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Abstract 

Recently, deep learning has been successfully applied to molecular graph generation. Nevertheless, mitigating the 
computational complexity, which increases with the number of nodes in a graph, has been a major challenge. This 
has hindered the application of deep learning-based molecular graph generation to large molecules with many 
heavy atoms. In this study, we present a molecular graph compression method to alleviate the complexity while 
maintaining the capability of generating chemically valid and diverse molecular graphs. We designate six small 
substructural patterns that are prevalent between two atoms in real-world molecules. These relevant substructures in 
a molecular graph are then converted to edges by regarding them as additional edge features along with the bond 
types. This reduces the number of nodes significantly without any information loss. Consequently, a generative model 
can be constructed in a more efficient and scalable manner with large molecules on a compressed graph representa‑
tion. We demonstrate the effectiveness of the proposed method for molecules with up to 88 heavy atoms using the 
GuacaMol benchmark.
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Introduction
Deep learning has revolutionized the design of novel 
molecules required for real-world industrial applications. 
Whereas traditional approaches have mostly been based 
on human knowledge and intuition, the use of deep 
learning has enabled the autonomous design of mole-
cules by learning from previously accumulated data [1–
3]. Most existing methods use deep generative models, 
such as variational autoencoders (VAEs) and generative 
adversarial networks (GANs). Their capabilities depend 
on the way of representing a molecule. Such represen-
tations include simplified molecular-input line-entry 
system (SMILES) and molecular graph representation. 

Although the SMILES representation has been demon-
strated to be useful, recent research tends to employ the 
molecular graph representation, which is a natural and 
intuitive way of representing a molecule by regarding its 
atoms and bonds as nodes and edges, respectively [1].

A major challenge for molecular graph generation 
is addressing the scalability issue caused by its high 
computational complexity [4]. The representation of a 
molecular graph G = (V , E) on which a model learns, 
where V and E are the set of nodes and edges in G , 
typically involves an adjacency expression between its 
nodes, yielding O(|V|2) complexity. A naïve approach 
is to regard only heavy atoms in a molecule as nodes 
in the corresponding graph representation by treat-
ing hydrogen atoms implicitly as node features. This 
approach is however not scalable for large molecules 
with many heavy atoms, which are abundant in the 
real world [5, 6]. Consequently, existing methods were 
evaluated by limiting the size of the molecules in the 
training dataset, which was often set to less than 50 
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heavy atoms. The benchmark datasets with small mol-
ecules, such as QM9 [7, 8] and ZINC [9], have been 
commonly employed in the literature.

For scalable molecular graph generation, there have 
been research attempts to alleviate the complex-
ity O(|V|2) via representational simplification. One 
approach involves representing a molecular graph as a 
sequence of vectors and then building an autoregres-
sive model on the sequence representation for the 
sequential generation of nodes and edges that form 
a graph. You et  al. presented GraphRNN which con-
structs a model on a node-level sequence representa-
tion with M-dimensional adjacency vectors, where 
M is set to less than |V| , by employing breadth-first-
search node ordering with which the complexity is 
reduced to O(|V|M) [10]. Goyal et al. presented Graph-
Gen which transforms a molecular graph into an edge-
level sequence based on minimum depth-first-search 
coding, which leads to a complexity of O(|E |) [4]. How-
ever, as in the SMILES representation, the sequential 
nature imposes constraints on the model architec-
ture and prevents the model from capturing molecu-
lar similarity and retaining chemical validity. Another 
approach is to reduce the number of nodes |V| directly 
in the representation. Jin et al. presented junction tree 
VAE (JTVAE) which represents a molecular graph as a 
junction tree, whose nodes correspond to valid chemi-
cal substructures, using tree decomposition [11]. The 
compressed representation can be generally applicable 
to any model architecture. Nevertheless, JTVAE can 
suffer from high dimensionality due to the dramatic 
increase in the number of node features, because of 
the large variety of chemical substructures that appear 
in the dataset.

