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Abstract

structure-based VS.

Virtual screening (VS) based on molecular docking has emerged as one of the mainstream technologies of drug
discovery due to its low cost and high efficiency. However, the scoring functions (SFs) implemented in most docking
programs are not always accurate enough and how to improve their prediction accuracy is still a big challenge. Here,
we propose an integrated platform called ASFP, a web server for the development of customized SFs for structure-
based VS. There are three main modules in ASFP: (1) the descriptor generation module that can generate up to 3437
descriptors for the modelling of protein-ligand interactions; (2) the Al-based SF construction module that can estab-
lish target-specific SFs based on the pre-generated descriptors through three machine learning (ML) techniques; (3)
the online prediction module that provides some well-constructed target-specific SFs for VS and an additional generic
SF for binding affinity prediction. Our methodology has been validated on several benchmark datasets. The target-
specific SFs can achieve an average ROC AUC of 0.973 towards 32 targets and the generic SF can achieve the Pearson
correlation coefficient of 0.81 on the PDBbind version 2016 core set. To sum up, the ASFP server is a powerful tool for
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Introduction

As one of the core technologies in virtual screening (VS),
molecular docking has been extensively used to screen
small molecule libraries for lead discovery [1]. A protein—
ligand docking algorithm consists of two basic compo-
nents: a search algorithm to generate a large number of
potential ligand binding poses within the binding site and
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a scoring function (SF) to evaluate the binding strength
for a particular pose. In general, most SFs implemented
in docking programs cannot give a reliable prediction
to the relative binding strength of a set of compounds
[2]. Therefore, how to improve the accuracy of SFs still
remains a big challenge.

In general, four parameters can be used to assess the
prediction capability of a SF, including scoring power
(binding affinity prediction), ranking power (rela-
tive ranking prediction), docking power (binding pose
prediction), and screening power (discrimination of
true binders from decoys) [3, 4]. In a VS campaign, the
screening power of a SF is what we care about. Tradi-
tional SFs can be roughly classified into three categories:
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(1) force field-based SFs, (2) knowledge-based SFs and
(3) empirical SFs. Unlike traditional SFs, machine learn-
ing (ML)-based scoring functions (MLSFs) do not have
particular theory-motivated functional forms, and they
are developed by learning from very large volumes of
protein-ligand structural and interaction data through
ML algorithms, such as random forest (RF), support vec-
tor machine (SVM), artificial neural network (ANN),
gradient boosting decision tree (GBDT), etc [3, 5-8].
Consequently, MLSFs have the capability to capture the
non-linear relationship between protein-ligand interac-
tion features and binding mode that are difficult to be
characterized by classical SFs, thus yielding better bind-
ing strength predictions [9, 10]. However, in order to
develop an MLSF, we need to generate a set of features
to characterize protein-ligand interactions, and further-
more we need to be familiar with ML algorithms, which
may be a difficult task for non-experts.

Here, we developed the ASFP server that can be used
to develop customized MLSFs for structure-based VS
and provide a generic MLSF for binding affinity predic-
tion. The ASFP server has three basic modules: descrip-
tor generation, Al-based SF construction and online
prediction. In the descriptor generation module, 15 com-
putational tools (only 9 tools are available due to license
restriction) are embedded into the module for the char-
acterization of ligand, protein binding pocket and pro-
tein—ligand interaction information, and up to 3437
descriptors can be generated. The Al-based SF construc-
tion module can be used to develop customized SFs with
easy operation. In the online prediction module, 15 well-
validated target-specific classification models for VS and
an additional generic regression model for binding affin-
ity prediction are provided for users. All the above mod-
ules in the ASFP server are automated and the results are
presented interactively through a user-friendly interface.

Implementation

The implementation of ASFP consists of two parts: the
model construction and validation and the develop-
ment of the web server that purposes in ML-based SF
construction.

Model construction

Benchmark

The benchmark dataset I (Dataset I), which contains the
kinase subset and the diverse subset in the Directory of
Useful Decoys-Enhanced (DUD-E) benchmark, was used
to train and assess the MLSFs. The kinase subset con-
tains the inhibitors and decoys generated by DUDE for
26 kinases, and the diverse subset contains the inhibitors
and decoys for seven representative targets in the entire
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DUDE set. The basic information of Dataset I is shown in
Additional file 1: Table S1.

