
Kwon et al. J Cheminform (2020) 12:58
https://doi.org/10.1186/s13321-020-00463-2

RESEARCH ARTICLE

Compressed graph representation
for scalable molecular graph generation
Youngchun Kwon1,2, Dongseon Lee1, Youn‑Suk Choi1*, Kyoham Shin3 and Seokho Kang3* 

Abstract 

Recently, deep learning has been successfully applied to molecular graph generation. Nevertheless, mitigating the
computational complexity, which increases with the number of nodes in a graph, has been a major challenge. This
has hindered the application of deep learning-based molecular graph generation to large molecules with many
heavy atoms. In this study, we present a molecular graph compression method to alleviate the complexity while
maintaining the capability of generating chemically valid and diverse molecular graphs. We designate six small
substructural patterns that are prevalent between two atoms in real-world molecules. These relevant substructures in
a molecular graph are then converted to edges by regarding them as additional edge features along with the bond
types. This reduces the number of nodes significantly without any information loss. Consequently, a generative model
can be constructed in a more efficient and scalable manner with large molecules on a compressed graph representa‑
tion. We demonstrate the effectiveness of the proposed method for molecules with up to 88 heavy atoms using the
GuacaMol benchmark.

Keywords:  Molecular graph generation, Compressed graph representation, Graph variational autoencoder, Deep
learning

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea‑
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Deep learning has revolutionized the design of novel
molecules required for real-world industrial applications.
Whereas traditional approaches have mostly been based
on human knowledge and intuition, the use of deep
learning has enabled the autonomous design of mole-
cules by learning from previously accumulated data [1–
3]. Most existing methods use deep generative models,
such as variational autoencoders (VAEs) and generative
adversarial networks (GANs). Their capabilities depend
on the way of representing a molecule. Such represen-
tations include simplified molecular-input line-entry
system (SMILES) and molecular graph representation.

Although the SMILES representation has been demon-
strated to be useful, recent research tends to employ the
molecular graph representation, which is a natural and
intuitive way of representing a molecule by regarding its
atoms and bonds as nodes and edges, respectively [1].

A major challenge for molecular graph generation
is addressing the scalability issue caused by its high
computational complexity [4]. The representation of a
molecular graph G = (V , E) on which a model learns,
where V and E are the set of nodes and edges in G ,
typically involves an adjacency expression between its
nodes, yielding O(|V|2) complexity. A naïve approach
is to regard only heavy atoms in a molecule as nodes
in the corresponding graph representation by treat-
ing hydrogen atoms implicitly as node features. This
approach is however not scalable for large molecules
with many heavy atoms, which are abundant in the
real world [5, 6]. Consequently, existing methods were
evaluated by limiting the size of the molecules in the
training dataset, which was often set to less than 50

Open Access

Journal of Cheminformatics

*Correspondence: ysuk.choi@samsung.com; s.kang@skku.edu
1 Samsung Advanced Institute of Technology, Samsung Electronics Co.
Ltd., 130 Samsung‑ro, Yeongtong‑gu, Suwon, Republic of Korea
3 Department of Industrial Engineering, Sungkyunkwan University, 2066
Seobu‑ro, Jangan‑gu, Suwon, Republic of Korea
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0960-0294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00463-2&domain=pdf

Page 2 of 8Kwon et al. J Cheminform (2020) 12:58

heavy atoms. The benchmark datasets with small mol-
ecules, such as QM9 [7, 8] and ZINC [9], have been
commonly employed in the literature.

For scalable molecular graph generation, there have
been research attempts to alleviate the complex-
ity O(|V|2) via representational simplification. One
approach involves representing a molecular graph as a
sequence of vectors and then building an autoregres-
sive model on the sequence representation for the
sequential generation of nodes and edges that form
a graph. You et al. presented GraphRNN which con-
structs a model on a node-level sequence representa-
tion with M-dimensional adjacency vectors, where
M is set to less than |V| , by employing breadth-first-
search node ordering with which the complexity is
reduced to O(|V|M) [10]. Goyal et al. presented Graph-
Gen which transforms a molecular graph into an edge-
level sequence based on minimum depth-first-search
coding, which leads to a complexity of O(|E |) [4]. How-
ever, as in the SMILES representation, the sequential
nature imposes constraints on the model architec-
ture and prevents the model from capturing molecu-
lar similarity and retaining chemical validity. Another
approach is to reduce the number of nodes |V| directly
in the representation. Jin et al. presented junction tree
VAE (JTVAE) which represents a molecular graph as a
junction tree, whose nodes correspond to valid chemi-
cal substructures, using tree decomposition [11]. The
compressed representation can be generally applicable
to any model architecture. Nevertheless, JTVAE can
suffer from high dimensionality due to the dramatic
increase in the number of node features, because of
the large variety of chemical substructures that appear
in the dataset.

