proposes molecules that do not pass (100%) this filter 

based on the presence of fragments prohibited in medici-
nal chemistry. We performed a detailed quality study for 
all our models and all benchmarks, available in Addi-
tional file 3. It shows that using a dataset of molecules as 
initial population and the set of secondary actions gener-
ally improves the quality of generated solutions.

Since EvoMol is designed to be flexible, we can imple-
ment an obligation to pass this filter in the generation 
process thus ensuring 100% validity of the solutions 
across all the research path. With this very conservative 
constraint, the mean score obtained on ten executions is 
0.897. Among twenty, this task is the only one evaluating 
the ability of generators to propose molecules far from 
what is already known. EvoMol is able to handle both 
the multi-objective optimisation problem and validity 
constraints to deliver high performance. For the Osimer-
tinib objective, the ratio of solution passing the quality 
measurement test range from 0% to 70%. Applying the 
filtering during the generation process allow us to reach 
a mean score of 0.959 with 100% validity and therefore 
without impacting performance. We have applied this 
methodology for a full run on all GuacaMol benchmarks. 
This constraint, the obligation to pass this quality filter 
is, as expected, not enough to ensure a chemical feasibil-
ity. Top scores for the MPO with and without the quality 
filter are depicted in Additional file 4. The evaluation of 
the chemical feasibility is still far from perfect. Thus, the 
evaluation function of evolutionary models suffers from 
this lack. For drug design, the main solutions proposed 
to avoid this issue are fragment-based, reaction-based 
or deep generative models [49]. For case 3 we will look 
at how introducing bias, by means of the CLscore in the 
objective function, can improve the quality of the gener-
ated results.

Thanks to the different runs of our models, it is possible 
for once to appreciate the variability of these objectives 
as shown in the following Fig.  7 (the full Figure show-
ing the box plots for all the benchmarks is included in 
the Additional file 5). In this Fig. 7, for each objective, we 

Fig. 6 Study of Perindopril MPO benchmark. a Perindopril molecule. b Best score found using EvoMol. c, d Hypothetical solutions. Scores are 
reported under the molecules: Perindopril MPO score (similarity score, # aromatics rings score)
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can see the dispersion over 10 runs with all the actions, 
only the primary actions and all the actions but starting 
from methane. It can be seen that in the latter case, the 
model is clearly at a disadvantage. The dispersion is very 
large, but it is likely that with more steps some executions 
would have reached their objectives and others would 
have remained blocked. One can also note the generally 
positive effect of secondary actions that worked with half 
as many steps. Inspired by Henault et al. in their explora-
tion of the chemical space with a genetic algorithm, we 
can look more precisely at our efficiency in the redis-
covery tasks [46]. In Table 4 we note that the secondary 
actions have a huge impact on the number of calls to the 
evaluation function in order to find the target. For the 
Celecoxib they are even necessary. GraphGA, as a genetic 
algorithm, contains a pivotal crossover operator. It allows 
to perform big leaps in the chemical space, while con-
serving valuable fragments. EvoMol, with its set of seven 
actions and without crossover, seems to provide perfor-
mances of the same order of magnitude.

In the end, with our different executions, we can 
observe a variability between the different runs easily of 
the order of 0.05 for the most complex metrics. We can 
therefore estimate that a difference on the total score of 

the order of 0.2 is not significant. Thus it is likely that 
EvoMol, GraphGA, CREM and MSO are in fact compa-
rable in terms of pure optimisation performance on this 
set of benchmarks.

Case 3: HOMO/LUMO optimisation
The last case consists in optimising an electronic prop-
erty. The frontier molecular orbital levels are key points 
for any reactivity problems, electroactive molecules and 
electronic or photonic organic materials. So, we choose 
to focus on the HOMO and LUMO energies. The energy 
levels are obtained with a geometric optimisation calcula-
tion in DFT.

In a previous article we studied the QM9 and PC9 
datasets that together encompass more than 200k differ-
ent molecular calculations with up to 9 heavy atoms of C, 
N, O and F types [31]. Initially computed with different 
methods, we relaunched them using our BOINC collabo-
rative computing project, called QuChemPedIA@home, 
in order to have a homogeneous and clean dataset. Fig-
ure 8 presents the distributions of these MO energies in 
the union of QM9 and PC9.

One could hope for a fast evaluation of quantum 
mechanics properties thanks to machine learning pre-
dictions to limit the cost of computation. However, we 
have demonstrated that the currently available datasets 
of molecular quantum chemistry results, like QM9 and 
PC9, are not diverse enough to train a general predictor 
[31]. It is clear that solving this issue in the future would 
significantly accelerate the generation of molecules with 
such objectives. Meanwhile, DFT calculations are man-
datory for the exploration process in this problem.

