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Abstract 

In this study, we developed a novel algorithm to improve the screening performance of an arbitrary docking scor-
ing function by recalibrating the docking score of a query compound based on its structure similarity with a set of 
training compounds, while the extra computational cost is neglectable. Two popular docking methods, Glide and 
AutoDock Vina were adopted as the original scoring functions to be processed with our new algorithm and similar 
improvement performance was achieved. Predicted binding affinities were compared against experimental data from 
ChEMBL and DUD-E databases. 11 representative drug receptors from diverse drug target categories were applied 
to evaluate the hybrid scoring function. The effects of four different fingerprints (FP2, FP3, FP4, and MACCS) and the 
four different compound similarity effect (CSE) functions were explored. Encouragingly, the screening performance 
was significantly improved for all 11 drug targets especially when CSE = S4 (S is the Tanimoto structural similarity) 
and FP2 fingerprint were applied. The average predictive index (PI) values increased from 0.34 to 0.66 and 0.39 to 
0.71 for the Glide and AutoDock vina scoring functions, respectively. To evaluate the performance of the calibration 
algorithm in drug lead identification, we also imposed an upper limit on the structural similarity to mimic the real 
scenario of screening diverse libraries for which query ligands are general-purpose screening compounds and they 
are not necessarily structurally similar to reference ligands. Encouragingly, we found our hybrid scoring function still 
outperformed the original docking scoring function. The hybrid scoring function was further evaluated using external 
datasets for two systems and we found the PI values increased from 0.24 to 0.46 and 0.14 to 0.42 for A2AR and CFX 
systems, respectively. In a conclusion, our calibration algorithm can significantly improve the virtual screening perfor-
mance in both drug lead optimization and identification phases with neglectable computational cost.
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Introduction
In order to save time and cost in drug discovery pro-
jects, various in silico approaches have been developed 
and applied to reduce the number of compounds which 
are to be experimentally synthesized and tested. Among 
these computer-aided drug design/discovery (CADD) 

methods, virtual screenings of large chemical databases 
for potential bioactive molecules are usually conducted at 
the very beginning stage to rapidly narrow down the can-
didates from millions of compounds to manageable num-
bers (thousands or hundreds). Depending on whether 
the 3D structural information of the target receptor is 
available and utilized, virtual screening (VS) methods 
can be broadly classified into structure-based (SBVS) 
and ligand-based (LBVS) [1]. Docking & scoring is a typi-
cal SBVS method, which predicts whether a ligand can 
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favorably interact with a receptor (protein or nucleic 
acid) at its binding site, and if yes, the binding mode and 
binding affinity measured by the docking scoring func-
tion are determined. [1, 2]. Similarity search is a typical 
LBVS method, which predicts activity of query com-
pounds depending on their similarities/dissimilarities to 
known reference ligands by utilizing numerical similarity 
descriptors (fingerprints) [3]. Both docking and similar-
ity methods have been successfully carried out indepen-
dently or hierarchically to screen out confidently inactive 
compounds for specific receptors of interest. Compared 
to docking, similarity search is even faster, and therefore 
it is suitable to filter super large database before docking 
takes place. However, both similarity search and dock-
ing suffer from poor accuracy to rank potentially active 
ligands and prioritize top candidates to be suggested for 
experiments. Similarity search is based on the Similar-
ity Property Principle (SPP) [4], i.e., structurally similar 
molecules are likely to possess similar biological prop-
erties and activities. However, this hypothesis is not 
always true. Sometimes small chemical differences may 
arise highly different activity (‘activity cliffs’) [5]. Accu-
racy of docking methods is limited due to lack of mod-
elling structural flexibility of target receptors, effects of 
solvation and entropy changes, etc. These limitations of 
docking & scoring methods may be overcome by more 
accurate methodologies, such as end-point methods 
(MM-PBSA, MM-GBSA, LIE, etc.) [6, 7], or rigorous 
alchemical free energy methods (FEP, TI, etc.) [8, 9], with 
the price of much higher computational cost and much 
longer time. But we cannot help wondering: is there a way 
to improve the accuracy of docking & scoring methods 
without much more extra computational cost? With the 
advances of high-throughput screening technique, more 
and more compounds were measured against a drug tar-
get. ChEMBL [10] is a curated database which collects 
binding affinities of bioactive molecules for a drug target. 
How can we utilize the information on the known struc-
tures and activities to improve screening performance? 
Secondly, can we combine docking & scoring methods 
with the extremely fast methods of similarity calculations 
to improve the accuracy of binding affinity estimation? If 
so, how can we incorporate the two types of scores into 
one hybrid scoring function? In this work, we attempted 
to develop a novel algorithm to make a good use of those 
valuable information on known bioactive compounds.