For a more practical application of molecular graph 
generation, we focus on the latter approach which 
involves reducing the number of nodes directly in the 
representation. This study aims to improve the scalabil-
ity of molecular graph generation to large molecules 
while maintaining the capability of generating chemi-
cally valid and diverse molecular graphs. We present a 
novel method for the compression of molecular graph 
representation for scalable molecular graph genera-
tion. We designate six small substructural patterns that 
commonly appear between two heavy atoms in practice 
and regard their appearances as additional edge fea-
tures along with the bond types. A molecular graph is 
compressed by substituting the relevant substructures 
with new edges. This compression reduces the number 
of nodes without drastically increasing the number of 
edge features, making it scalable to large molecules. In 
addition, the compressed graph can be reconstructed 
into the original graph without any information loss.

Methods
Molecular graph compression
The conventional graph representation of a molecule 
is an undirected graph whose nodes and edges corre-
spond to heavy atoms and their bonds in the molecule, 
respectively. Hydrogen atoms are treated implicitly 
as node features, and thus, they are not regarded as 
explicit nodes. Formally, a molecular graph is defined 
as G = (V , E) , where V and E denote the sets of nodes 
and edges, respectively. Each node corresponding to 
the i-th heavy atom is represented by a node vector 
vi ∈ V with the dimensionality of p, whose features 
indicate the atom type, formal charge, and valence 
information. An edge corresponding to the connection 
between the i-th and j-th atoms is represented by an 
edge vector ei,j ∈ E with a dimensionality of q, whose 
features are associated with a bond type. The property 
vector y = (y1, . . . , yl) represents the properties of the 
molecule.

We compress the graph representation by reducing the 
number of nodes. We employ six small substructural pat-
terns that commonly appear between two heavy atoms, 
which are listed in Fig. 1. Each of the substructural pat-
terns contains only one or two heavy atoms with the atom 
types corresponding to C, N, and O, which are abundant 
in real-world molecules. We represent the appearances of 
these six substructural patterns using additional edge fea-
tures, which may be sufficient for most real-world data-
sets. Nevertheless, depending on the training dataset, we 
can additionally designate more substructural patterns to 
be regarded as edge features for further compression.

Formally, we define a compression function � that 
compresses an input graph. For an original graph G , the 
corresponding compressed graph G′ is obtained using the 
function � as

Given the input graph G , the function � finds the sub-
structures that are relevant to the six designated patterns. 
With canonical ordering of the atoms in G , each substruc-
ture is sequentially converted to an edge by representing 
its appearance using the corresponding edge feature. The 
canonical numbers of atoms are used to prioritize which 
substructure is converted first. When multiple substruc-
tures overlap, the one with non-overlapping atoms hav-
ing smaller canonical numbers is chosen to be replaced 
by an edge.

With the addition of edge features, the edge vector of 
compressed graph G′ has higher dimensionality than that 
of the original graph G . This compression reduces one 
or two nodes per substructure. There may exist multiple 
substructures in between an atom pair, and a larger mol-
ecule may contain more relevant substructures. A graph 

(1)G′ = �(G).
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will be further compressed if more of the substructural 
patterns exist in it.

Figure  2 shows an illustrative example of the com-
pressed graph representation for two molecules. In the 
first example, the original graph contains eight nodes 
because the corresponding molecule has eight heavy 
atoms. For the original graph, the substructures 1-2-3, 
2-3-4, and 4-6-7 are relevant to patterns 6, 2, and 2, 
respectively. The substructures 1-2-3 and 2-3-4 over-
lap, and therefore, one among them needs to be chosen 
for compression. Because 1-2-3 has smaller canonical 
numbers, we choose 1-2-3 to be replaced. After 1-2-
3 and 2-3-4 are replaced by the respective edges, the 
number of nodes is reduced to six. The second example 

involves an original graph that contains seven nodes. 
Two substructures, 2-3-4-5 with pattern 3 and 2-7-
6-5 with pattern 4, appear simultaneously between the 
2nd and 5th nodes. After they are substituted by edges, 
the compressed graph contains three nodes.