The benchmark dataset II (Dataset II) extracted from
the PDBbind database (version 2016) [11] was used to
train and evaluate the SVM regression model for bind-
ing affinity prediction. There are 4057 protein—ligand
complexes in the "refined set” and 290 complexes in the
"core set" of PDBbind version 2016. The logarithm of one
experimental measure from dissociation constant (Ky),
inhibition constant (K;) or concentration at 50% inhibi-
tion (ICy,) was taken as the binding affinity of the pro-
tein—ligand complex (the priority is K;> Ky >ICy, if two or
three experimental measures are available for the target).

Evaluation criteria

It should be noted that the target-specific models con-
structed in the ASFP server are classifiers used for the
identification of binders from a pool of compounds
(screening power) and the generic SF provided in the
server is a regressor used for binding affinity prediction
(scoring power). In this study, seven evaluation criteria
were utilized to assess the performance of the models.
Among them, F1 score, Cohen’s kappa, Matthews cor-
relation coefficient (MCC), the area under the receiver
operating characteristic curve (ROC AUC) were used to
assess the classification performance of the target-spe-
cific SFs, and the enrichment factors (EF) at 0.5%, 1%, 2%
and 5% were used to evaluate the early-recognition abil-
ity of target-specific models while the Pearson correlation
coefficient (Rp) and the root-mean-square error (RMSE)
were calculated to assess the performance of the SVM
regression model. The details of the metrics can be found
in Additional file 1.

Preparation

The protein targets were prepared by using the Structure
Preparation wizard in Schrodinger version 2018, which
added hydrogen atoms, repaired the side-chains of the
imperfect residues using Prime, and optimized the steric
hindrance of side-chains. The protonation states of the
proteins were determined by using PROPKA and the het
groups were preprocessed by Epik to generate possible
ionization and tautomeric states. The ligands were pre-
pared using the ligprep module, which added hydrogen
atoms, ionized the structures using Epik, desalted, gen-
erated tautomers and stereoisomers. In the preparation
process, the default settings were used.

Docking

Two docking programs (i.e., Glide and Gold) were used
for binding pose generation. When Glide was used
for docking, the grids were firstly generated by using
the Receptor Grid Generation utility with the size of
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binding box set to 10 A x 10 A x 10 A centered on the
co-crystallized ligand. Then, the Glide docking pro-
gram with the SP scoring mode was used to dock the
prepared ligands into the prepared proteins. For dock-
ing implemented by Gold, the binding site was defined
by specifying the approximate center of the binding
site and taking all atoms that lie within a 10 A radius
of this point, and ChemPLP was selected for scoring.
For every ligand, only the pose with the highest dock-
ing score will be retained.

Descriptors generation

After molecular docking, the structural files of Dataset
I and Dataset II were retained for descriptors genera-
tion. In this study, a total of 15 descriptors calculation
tools of various types were included in computing
descriptors (Table 1). Considering some of the tools
were restricted by license, two schemes were employed
to generate the descriptors to establish MLSFs. First, all
the SFs (excluding fingerprints and dpocket) supported
by the computational tools in Table 1 were used to gen-
erate descriptors (ALL descriptors). Second, all the SFs
supported by the computational tools without licenses
restrictions in Table 1 (i.e. AffiScore version 3.0, Auto-
Dock version 6.8, DSX version 0.9, GalaxyDockBP2,
NNScore version 2.01 and SMo0G2016) were used to
generate descriptors (FREE descriptors).