For a more practical application of molecular graph
generation, we focus on the latter approach which
involves reducing the number of nodes directly in the
representation. This study aims to improve the scalabil-
ity of molecular graph generation to large molecules
while maintaining the capability of generating chemi-
cally valid and diverse molecular graphs. We present a
novel method for the compression of molecular graph
representation for scalable molecular graph genera-
tion. We designate six small substructural patterns that
commonly appear between two heavy atoms in practice
and regard their appearances as additional edge fea-
tures along with the bond types. A molecular graph is
compressed by substituting the relevant substructures
with new edges. This compression reduces the number
of nodes without drastically increasing the number of
edge features, making it scalable to large molecules. In
addition, the compressed graph can be reconstructed
into the original graph without any information loss.

Methods
Molecular graph compression
The conventional graph representation of a molecule
is an undirected graph whose nodes and edges corre-
spond to heavy atoms and their bonds in the molecule,
respectively. Hydrogen atoms are treated implicitly
as node features, and thus, they are not regarded as
explicit nodes. Formally, a molecular graph is defined
as G = (V , E) , where V and E denote the sets of nodes
and edges, respectively. Each node corresponding to
the i-th heavy atom is represented by a node vector
vi ∈ V with the dimensionality of p, whose features
indicate the atom type, formal charge, and valence
information. An edge corresponding to the connection
between the i-th and j-th atoms is represented by an
edge vector ei,j ∈ E with a dimensionality of q, whose
features are associated with a bond type. The property
vector y = (y1, . . . , yl) represents the properties of the
molecule.

We compress the graph representation by reducing the
number of nodes. We employ six small substructural pat-
terns that commonly appear between two heavy atoms,
which are listed in Fig. 1. Each of the substructural pat-
terns contains only one or two heavy atoms with the atom
types corresponding to C, N, and O, which are abundant
in real-world molecules. We represent the appearances of
these six substructural patterns using additional edge fea-
tures, which may be sufficient for most real-world data-
sets. Nevertheless, depending on the training dataset, we
can additionally designate more substructural patterns to
be regarded as edge features for further compression.

Formally, we define a compression function � that
compresses an input graph. For an original graph G , the
corresponding compressed graph G′ is obtained using the
function � as

Given the input graph G , the function � finds the sub-
structures that are relevant to the six designated patterns.
With canonical ordering of the atoms in G , each substruc-
ture is sequentially converted to an edge by representing
its appearance using the corresponding edge feature. The
canonical numbers of atoms are used to prioritize which
substructure is converted first. When multiple substruc-
tures overlap, the one with non-overlapping atoms hav-
ing smaller canonical numbers is chosen to be replaced
by an edge.

With the addition of edge features, the edge vector of
compressed graph G′ has higher dimensionality than that
of the original graph G . This compression reduces one
or two nodes per substructure. There may exist multiple
substructures in between an atom pair, and a larger mol-
ecule may contain more relevant substructures. A graph

(1)G′ = �(G).

Page 3 of 8Kwon et al. J Cheminform (2020) 12:58 	

will be further compressed if more of the substructural
patterns exist in it.

Figure 2 shows an illustrative example of the com-
pressed graph representation for two molecules. In the
first example, the original graph contains eight nodes
because the corresponding molecule has eight heavy
atoms. For the original graph, the substructures 1-2-3,
2-3-4, and 4-6-7 are relevant to patterns 6, 2, and 2,
respectively. The substructures 1-2-3 and 2-3-4 over-
lap, and therefore, one among them needs to be chosen
for compression. Because 1-2-3 has smaller canonical
numbers, we choose 1-2-3 to be replaced. After 1-2-
3 and 2-3-4 are replaced by the respective edges, the
number of nodes is reduced to six. The second example

involves an original graph that contains seven nodes.
Two substructures, 2-3-4-5 with pattern 3 and 2-7-
6-5 with pattern 4, appear simultaneously between the
2nd and 5th nodes. After they are substituted by edges,
the compressed graph contains three nodes.