The main advantages of compressed graph representa-
tion are as follows. Firstly, the compressed representation 
reduces the number of nodes (i.e., |V ′| ≤ |V| ), thereby 
providing better scalability to large molecules. Secondly, 
the compression is reversible, meaning that the com-
pressed graph can be reconstructed into the original 
one without any information loss using a decompression 
function �−1 (i.e., G = �−1(�(G)) ). Thirdly, it does not 
drastically increase the dimensionality of edge vectors 

Fig. 1  Substructural patterns that commonly appear between two atoms in molecules

Fig. 2  Example of compressed graph representation
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because only pre-chosen substructural patterns are addi-
tionally involved as edge features in the compressed rep-
resentation (i.e., q′ − q is a small constant). The increase 
in edge dimensionality does not significantly affect the 
scalability.

Learning on graph representation
In this study, we build a non-autoregressive graph 
VAE (NAGVAE), presented in [12], on the com-
pressed graph representation. The model seeks to 
find the generative distribution pθ (G|z, y) param-
eterized by θ . The prior distributions p(z) and p(y) 
are set to N (z|0, I) and N (y|µy ,�y) , respectively. 
We introduce an approximate posterior distribution 
qφ(z|G, y) = N (z|µz(G, y), diag(σ

2
z(G, y))) parameter-

ized by φ to address the intractability of the posterior dis-
tribution pθ (z|G, y).

The architecture of the model is illustrated in Fig.  3. 
The model consists of five components: the encoder 
network qφ(z|G, y) , decoder network pθ (G|z, y) , reward 
network r(G) , predictor network f (G) , and external 
reward function R(G) . The encoder network qφ(z|G, y) , 
which corresponds to the approximate posterior distri-
bution, is modeled as message passing neural networks 
(MPNNs) [13] to be invariant to graph isomorphism. 
The encoder network takes G and y as inputs to pro-
duce µz(G, y) and σ 2

z(G, y) , so that z is sampled from 
N (z|µz(G, y), diag(σ

2
z(G, y))) based on the reparam-

eterization trick. The decoder network pθ (G|z, y) , which 
captures the generative distribution, is modeled as a 
fully-connected neural network. The decoder network 
takes z and y to generate a probabilistic graph G̃  . The 
reward and predictor networks are modeled as MPNNs. 

The reward network r(G) takes G or G̃  as input to predict 
the reward R(G) or R(G̃) . The predictor network takes 
the same input to predict y . The external reward func-
tion R(G) is designed based on chemical rules to return 
a reward of 1 if its input can be decoded as a chemically 
valid molecular graph and 0 otherwise.

Given N molecules and their properties, we form a 
training dataset D = {G′

t , yt}
N
t=1 with the compressed 

representation, where G′
t = �(Gt) . Then, the model is 

trained using the dataset. The objective function for thie 
training involves the original learning objective of the 
VAE as well as approximate graph matching, reinforce-
ment learning, and auxiliary property prediction. The 
details of the model are described in [12].

The training involves the processing of a graph G 
in the form of a pair (V,E) comprising a node matrix 
V ∈ R

|V|×p , where Vi ∈ R
p is the node vector vi ∈ V , and 

an edge tensor E ∈ R
|V|×|V|×q , where Ei,j ∈ R

q is the edge 
vector ei,j ∈ E if it corresponds to a bond or substructure 
and is a zero vector otherwise. This leads to the compu-
tational complexity of O(|V|2) . Because the use of the 
compressed graph representation directly reduces |V| , the 
model becomes more scalable to large molecules.

Molecular graph generation
After training the model, the decoder part pθ (G|z, y) is 
used to generate new molecular graphs. To generate a 
molecular graph, we sample z∗ and y∗ from their prior 
distributions p(z) and p(y) . They are fed into the decoder 
to produce a probabilistic output, which is then decoded 
via node-wise and edge-wise argmax to obtain a com-
pressed graph G′

∗ as

Fig. 3  Schematic diagram of model architecture
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Because G′
∗ is originally in the form of the compressed 

representation, we decompress it into its original repre-
sentation with the decompression function �−1 as

The output G∗ can be interpreted as the chemical struc-
ture of a molecule.