Table 1 The basic information of the computational tools
supported by the descriptor generation module

Computational Type of descriptors No  Types
tools
AffiScore’ Energy terms 13 Empirical
ASP! Energy terms 5 Knowledge empirical
AutoDock Energy terms 6 Force field
ChemPLP Energy terms 11 Empirical
ChemScore Energy terms 10 Empirical
DPOCKET Pocket descriptors 49 -
DSx Energy terms 1 Knowledge
RDKit ECFP fingerprint 2048 -
GalaxyDockBP2 Energy terms 11 Empirical
Glide SP Energy terms 17 Empirical
Glide XP Energy terms 27  Empirical
GoldScore Energy terms 6 Force field
NNscore Energy terms 348 ML
PaDEL Pubchem finger- 881 -
print
SMoG2016 Energy terms 5 Knowledge Empirical

@ Computational tools without license restriction are marked in italics
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Modeling

For the construction of target-specific MLSFs, the
dataset for each target in Dataset I was split into the
training set and test set with the ratio of 3:1, and pre-
processed to scale the data and remove duplicated
features. Then, three ML algorithms, including Sup-
port Vector Machine (SVM), Random Forest (RF) and
eXtreme Gradient Boosting (XGboost), were used to
develop the MLSF for each target, and the hyperparam-
eters were optimized with the hyperopt package. During
the hyper-parameter tuning process, the hyper-param-
eters were changed and then the model was assessed
by a ten-fold cross-validation on the training set. The
actual prediction performance of the final model with
the optimal hyper-parameters was then assessed on the
test set. To develop the generic SVM regression model
for binding affinity prediction, the PDBbind version
2016 ‘refined set’ (excluding the PDBbind version 2016
‘core set’) was used as the training set and the PDBbind
version 2016 ‘core set’ was used as the test set.

Web API

Descriptors generation

With respect to the characterization of protein-ligand
interactions, energy terms and knowledge-based pair-
wise potentials extracted from existing SFs are popular
representation methods. These energy components cor-
related with the binding affinity of protein-ligand com-
plexes can be used as the input for the development of
MLSFs. Therefore, 12 scoring programs were integrated
into this module and the scoring components from the
output of the SFs implemented in these computational
tools can be generated automatically. Besides, two
computational tools, i.e., RDkit and PaDEL, were inte-
grated into this module to calculate the Extended-con-
nectivity fingerprint (ECFP) and Pubchem fingerprint,
respectively, to characterize the structural features of
small molecules. Furthermore, the SF in dpocket was
supported by this module to calculate 49 descriptors
to characterize the structural information of protein
pockets. It should be noted that the protein-ligand
complexes should be docked before submitted to the
server and the descriptors for small molecules may not
be recommended for the development of MLSFs. The
information of the 15 computational tools supported
by ASEP are listed in Table 1. Because some compu-
tational tools implemented by ASFP are commercial,
and therefore their functions are disabled. Based on the
descriptors generated by this module, users can further
construct a customized SF through a ML algorithm.
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Al-based scoring functions construction

As one of the modules implemented in the server, the
Al-based SF construction is designed for building cus-
tomized target-specific MLSFs. After submission, the
workflow is summarized in Fig. 1. In this module, the
384 descriptors computed and extracted from the SFs
implemented in 6 freely available computational tools
(AffiScore version 3.0, AutoDock version 6.8, DSX
version 0.9, GalaxyDockBP2, NNScore version 2.01
and SMo0G2016) can be used for training SFs. First,
the whole dataset uploaded by the user is divided into
the training set and the test set according to the user’s
input. Then, the dataset is preprocessed (standardiza-
tion, removing features with low variance, and tree-
based feature selection) using sklearn. For the sake
of computational efficiency, three popular ML algo-
rithms (RF, SVM and XGBoost) are provided. Users
can choose a ML algorithm for training and set some
options about hyperparameter optimization (which
hyperparameter to be optimized, the hyperparameter
range and the optimization times). Finally, according
to the user’s input, the server uses hyperopt to find the
optimal hyperparameter combinations and chooses the
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corresponding ML algorithm for training and predic-
tion, and then outputs the results with a PDF file.

Online prediction

On the base of the model performance, 15 well-con-
structed customized SFs with research-worthy targets for
VS and the generic regression SF for binding affinity pre-
diction were retained to form the third module, Online
prediction. The detailed information of the models is
provided in Table 2.

The ASFP server based on a high-level Python web
framework of Django is deployed on a Linux server of
an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz CPUs
with 28 cores and 64 GB of memory. Several SFs pro-
grams like autodock [12] were integrated to automate the
calculation process. The overall workflow implemented
in the ASFP server is shown in Additional file 1: Figure
S3, and the manual of ASFP can be downloaded from the
website (http://cadd.zju.edu.cn/asfp/).