The main advantages of compressed graph representa-
tion are as follows. Firstly, the compressed representation
reduces the number of nodes (i.e., |V ′| ≤ |V| ), thereby
providing better scalability to large molecules. Secondly,
the compression is reversible, meaning that the com-
pressed graph can be reconstructed into the original
one without any information loss using a decompression
function �−1 (i.e., G = �−1(�(G)) ). Thirdly, it does not
drastically increase the dimensionality of edge vectors

Fig. 1  Substructural patterns that commonly appear between two atoms in molecules

Fig. 2  Example of compressed graph representation

Page 4 of 8Kwon et al. J Cheminform (2020) 12:58

because only pre-chosen substructural patterns are addi-
tionally involved as edge features in the compressed rep-
resentation (i.e., q′ − q is a small constant). The increase
in edge dimensionality does not significantly affect the
scalability.

Learning on graph representation
In this study, we build a non-autoregressive graph
VAE (NAGVAE), presented in [12], on the com-
pressed graph representation. The model seeks to
find the generative distribution pθ (G|z, y) param-
eterized by θ . The prior distributions p(z) and p(y)
are set to N (z|0, I) and N (y|µy ,�y) , respectively.
We introduce an approximate posterior distribution
qφ(z|G, y) = N (z|µz(G, y), diag(σ

2
z(G, y))) parameter-

ized by φ to address the intractability of the posterior dis-
tribution pθ (z|G, y).

The architecture of the model is illustrated in Fig. 3.
The model consists of five components: the encoder
network qφ(z|G, y) , decoder network pθ (G|z, y) , reward
network r(G) , predictor network f (G) , and external
reward function R(G) . The encoder network qφ(z|G, y) ,
which corresponds to the approximate posterior distri-
bution, is modeled as message passing neural networks
(MPNNs) [13] to be invariant to graph isomorphism.
The encoder network takes G and y as inputs to pro-
duce µz(G, y) and σ 2

z(G, y) , so that z is sampled from
N (z|µz(G, y), diag(σ

2
z(G, y))) based on the reparam-

eterization trick. The decoder network pθ (G|z, y) , which
captures the generative distribution, is modeled as a
fully-connected neural network. The decoder network
takes z and y to generate a probabilistic graph G̃  . The
reward and predictor networks are modeled as MPNNs.

The reward network r(G) takes G or G̃ as input to predict
the reward R(G) or R(G̃) . The predictor network takes
the same input to predict y . The external reward func-
tion R(G) is designed based on chemical rules to return
a reward of 1 if its input can be decoded as a chemically
valid molecular graph and 0 otherwise.

Given N molecules and their properties, we form a
training dataset D = {G′

t , yt}
N
t=1 with the compressed

representation, where G′
t = �(Gt) . Then, the model is

trained using the dataset. The objective function for thie
training involves the original learning objective of the
VAE as well as approximate graph matching, reinforce-
ment learning, and auxiliary property prediction. The
details of the model are described in [12].

The training involves the processing of a graph G
in the form of a pair (V,E) comprising a node matrix
V ∈ R

|V|×p , where Vi ∈ R
p is the node vector vi ∈ V , and

an edge tensor E ∈ R
|V|×|V|×q , where Ei,j ∈ R

q is the edge
vector ei,j ∈ E if it corresponds to a bond or substructure
and is a zero vector otherwise. This leads to the compu-
tational complexity of O(|V|2) . Because the use of the
compressed graph representation directly reduces |V| , the
model becomes more scalable to large molecules.

Molecular graph generation
After training the model, the decoder part pθ (G|z, y) is
used to generate new molecular graphs. To generate a
molecular graph, we sample z∗ and y∗ from their prior
distributions p(z) and p(y) . They are fed into the decoder
to produce a probabilistic output, which is then decoded
via node-wise and edge-wise argmax to obtain a com-
pressed graph G′

∗ as

Fig. 3  Schematic diagram of model architecture

Page 5 of 8Kwon et al. J Cheminform (2020) 12:58 	

Because G′
∗ is originally in the form of the compressed

representation, we decompress it into its original repre-
sentation with the decompression function �−1 as

The output G∗ can be interpreted as the chemical struc-
ture of a molecule.

Results and discussion
GuacaMol benchmark
We investigated the effectiveness of the proposed method
using the GuacaMol distribution-learning benchmark
[14]. The training dataset for the benchmark is a stand-
ardized subset of the ChEMBL database [6], consisting of
1,591,378 molecules with up to 88 heavy atoms.