Docking programs utilize scoring functions to estimate 
the binding affinities. Currently, scoring functions can be 
generally classified into following four categories based 
on how protein-ligand energy is predicted: (1) force-field-
based, (2) empirical, (3) knowledge-based, (4) descriptor-
based [11]. Although the underlying mechanisms of four 
categories are different, all of those developed scoring 

functions are trying to pursue promising results in the 
protein-ligand binding prediction. Considering the pro-
gress and achievements that have already been made by 
the existing scoring functions during the past few dec-
ades, we believe it will be more valuable to make some 
improvements based on current developed scoring func-
tions. Therefore, in this work, instead of developing a 
completely novel scoring function for the binding affin-
ity prediction, we introduced a more practical and uni-
versal approach that can improve the scoring power for 
an arbitrary docking scoring function. Our new scoring 
algorithm is suitable to the following scenario: the bind-
ing affinities against a specific receptor for a certain num-
ber of compounds (hereafter called reference compounds 
or reference ligands) have been experimentally measured, 
but many more compounds (hereafter called query com-
pounds) need to be estimated in silico. Such a scenario 
is frequently encountered in real drug design projects. 
Two components were incorporated to compose our new 
algorithm: (1) the structural difference between the query 
compounds and reference ligands; (2) the deviation of 
the docking scores of those reference ligands and their 
experimental binding affinities. Both the above compo-
nents can serve as weights to calibrate the original dock-
ing scores of ligands.

Materials and methods
Work outline
The outline of our work is shown in the flow chart of 
Fig.  1. To evaluate the feasibility and performance of 
our algorithm, we collected the X-ray crystal structures 
of 11 receptors of various categories from the Protein 
Data Bank [12] (https​://www.rcsb.org) and their avail-
able ligand data from the ChEMBL database [13, 14] 
(https​://www.ebi.ac.uk/chemb​l/). Collected compounds 
for each receptor were divided into reference set (refer-
ence ligands) and validation set (query compounds). See 
Table  1 and Additional file  1. Compounds were docked 
to their corresponding targets with a state-of-art docking 
program Glide, which was selected as the basic scoring 
function for further improvement [15, 16]. The Tanimoto 
Coefficient Tc [3] was calculated by utilizing the Open 
Babel program version 2.3.1 (http://openb​abel.org) [17]. 
Four popular 2D fingerprints (FP2, FP3, FP4, MACCS) 
[17] available in the Open Babel package were adopted 
and compared in this study. The proposed hybrid scor-
ing function was applied to calibrate the Glide dock-
ing scores. The scoring and ranking power of the hybrid 
scoring function as well as the original Glide docking 
scoring function was measured by root-mean-square-
error (RMSE), mean-absolute-error (MAE), Pearson’s 
correlation coefficient (R2), and the predictive index 
(PI) between the docking scores and the experimental 
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binding affinities [18–20]. In addition, we evaluated the 
screening power of the hybrid scoring function by using 
enrichment factor (EF) and the area under the curve 
(AUC) of receiver operating characteristic (ROC) curve 
[21]. We also explored the choice of fingerprint type and 
CSE function form to optimize the screening perfor-
mance. More details about the preparation of receptors 
and ligand datasets, docking software and procedures, 
and methods of evaluations are described in the follow-
ing sessions.

Preparation of receptor datasets
To test the developed algorithm in this study, 11 recep-
tors were selected according to the experimental records 
in ChEMBL database. The receptors can be divided 
into three classes: (1) 6 top receptors from diverse cat-
egories; (2) 4 top receptors from GPCR family; (3) one 
RNA receptor. Coagulation factor X (CFX), dopamine 
D2 receptor (D2R), µ opioid receptor (MOR), Extracel-
lular signal-regulated kinase 2 (ERK2), vascular endothe-
lial growth factor receptor 2 (VEGFR2) and estrogen 