Results

The performances of the customized SFs built by 3 ML
algorithms (SVM, XGBoost and RF) and 2 traditional SFs
(Glide SP and ChemPLP) on the Dataset I were assessed

Protein Files Ligand Files

Standardization
Low-variance Filtration
Feature selection

Descriptors

----==---- Generating Descriptors
Preprocessing data
---------- Splitting Dataset

.......... Tuning Hyper-parameter

Preprocessed Descriptors

Screening Set

A

Screening

E Adjust Hyper-parameters

First Mode| = = = = == = =

Next Model ..........................

Fig. 1 The workflow of the ASFP server for the Al-based scoring function construction
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Table 2 The information of the 15 targets with well-
established classification models

Target Data source ML algorithm 95% confidence

intervals for ROC_AUC

on test set
abl DUD-E Kinase subset ~ SVM 0.969+0.019
akt2 0.991+£0.014
csfir 0975£0.017
egfr 0.986+0.009
igfir 0.963£0.036
jak2 0.998+0.002
kpch 0.973+£0.023
mapk2 0.987+0.009
mkO1 0.963£0.036
Src 0.960£0.019
tgfr 0.99440.007
weel 0.994+£0.011
akt1 DUD-E Diverse subset 0.987 £0.008
cxcr4 1.000£0.000
hivpr 0.984+0.009

by 10,000 bootstrapping and the t-test for all the met-
rics (ROC AUC, EF0.5%, EF1%, EF2%, EF5%, F1 Score,
MCC and Cohen’s kappa), and their 95% confidence
intervals were calculated (Fig. 2 and Additional file 1:
Figure S1-S2). The average performances of various SFs
are listed in Table 2. All the seven metrics that can assess
the quality of the ML SFs from different aspects may
give conflicting rankings. Here, we implanted the sum of
ranking differences (SRD) analysis (i.e., ranking the mod-
els by each metrics and the averages of all metrics respec-
tively, and calculating the sum of the ranking differences
between each metric and the averages) to compare the
metrics to select better metrics for model comparison
[13-15]. As shown in Fig. 3, the SRD scores of F1 Score,
MCC and Cohen’s kappa are small, suggesting that the
rankings based on them are similar to that based on the
average metrics. Hence, the F1 Score was chosen for fur-
ther model comparison.

As shown in Fig. 2 and Table 3, the target-specific SFs
trained on the descriptors generated from the Glide poses
outperformed the Glide SP SF (p<0.05) and the models
trained on the descriptors generated from the Gold poses
outperformed the Gold ChemPLP SF (p<0.05). Besides,
the MLSFs constructed by ASFP outperformed the two
tested docking methods, namely Glide and Gold, achiev-
ing an average ROC AUC of 0.973 towards 32 targets on
the DUDE dataset. As for binding affinity prediction, the
generic SF can achieve a Pearson correlation coefficient
of 0.81 and a RMSE of 1.32 on the PDBbind version 2016
core set [11], highlighting its high prediction capability
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(Table 4). The average speed of modeling is 10 ligand per
minute which is influenced by the ligand size and the
computational capacities.

To figure out the influence of various factors on model
performance, the one-way ANOVA analyses were per-
formed. First, we explored the impact of docking meth-
ods on model performance. The results illustrate that
Gold ChemPLP performed better than Glide SP (p <0.05)
based on ROC AUC, and similarly the model built on
the poses predicted by Gold outperformed that built
on the poses generated by Glide, suggesting the binding
poses generated by Gold may be closer to the true bind-
ing poses than those generated by Glide. Based on cor-
rect binding pose, our ASFP server can build reliable
MLSFs for VS. Then, we studied the influence of differ-
ent descriptor combinations on model performance
(i.e., the descriptors generated from freely available and
licensed software). Interestingly, the models built on the
ALL descriptors outperform those trained on the FREE
descriptors based on the F1 Score as expected (p <0.05).
It may be caused by more comprehensive characteriza-
tion of protein-ligand interactions. Though the redun-
dant descriptors that represent the same interactions
between the descriptors generated by license-restricted
SFs and FREE descriptors exist, the trick of the tree-
based feature selection can offset the negative effect.
Even so, the FREE descriptors used for modelling is also
enough for building a target-specific SF with satisfactory
screening power. We also compared the performance of
three ML models implemented in our ASFP. The results
illustrate that the ranking of average performance based
on the F1 Score is SVM (F1 Score=0.734), XGBoost
(F1 Score=0.690) and RF (F1 Score=0.565) (p<0.05).
Therefore, SVM is the default option for modelling in
the ASFP server. However, SVM also has its disadvantage
of low calculation speed as it cannot compute in paral-
lel. In that case, XGBoost and RF can be used as alter-
natives because they can be trained fast with acceptable
performance.