In the benchmark, the performance of a model for gen-
erating chemically valid and diverse molecular graphs
is evaluated in terms of Validity, Uniqueness, and Nov-
elty of 10,000 molecular graphs generated by the model.
Validity is the ratio of valid molecular graphs, for which a
molecular graph is counted as valid if it can be processed
successfully with RDKit. Uniqueness is the ratio of valid
graphs that are not duplicates. Novelty is the ratio of valid
graphs that are not present in the training dataset. In
addition, Kullback-Leibler Divergence (KLD) and Fréchet
ChemNet Distance (FCD) are used to evaluate the success
of a model in reproducing the distribution of the training
dataset.

Implementation
We used a NAGVAE [12] trained with the training data-
set on the compressed graph representation (NAG-
VAEcompress ) as the proposed model. The node and edge
features that we used for the compressed representation
are listed in Tables 1 and 2, respectively. It should be
noted that the type and dimensionality of each feature
depend on the training dataset. The model was trained
for 10 epochs with a batch size of 10. The hyperparame-
ters in the objective function were set to β1 =5 and β2=1.
Other settings were set according to the defaults in [12].

(2)G′
∗ = argmax

G

pθ (G|z = z∗, y = y∗).

(3)G∗ = �−1(G′
∗).

We employed four SMILES generation models (LSTM
[15], VAE [16], AAE [17], and ORGAN [18]) and one
molecular graph generation model (GraphMCTS [19]), as
implemented in [14], as the baseline models for compari-
son. SMILES generation models are known to be more
scalable to large molecules. The authors of [14] reported
that training JTVAE [11] using the GuacaMol benchmark
led to an error. We also failed to train the NAGVAE on
the original graph representation (NAGVAEoriginal ) [12]
owing to an out-of-memory error.

Molecular graph compression
Each molecular graph in the training dataset was com-
pressed using the compressed graph representation.
Figure 4 shows the results of molecular graph compres-
sion on the dataset, the summary statistics of which are
listed in Table 3. The number of nodes with the com-
pressed representation was reduced significantly. By fre-
quency analysis on the dataset, we found that patterns
1–6 appeared 1.10, 1.31, 1.44, 1.03, 0.65, and 0.60 times,
respectively, per molecule on average. Subsequently, the
average and maximum number of nodes per molecule
were reduced by 33.70% and 40.91%, respectively. In the
cases of the two largest molecular graphs containing 88
nodes, the numbers of nodes were reduced to 30 and 40
nodes.

As evident from the results, the compression func-
tion � effectively reduced the number of nodes in the
molecular graphs. In particular, molecular graphs tended
to be better compressed when the number of nodes was
large. The high compression rate contributes to reducing
the computational cost and memory usage involved in
molecular graph generation.

Molecular graph generation
Table 4 shows a performance comparison between
the baseline and proposed models. The experimental
results for the baseline models were obtained from [14].

Table 1  Node features of compressed graph
representation

Feature Type Dimensionality

Atom type One-hot (B, C, N, O, F, Si,
P, S, Cl, Se, Br, I)

12

Formal charge One-hot (-1, 1, 2, 3) 4

No. explicit hydrogens One-hot (1, 2, 3) 3

Total (p) 19

Table 2  Edge features of compressed graph
representation

Feature Type Dimensionality

Bond type One-hot (single, double, triple,
or none)

3

Pattern 1 count One-hot (1, 2, 3, or none) 3

Pattern 2 count One-hot (1, 2, 3, or none) 3

Pattern 3 count One-hot (1, 2, or none) 2

Pattern 4 count One-hot (1, or none) 1

Pattern 5 count One-hot (1, 2, or none) 2

Pattern 6 count One-hot (1, or none) 1

Total (q) 15

Page 6 of 8Kwon et al. J Cheminform (2020) 12:58

Among the baseline models, GraphMCTS was superior
in generating chemically valid and diverse molecular
graphs in terms of the validity, uniqueness, and nov-
elty scores. LSTM yielded better performance in repro-
ducing the underlying property distributions of the
training dataset in terms of the KLD and FCD scores.
JTVAE and NAGVAEoriginal failed to provide results
owing to the scalability issue. The proposed model,
NAGVAEcompress , was successful in generating molecu-
lar graphs. Notably, NAGVAEcompress yielded compa-
rable or superior performance in terms of the validity,
uniqueness, and novelty scores. One drawback was the
low distribution learning performance. It yielded lower
KLD and FCD scores compared to the SMILES genera-
tion models.