Results and discussion
GuacaMol benchmark
We investigated the effectiveness of the proposed method 
using the GuacaMol distribution-learning benchmark 
[14]. The training dataset for the benchmark is a stand-
ardized subset of the ChEMBL database [6], consisting of 
1,591,378 molecules with up to 88 heavy atoms.

In the benchmark, the performance of a model for gen-
erating chemically valid and diverse molecular graphs 
is evaluated in terms of Validity, Uniqueness, and Nov-
elty of 10,000 molecular graphs generated by the model. 
Validity is the ratio of valid molecular graphs, for which a 
molecular graph is counted as valid if it can be processed 
successfully with RDKit. Uniqueness is the ratio of valid 
graphs that are not duplicates. Novelty is the ratio of valid 
graphs that are not present in the training dataset. In 
addition, Kullback-Leibler Divergence (KLD) and Fréchet 
ChemNet Distance (FCD) are used to evaluate the success 
of a model in reproducing the distribution of the training 
dataset.

Implementation
We used a NAGVAE [12] trained with the training data-
set on the compressed graph representation (NAG-
VAEcompress ) as the proposed model. The node and edge 
features that we used for the compressed representation 
are listed in Tables  1 and 2, respectively. It should be 
noted that the type and dimensionality of each feature 
depend on the training dataset. The model was trained 
for 10 epochs with a batch size of 10. The hyperparame-
ters in the objective function were set to β1 =5 and β2=1. 
Other settings were set according to the defaults in [12].

(2)G′
∗ = argmax

G

pθ (G|z = z∗, y = y∗).

(3)G∗ = �−1(G′
∗).

We employed four SMILES generation models (LSTM 
[15], VAE [16], AAE [17], and ORGAN [18]) and one 
molecular graph generation model (GraphMCTS [19]), as 
implemented in [14], as the baseline models for compari-
son. SMILES generation models are known to be more 
scalable to large molecules. The authors of [14] reported 
that training JTVAE [11] using the GuacaMol benchmark 
led to an error. We also failed to train the NAGVAE on 
the original graph representation (NAGVAEoriginal ) [12] 
owing to an out-of-memory error.

Molecular graph compression
Each molecular graph in the training dataset was com-
pressed using the compressed graph representation. 
Figure 4 shows the results of molecular graph compres-
sion on the dataset, the summary statistics of which are 
listed in Table  3. The number of nodes with the com-
pressed representation was reduced significantly. By fre-
quency analysis on the dataset, we found that patterns 
1–6 appeared 1.10, 1.31, 1.44, 1.03, 0.65, and 0.60 times, 
respectively, per molecule on average. Subsequently, the 
average and maximum number of nodes per molecule 
were reduced by 33.70% and 40.91%, respectively. In the 
cases of the two largest molecular graphs containing 88 
nodes, the numbers of nodes were reduced to 30 and 40 
nodes.

As evident from the results, the compression func-
tion � effectively reduced the number of nodes in the 
molecular graphs. In particular, molecular graphs tended 
to be better compressed when the number of nodes was 
large. The high compression rate contributes to reducing 
the computational cost and memory usage involved in 
molecular graph generation.

Molecular graph generation
Table  4 shows a performance comparison between 
the baseline and proposed models. The experimental 
results for the baseline models were obtained from [14]. 

Table 1  Node features of  compressed graph 
representation

Feature Type Dimensionality

Atom type One-hot (B, C, N, O, F, Si, 
P, S, Cl, Se, Br, I)

12

Formal charge One-hot (-1, 1, 2, 3) 4

No. explicit hydrogens One-hot (1, 2, 3) 3

Total (p) 19

Table 2  Edge features of  compressed graph 
representation

Feature Type Dimensionality

Bond type One-hot (single, double, triple, 
or none)