Discussion

All the three modules of ASFP required protein and
ligand files uploaded and users can not only get satisfac-
tory results as described in this paper by easily click the
‘Run’ button using default settings but also be allowed to
submit jobs with their own settings. As mentioned in the
previous section, the model performance relies on the
quantity and quality of the training set and can be varied
for different targets. Most of the 32 target-specific ML-
based SFs constructed by ASFP outperform the classic SF
(Glide SP and Gold) and can be built easily through the
ASFP server. Therefore, our ASFP server is a powerful
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Fig. 2 The performance of the customized SFs built by 3 ML algorithms (SVM, XGBoost and RF) and 2 traditional SFs (Glide SP and ChemPLP) on the
Dataset | and their 95% confidence intervals by 10,000 bootstrapping for 3 metrics (ROC AUC, EF at 1% level and F1 Score). For the SF labels in this
figure,'sp’and ‘chemplp'represent the docking methods (Glide SP and Gold ChemPLP) used for binding pose generation, free’and ‘all'represent the
descriptor combinations, and ‘svm;, ’xgh’and rf"are the ML algorithms used for modelling
.
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Fig. 3 The results of the SRD analysis. SRD values are plotted on the X and left Y axes for visullization. (i) The models based on different algorithms
are arranged in rows; (ii) a reference vector (row-wise data fusion, i.e, average) was defined and added as the last column of the matrix: this
corresponds to an ideal reference method; (iii) the methods (columns) are ranked one-by-one in decreasing magnitude (including the reference
column); (iv) the differences between the ranks of each sample between each method and the reference vector are calculated, and finally (v)
these differences are summed for each method: these sums are called the SRD values, with the smaller value being the better (closer to the ideal
reference method)

Table 3 Average performance of various SFs on Dataset |

Scoring functions ROC_AUC EFg 50, EF,0, EF,q, EFsq, F1 MCC Kappa
Glide@sp 0.634 10.386 7779 5.289 3353 - - -
Gold@chemplp 0.725 14.025 11.078 8.380 5.262 - - -
Dock 0.770 - 15.769 - - - - -
sp_free_svm 0972 41676 41672 40211 22.597 0.715 0.711 0.707
sp_free_xgb 0.977 41.147 38353 26.178 10.940 0.661 0.692 0.655
sp_free_rf 0.955 41743 41618 38.099 17.828 0.607 0.604 0.598
sp_all_svm 0.972 41.607 41583 40486 21924 0.731 0.728 0.724
chemplp_free_svm 0.993 53.625 46.801 41.027 21.272 0.897 0.897 0.894

The average performance of the customized SFs built by 3 ML algorithms (SVM, XGBoost and RF) in terms of 7 metrics (ROC AUC, EF at 0.5% level, EF at 1% level, EF
at 2% level, EF at 5% level, F1 Score, MCC and Cohen’s kappa) and the performance of 2 traditional SFs (Glide SP and ChemPLP) in terms of 4 metrics (ROC AUC, EF at
0.5% level, EF at 1% level, EF at 2% level and EF at 5% level) on the Dataset I. For the SF labels in this figure, ‘sp’and ‘chemplp’ represent the docking methods (Glide
SP and Gold ChemPLP) used for binding pose generation, ‘free’and ‘all’ represent the descriptor combinations, and ‘svm; ‘xgb’and ‘rf’are the ML algorithms used for

modelling

tool that can calculate descriptors for modeling and con-
struct ML-based SFs for VS.