From a computational perspective, the use of the
compressed representation reduced the computational
burden for both the training and inference phases. Con-
sidering the complexity O(|V|2) which increases with the
number of nodes, training and inference on a more com-
pact representation with a smaller number of nodes are
faster and require lower computational cost and mem-
ory usage. This is also evident from the fact that NAG-
VAEoriginal failed to be trained, whereas NAGVAEcompress
was successfully trained with the training dataset. Addi-
tionally, the decompression for the compressed graph
representation had little effect on the computational
burden. The molecular graph generation by NAG-
VAEcompress , which involves inference with the decoder
network pθ (G|z, y) and decompression with the function
�−1 , only took around 0.004 s and 0.001 s per molecular
graph on average for the inference and decompression,
respectively.

As demonstrated by the experimental results, the use
of compressed graph representation makes molecular
graph generation scalable to large molecular graphs with-
out performance degradation with regard to the genera-
tion of chemically valid and diverse molecular graphs.
We expect that molecular graph compression will shed

a b c

Fig. 4  Molecular graph compression results on training dataset: a histogram of the number of nodes with the original representation; b histogram
of the number of nodes with the compressed representation; c scatterplot between original and compressed representations

Table 3  Summary of molecular graph compression results

Statistic Original rep. Compressed rep. Reduction
rate (%)

Avg. no. nodes 27.89 18.49 33.70

Max. no. nodes 88 52 40.91

Table 4  Molecular graph generation results of baseline and proposed models

Metric SMILES-based Graph-based

LSTM VAE AAE ORGAN GraphMCTS JTVAE NAGVAEoriginal NAGVAEcompress

Validity 0.959 0.870 0.822 0.379 1.000 0.927

Uniqueness 1.000 0.999 1.000 0.841 1.000 0.955

Novelty 0.912 0.974 0.998 0.687 0.994 N/A N/A 1.000

KLD 0.991 0.982 0.886 0.267 0.522 0.384

FCD 0.913 0.863 0.529 0.000 0.015 0.009

Page 7 of 8Kwon et al. J Cheminform (2020) 12:58 	

some light on improving the efficiency and scalability of
other molecular graph generation methods without sac-
rificing their performance.

Conclusion
In this paper, we presented a molecular graph compres-
sion method to address the scalability issue of molecular
graph generation. We identified six small substructural
patterns that commonly appear between atom pairs
in real-world molecules. Given a molecular graph, we
converted the relevant substructures into new edges by
representing them using additional edge features in the
compressed graph representation. A generative model
was constructed in a more efficient and scalable man-
ner by training the model on the compressed representa-
tion. By conducting an experimental investigation using
the GuacaMol benchmark, we found that the proposed
method reduced the number of nodes significantly with-
out any information loss. The generative model con-
structed on the compressed representation achieved
performance comparable to that of the baseline methods
regarding molecular graph generation.

Although mitigating the high computational complex-
ity intrinsically imposed on molecular graph generation
has been challenging, this work successfully demon-
strated that the molecular graph compression approach
can effectively alleviate the complexity. We expect that
this approach will be more effective with the better iden-
tification of data-specific substructural patterns that can
be regarded as edge features. The use of the compressed
representation contributes to a substantial reduction in
the computational cost and memory usage, making it
scalable to large molecules. This approach can be applied
to other molecular graph generation methods to improve
their efficiency and scalability, which merits further
investigations.

Acknowledgements
The authors thank the anonymous reviewers for their valuable comments.

Authors’ contributions
YK, KS, and SK designed and implemented the methodology. DL performed
the analysis. YSC and SK supervised the research. YK and SK wrote the manu‑
script. All authors read and approved the final manuscript.

Funding
This work was supported by Samsung Advanced Institute of Technology, and
the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT; Ministry of Science and ICT) (Nos. NRF-2019R1A4A1024732
and NRF-2020R1C1C1003232).