3

Pattern 1 count One-hot (1, 2, 3, or none) 3

Pattern 2 count One-hot (1, 2, 3, or none) 3

Pattern 3 count One-hot (1, 2, or none) 2

Pattern 4 count One-hot (1, or none) 1

Pattern 5 count One-hot (1, 2, or none) 2

Pattern 6 count One-hot (1, or none) 1

Total (q) 15
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Among the baseline models, GraphMCTS was superior 
in generating chemically valid and diverse molecular 
graphs in terms of the validity, uniqueness, and nov-
elty scores. LSTM yielded better performance in repro-
ducing the underlying property distributions of the 
training dataset in terms of the KLD and FCD scores. 
JTVAE and NAGVAEoriginal failed to provide results 
owing to the scalability issue. The proposed model, 
NAGVAEcompress , was successful in generating molecu-
lar graphs. Notably, NAGVAEcompress yielded compa-
rable or superior performance in terms of the validity, 
uniqueness, and novelty scores. One drawback was the 
low distribution learning performance. It yielded lower 
KLD and FCD scores compared to the SMILES genera-
tion models.

From a computational perspective, the use of the 
compressed representation reduced the computational 
burden for both the training and inference phases. Con-
sidering the complexity O(|V|2) which increases with the 
number of nodes, training and inference on a more com-
pact representation with a smaller number of nodes are 
faster and require lower computational cost and mem-
ory usage. This is also evident from the fact that NAG-
VAEoriginal failed to be trained, whereas NAGVAEcompress 
was successfully trained with the training dataset. Addi-
tionally, the decompression for the compressed graph 
representation had little effect on the computational 
burden. The molecular graph generation by NAG-
VAEcompress , which involves inference with the decoder 
network pθ (G|z, y) and decompression with the function 
�−1 , only took around 0.004 s and 0.001 s per molecular 
graph on average for the inference and decompression, 
respectively.

As demonstrated by the experimental results, the use 
of compressed graph representation makes molecular 
graph generation scalable to large molecular graphs with-
out performance degradation with regard to the genera-
tion of chemically valid and diverse molecular graphs. 
We expect that molecular graph compression will shed 

a b c

Fig. 4  Molecular graph compression results on training dataset: a histogram of the number of nodes with the original representation; b histogram 
of the number of nodes with the compressed representation; c scatterplot between original and compressed representations

Table 3  Summary of molecular graph compression results

Statistic Original rep. Compressed rep. Reduction 
rate (%)

Avg. no. nodes 27.89 18.49 33.70

Max. no. nodes 88 52 40.91

Table 4  Molecular graph generation results of baseline and proposed models

Metric SMILES-based Graph-based

LSTM VAE AAE ORGAN GraphMCTS JTVAE NAGVAEoriginal NAGVAEcompress

Validity 0.959 0.870 0.822 0.379 1.000 0.927

Uniqueness 1.000 0.999 1.000 0.841 1.000 0.955

Novelty 0.912 0.974 0.998 0.687 0.994 N/A N/A 1.000

KLD 0.991 0.982 0.886 0.267 0.522 0.384

FCD 0.913 0.863 0.529 0.000 0.015 0.009
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some light on improving the efficiency and scalability of 
other molecular graph generation methods without sac-
rificing their performance.

Conclusion
In this paper, we presented a molecular graph compres-
sion method to address the scalability issue of molecular 
graph generation. We identified six small substructural 
patterns that commonly appear between atom pairs 
in real-world molecules. Given a molecular graph, we 
converted the relevant substructures into new edges by 
representing them using additional edge features in the 
compressed graph representation. A generative model 
was constructed in a more efficient and scalable man-
ner by training the model on the compressed representa-
tion. By conducting an experimental investigation using 
the GuacaMol benchmark, we found that the proposed 
method reduced the number of nodes significantly with-
out any information loss. The generative model con-
structed on the compressed representation achieved 
performance comparable to that of the baseline methods 
regarding molecular graph generation.

Although mitigating the high computational complex-
ity intrinsically imposed on molecular graph generation 
has been challenging, this work successfully demon-
strated that the molecular graph compression approach 
can effectively alleviate the complexity. We expect that 
this approach will be more effective with the better iden-
tification of data-specific substructural patterns that can 
be regarded as edge features. The use of the compressed 
representation contributes to a substantial reduction in 
the computational cost and memory usage, making it 
scalable to large molecules. This approach can be applied 
to other molecular graph generation methods to improve 
their efficiency and scalability, which merits further 
investigations.
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