To illustrate the practicability of the ASFP server, if
one wants to construct an ML-based SF to find ligands
targeting at Tyrosine-protein kinase ABL (abll), one
can use the Al-Based Scoring Functions Construction
module with the input files including a ligand file in the
MOL2 format containing 50 active molecules, a decoy

file in the MOL2 format containing 150 molecules,
a test file in the MOL2 format containing 100 mol-
ecules and a protein file in the PDB format (PDB ID:
2HZI [16]). Upload the files and submit the job with the
default hyperparameters settings. As shown in Fig. 4,
the ASFP server succeeds in generating descriptors and
constructing a customized MLSF. The returned PDF file
shows that the SF successfully identifies 25 inhibitors
from 100 molecules (25 inhibitors).
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Table4 The Scoring power of the regression SFs
developed by the Online Prediction module

Model Rp? RMSE®
TopBP 0.861 165
TopBP-ML 0.848 1.74
TopBP-DL 0.848 1.64
ALL-SVM 0.831 1.23
EIC-Score 0.828 1.75
KDEEP 0.82 127
AvinaRF20 0.816 -
FREE-SVM 0.815 1.32
RI-Score 0.815 1.85
TNet-BP 0.81 134
Pafnucy 0.78 142
FFT-BP 0.747 -
X-Score 0613 -

2 Rp represents Pearson correlation coefficient (Rp)
b RMSE represents the root-mean-square error

Conclusions

Here, we present a user-friendly ASFP server for custom-
izing SFs for structure-based VS. We have validated our
methodology on several benchmark datasets, and the tar-
get-specific SFs constructed by ASFP achieved an aver-
age ROC AUC of 0.973 towards 32 targets on the DUDE
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dataset and the generic SF can achieve the Pearson cor-
relation coefficient of 0.81 on the PDBbind version 2016
core set, suggesting that the ASFP server is a useful and
effective tool for MLSF construction. The combination
of 15 computational descriptor generation tools, sklearn
and hyperopt makes it very convenient to calculate dif-
ferent types of descriptors and construct customized
MLSFs. The ASEP server is an on-going project and fur-
ther developments will be focused on the integration of
more descriptor generation tools, the development of an
automatic modelling pipeline using deep learning algo-
rithms (e.g. 3D-convolutional neural networks) and the
acceleration in computational speed with the help of
more computing resources.

Availability and requirements

+ Project name: ASFP (Artificial Intelligence based
Scoring Function Platform)

+ Project home page: http://cadd.zju.edu.cn/asfp/

+ Operating system(s): Platform independent

+ Programming language: Python

+ Other requirements: Mozilla Firefox or Google
Chrome is recommended

+ License: MIT

+ Any restrictions to use by non-academics: no
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Fig. 4 The Al-based scoring function construction result of the example (target: abl1). a The Visualization page of the results. b The prediction
results in the report PDF file. The F1 score is reported in the "Cross validation results" section of the report

Al based scoring function construction report

Number of Inhibitors: 50;
Number of Non-inhibitors: 150;
Training set size: 200;

Machine learning algorithms: Support Vector Machine;

Range of hyper :{'C: hp C’, 0.01, 50),'gamma’:
hp.uniform('gamma’, 0.001, 1),’kernel": hp.choice('kernel’,
[rbf'linear?),};

Optimization times: 10;

Best hyperparameter: {'C": [31.870450542806662], '‘gamma":
[0.14921357302963278], 'kernel': ['linear]};

The 95% fi interval of
(0.9993311720599571, 1.0001354946067096);

results:

Number of predicted-inhibitors: 25;

Predicted-inhibitors: ['ligand_201', ‘ligand_202", 'ligand_203",
‘ligand_204', 'ligand_205', 'ligand_206", 'ligand_207", 'ligand_208",
‘ligand_209', 'ligand_210", 'ligand_211", 'ligand_212", 'ligand_213',
‘ligand_214', 'ligand_215', 'ligand_216", 'ligand_217", 'ligand_218",
"ligand_219', 'ligand_220', 'ligand_221', 'ligand_222", 'ligand_223",
‘ligand_224', 'ligand_225'];

Serviced by ASFP (cadd.zju.edu.cn/asfp)
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