The data for methane are highlighted in Fig. 8 to show 
that this molecule has one of the lowest HOMO energies 
and one of the highest LUMO energies. It is a very poor 
candidate choice when the specification is often an abil-
ity to give electrons (high energy HOMO) or an ability to 
yield electrons (low energy LUMO). We have therefore 

Table 4 Study of  the  impact of  the  secondary actions 
on  the  efficiency of  EvoMol on  the  Guacamol rediscovery 
benchmarks

The success rate is evaluated on 10 executions, considering a success when 
the target molecule is exactly found. The reported numbers of evaluations (in 
millions) is the mean of the successful executions

Rediscovery 
benchmark

Primary actions All actions

Success rate Eval. ( ×10
6) Success rate Eval. ( ×10

6)

Celecoxib 0.0 – 0.9 0.37

Troglitazone 0.7 2.32 1.0 0.50

Thiotixene 0.4 11.1 0.4 0.81

Fig. 7 Boxplot of selected GuacaMol benckmarks scores obtained on 
10 executions of each experiment with EvoMol. Experiments using 
all actions, using only primary actions and starting from methane are 
represented in blue, orange and green respectively

Fig. 8 Frontier Molecular Orbitals energies distribution in the union 
of QM9 and PC9 datasets. Values of methane are indicated with 
arrows
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tested the ability of EvoMol to optimise the HOMO 
energy (to the highest) and LUMO energy (to the low-
est) starting from only a methane molecule. To make the 
optimisation tractable, we set the population size to 20 
and the number of replaced individuals at each step to 2. 
The solutions can have up to 9 heavy atoms of the same 
kind as QM9 and PC9.

Figure  9 presents the best five solutions of the QM9 
and PC9 datasets (without radicals and zwitterions) and 
those obtained with EvoMol. For the LUMO energies, 
QM9 and PC9 lowest values correspond to highly nitrog-
enous cycles and carbonyl groups. It is worth pointing 
out here that the compounds 1 and 3 correspond prob-
ably to very strained structures due to cumulated double 
bonds in a 5-member ring, and that the tetranitrogen is 
also very unstable.

Our first attempt with EvoMol (line B of Fig.  9) has 
found that discarding all carbons makes it possible to 
reach low energy levels. Some kind of nitro compounds 
are proposed and fill all the population of 20 individu-
als. It cannot leave and improve from this chemical ter-
ritory with only one mutation. In view of the proposed 
solutions, we have calculated their corresponding CLs-
core values as an estimation of their likelihood. They are 
almost all null because this chemistry does not exist in 
ChEMBL. Therefore, in order not to get lost in too exotic 
territories, we have modified our objective function to 
include a CLscore based constraint. To get a smooth and 
continuous objective function [50], we use the product 
of two sigmoid functions, one for the electronic prop-
erty and a one for the CLscore (see Eq.  1). The CLs-
core sigmoid is centred around a value of 1.5. It blocks 
the appearance of compounds with values below 1 and 
penalises the solutions with a CLscore between 1 and 2. 
The sigmoid functions for HOMO and LUMO are set so 
that they are roughly centred in the middle of the distri-
butions (Fig. 8) and reach their maximum values for the 
best known solutions.

The solutions corresponding to this multi-objective 
function are drawn in line C of Fig.  9. We observe an 
intensification around the carbonyl group and the fluo-
rine (known to serve as acceptor functions). Even if the 
CLscore of the cyclopropanetrione is above 3, it does not 
mean that it is a stable compound. It was only detected 
during Mass Spectrometry experiments but seems to be a 
promising target for energy storage application. Thus this 

(1)

fCLscore(x) =
1

1+ e10(−x+1.5)

fLUMO(x) =
1

1+ ex

fHOMO(x) =
1

1+ e−x−7

simple LUMO energy test led to the rediscovery of a real 
target sought in molecular materials [51].

For the HOMO, the chemistry of the amine function 
was quickly found and intensified (lines E and F). The 
CLscore filter allows for greater diversity but has less 
impact on the solutions. Indeed in QM9 and PC9 (line 
D), the compounds with the highest HOMO energies are 
also amine derivatives (more often aromatic). Ultimately, 
we can notice that our method allows us to get close to 
the best energies in HOMO and LUMO starting from a 
worst case scenario.

To be more realistic, we end up with an experiment 
that adds a structural constraint. We impose a furane 
core which is an aromatic ring resembling the conju-
gated systems used in organic materials. The research 
space is therefore more limited with 4 more heavy atoms 
to generate. Both HOMO and LUMO are also optimised 
with the CLscore sigmoid. Thanks to our approach with 
mutations acting near the atom level, we can propose an 
interesting visualisation of the exploration process for 
this experiment. In Fig. 10, all improvers are represented 
as nodes in a tree whose edges are labelled with actions. 
We set in this case the population size to 10 to allow for a 
reasonably sized visualisation.

In the upper part of the figure, we can see that for the 
HOMO EvoMol tries alkyl, fluorine, alcohol and amine 
substitutions. We also notice that the operation of mov-
ing a substituent allows it to probe the interest of the dif-
ferent positions and their combinations. From there, an 
intensification takes place around the poly amine improv-
ers. In the lower part, for the LUMO objective, the amine 
and alcohol are also probed but rapidly discarded. The 
first effective branch is associated with fluorine substitu-
tion, which then becomes more complex. It is worth not-
ing the appearance of cyano and especially peroxo and 
oxygen fluoride functions which allow very good values 
for realistic solutions.