Availability of data and materials
The source code used in this study is available online at http://githu​b.com/
seokh​okang​/graph​vae_compr​ess/. The source code and dataset for GuacaMol
benchmark are publicly accessible from https​://githu​b.com/Benev​olent​AI/
guaca​mol/.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Samsung Advanced Institute of Technology, Samsung Electronics Co.
Ltd., 130 Samsung‑ro, Yeongtong‑gu, Suwon, Republic of Korea. 2 Depart‑
ment of Computer Science and Engineering, Seoul National University, 1
Gwanak‑ro, Gwanak‑gu, Seoul, Republic of Korea. 3 Department of Industrial
Engineering, Sungkyunkwan University, 2066 Seobu‑ro, Jangan‑gu, Suwon,
Republic of Korea.

Received: 22 July 2020 Accepted: 17 September 2020

References
	1.	 Schwalbe-Koda D, Gómez-Bombarelli R (2020) Generative models for

automatic chemical design. Machine learning meets quantum physics
Lecture notes in physics. Springer, Berlin, pp 445–467

	2.	 Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse Molecular Design
Using Machine Learning: Generative Models for Matter Engineering.
Scienc 361(6400):360–365

	3.	 Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning for
molecular design—a review of the State of the Art. Mol Syst Des Eng
4(4):828–849

	4.	 Goyal N, Jain HV, Ranu S (2020) GraphGen: a scalable approach to
domain-agnostic labeled graph generation. In: Proceedings of the web
conference; p. 1253–1263

	5.	 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A et al (2016)
PubChem substance and compound databases. Nucleic Acids Res
44(D1):D1202–D1213

	6.	 Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez
D et al (2016) The ChEMBL database in 2017. Nucleic Acids Res
45(D1):D945–D954

	7.	 Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL (2012) Enumera‑
tion of 166 billion organic small molecules in the chemical universe
database GDB-17. J Chem Inf Model 52(11):2864–2875

	8.	 Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum
chemistry structures and properties of 134 kilo molecules. Sci Data
1(140022):1–7

	9.	 Sterling T, Irwin JJ (2015) ZINC 15-ligand discovery for everyone. J
Chem Inf Model 55(11):2324–2337

	10.	 You J, Ying R, Ren X, Hamilton W, Leskovec J (2018) GraphRNN: generat‑
ing realistic graphs with deep auto-regressive models. In: Proceedings
of international conference on machine learning; p. 5708–5717

	11.	 Jin W, Barzilay R, Jaakkola T (2018) Junction tree variational autoen‑
coder for molecular graph generation. In: Proceedings of International
Conference on Machine Learning; p. 2323–2332

	12.	 Kwon Y, Yoo J, Choi YS, Son WJ, Lee D, Kang S (2019) Efficient learning
of non-autoregressive graph variational autoencoders for molecular
graph generation. J Cheminf 11:70

	13.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural mes‑
sage passing for quantum chemistry. In: Proceedings of international
conference on machine learning; p. 1263–1272

	14.	 Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: bench‑
marking models for De Novo molecular design. J Chem Inf Model
59(3):1096–1108

	15.	 Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused
molecule libraries for drug discovery with recurrent neural networks.
ACS Cent Sci 4:120–131

	16.	 Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM,
Sánchez-Lengeling B, Sheberla D et al (2018) Automatic chemical
design using a data-driven continuous representation of molecules.
ACS Cent Sci 4(2):268–276

	17.	 Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V,
Mamoshina P et al (2018) Entangled conditional adversarial autoen‑
coder for De Novo drug discovery. Mol Pharm 15(10):4398–4405

	18.	 Guimaraes GL, Sanchez-Lengeling B, Farias PLC, Aspuru-Guzik A (2017)
Objective-reinforced generative adversarial networks (ORGAN) for
sequence generation models. arXiv preprint arXiv​:17051​0843

http://github.com/seokhokang/graphvae_compress/
http://github.com/seokhokang/graphvae_compress/
https://github.com/BenevolentAI/guacamol/
https://github.com/BenevolentAI/guacamol/
http://arxiv.org/abs/170510843

Page 8 of 8Kwon et al. J Cheminform (2020) 12:58

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	19.	 Jensen JH (2019) A graph-based genetic algorithm and generative
model/Monte Carlo tree search for the exploration of chemical space.
Chem Sci 10(12):3567–3572

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

	Compressed graph representation for scalable molecular graph generation
	Abstract
	Introduction
	Methods
	Molecular graph compression
	Learning on graph representation
	Molecular graph generation

	Results and discussion
	GuacaMol benchmark
	Implementation
	Molecular graph compression
	Molecular graph generation

	Conclusion
	Acknowledgements
	References