These exploration trees mimic the way of working 
of a human chemist who, around efficient fragments, 
walks through the chemical neighbourhood in elemen-
tary steps. By this Fig. 10, we can underline the superior 
interpretability of this atom-centred approach compared 
to fingerprints for example. Moreover, we show that our 
well-defined objective function is able to properly guide 
the exploration process on this challenging task.

Conclusions
In this article, we present EvoMol, an efficient evolu-
tionary algorithm for molecular generation. By design, it 
generates only valid molecular graphs and unique solu-
tions. EvoMol can be used with a maximum population 
size of one molecule. In optimisation, this corresponds to 
a very naive approach called the hill-climbing algorithm. 
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Fig. 9 Best five solutions for LUMO (up) and HOMO (down). For both properties, the first line corresponds to best values in QM9∪PC9 after 
removing zwitterions and radicals (a, d). The second line corresponds to the EvoMol experiment without any synthesizability constraint (b, e), and 
the last line corresponds to the joint optimisation with the CLscore constraint (c, f). The values of the properties (HOMO or LUMO [CLscore]) are 
reported under the molecules
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Fig. 10 Exploration trees for the minimisation of LUMO (top), and the maximisation of HOMO (bottom) energies starting from a fixed furane core. 
Energy values (in eV) and [CLscores] are reported under the solutions. The actions used for the transition between two molecules are reported on 
the edges with the following legend. Ad: append atom, Rm: remove atom, Ch: change bond, Sub: substitute atom type, In: insert carbon, Ct: cut atom 
and Mv: move group 
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This simple climber finds a direct pathway to very good 
solutions for classical objective functions (QED, penal-
ised logP). Therefore, it showcases the limitations of such 
objectives as benchmarks. EvoMol can also generate large 
datasets of high scoring solutions, by intensifying thor-
oughly on promising areas of the chemical space.

We show in this article that EvoMol is highly config-
urable and provides state of the art performances for 
both classical drug design (QED, penalised logP, SAs-
core, GuacaMol benchmarks) and molecular material 
problems. Contrary to many methods, EvoMol does 
not require prior knowledge extracted from a dataset to 
obtain high scoring solutions. It can therefore tackle very 
different problems and explore different chemical sub-
spaces depending on the objective. We demonstrate that 
in EvoMol, bias can be strictly controlled. Prior knowl-
edge can be introduced easily through the objective func-
tion, filters or the starting dataset.

The mutation operator is composed of 7 general atom 
centred actions that define an interpretable neighbour-
hood on the molecular graph. As the exploration process 
only depends on this operator, it becomes thoroughly 
traceable and allows for chemically meaningful visualisa-
tions. This interpretability will be useful for further fine-
tuning of the exploration process. The optimum found 
with EvoMol highlighted several limitations on the com-
monly used objective functions. For instance, we have 
found that using fingerprints can lead to counter-intui-
tive distances between molecules.

EvoMol shows good performances in optimisation but 
for a practical application this is not satisfactory, since the 
quality of the compounds is an essential criterion. Evalu-
ating the quality of a molecule is for the moment either 
very subjective or an imperfect measurement and it is an 
active research field. This is also the weakness of evolu-
tionary methods in general [52]. For drug design, the 
main solutions proposed are fragment-based, reaction-
based or deep generative models. For domains were data 
are scarce, we think that a flexible and unbiaised genera-
tor can be a good starting point in order to control the 
needed bias for quality control. Concerning this aspect, 
EvoMol offers several possibilities. Providing an objec-
tive function such as SAscore or CLscore and combining 
it with others is the most obvious solution. This solution 
alone is rarely good enough. Fragment-based approaches 
are one way to address this problem. Using EvoMol fil-
ters, it is easy to implement either a whitelist or a black-
list of fragments. With a whitelist, EvoMol would become 
a full fragment-based evolutionary algorithm.

Thanks to the tree visualisation, we could observe how 
EvoMol builds and improves upon the furane core like an 
experimental chemist playing very efficiently with substi-
tutions and positions and then intensifying on promising 

candidates. Since the synthesizability prediction is still a 
complex issue, we believe that this related solution tree 
could be a useful tool to discuss chemistry. It brings a def-
inite added value compared to a simple portfolio because 
it explains the trial-and-error of the exploration and the 
proximity of the proposed solutions.

In the future, we believe our method would benefit 
from a diversity mechanism. It would help to provide 
high scoring individuals in various areas of the chemi-
cal space. It should be configurable in order to choose 
a compromise between exploration and intensification 
depending on the objective. We also consider that Evo-
Mol could profit from reinforcement learning to select 
actions depending on the context. This should limit the 
number of calls to the evaluation functions, especially in 
the case of a costly objective function.
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