Fig. 1  The flowchart of the calibration algorithm

Table 1  The information data of compounds for 11 receptors

Receptor Total Compounds Activities (Ki/Kd) Reference set Validation set

 CFX 7084 4521 581 144

 D2R 9897 10,473 635 161

 ERK2 19,729 1767 690 171

 ER 6561 1452 191 51

 MOR 7939 5796 362 110

 VEGFR2 12,497 1521 509 121

 5HT2AR 6524 5130 619 150

 A2AR 9015 7172 723 166

 CB1 8907 5544 529 117

 M1R 4858 2196 469 108

 rRNA 79 77 57 14
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receptor (ER) are in class (1). Among them, CFX is a 
member of Protease. D2R and MOR are from family A 
GPCR. EKR2 and VEGFR2 are members of the kinase 
family, while ER is the nuclear receptor. In class (2), there 
are serotonin 2A receptor (5HT2AR), adenosine A2A 
receptor (A2AR), cannabinoid receptor 1 (CB1) and 
muscarinic acetylcholine M1 receptor (M1R). Finally, in 
class (3), the ribosomal RNA (rRNA) A-site was selected 
as the receptor. All the receptor categories were selected 
according to the rank of member amounts in their cat-
egory families, while the receptors themselves were 
selected based on the compound number recorded in 
binding assays. The above information was collected 
from ChEMBL database and is shown in Table  1. Then 
the X-ray crystal structures of the above 11 target recep-
tors were retrieved from Protein Data Bank (detail infor-
mation was shown in Additional file  1: Table  S1). The 
sources of all targets are Homo sapiens.

Preparation of ligand datasets
To better compare the binding energy of each ligand 
that binds to the same receptor, we collected 3D struc-
tures (SDF format) of ligands with the inhibition constant 
(Ki) values recorded from binding assays in the ChEMBL 
database. For the ribosomal RNA receptor, because of the 
limited number of Ki activities, compounds with disso-
ciation constant (Kd) values were collected. It is of note 
that the activities of those collected compounds for each 
receptor were measured using the same methods. To bal-
ance the distribution of Ki activities for each receptor, 
compounds were hierarchically classified into 4 levels 
according to their Ki values: Ki < 10 nM, 10 nM ≤ Ki < 1 
µM, 1 µM ≤ Ki < 100 µM and Ki ≥ 100 µM. In each level, 
300 or less than 300 compounds (if the number of com-
pounds in the level does not reach 300) were randomly 
collected by utilizing numpy.random.choice in Python 
3.7 program [22]. For one selected compound with 2 or 
more Ki values that came from various assays, the aver-
age Ki was used. To evaluate the screening power of our 
approach, we categorized the selected compounds into 
the active and inactive sets by the cutoff of Ki/Kd = 100 
nM. This value is lower than normal threshold, 10 µM, 
but it can better balance the numbers of compounds in 
the active and inactive sets. The experimental Ki/Kd for 
each collected compound was then converted to the 
experimental ligand-receptor binding energy (kcal/mol) 
by the Eq. 1.

where ∆Gbinding is the binding energy of the ligand, R is 
the gas constant with a value of 8.314 J mol−1 K−1 and T 
is the room temperature under standard pressure with 
the value of 298.15 K.

(1)∆Gbinding = −RTlnKi(d)

To exclude compounds with very weak binding affini-
ties and make our evaluation more reliable, compounds 
for 11 receptors with experimental binding energy higher 
than − 4 kcal/mol were removed from the selected data-
sets. Then we randomly separated compounds into train-
ing datasets and testing datasets by the proportion of 
4:1. The number of compounds in training and testing 
sets for each receptor was listed in Table  1. The struc-
tures of compounds were not only stored in the mol2 
format but also converted into different 2D fingerprints 
for the further exploration of our algorithm by Open 
Babel program, which is an expert chemical toolbox for 
the format interconversion of chemical data [23]. Four 
2D fingerprints are available in OpenBabel according to 
its documentation (http://openb​abel.org/docs/dev/Featu​
res/Finge​rprin​ts.html): (1) FP2, a path-based fingerprint 
stored in a 1024-bit vector; (2) FP3, s series of SMARTS 
queries stored in 55 bits; (3) FP4, s series of SMARTS 
queries stored 307 bits; (4) MACCS, a series of SMARTS 
patterns stored in 166 bits.

To critically evaluate the performance of our calibra-
tion algorithm, we performed extra validation test on 
hundreds of compounds with activities (Ki) of A2AR and 
CFX from an additional database, DUD-E database [24, 
25]. After excluding the compounds with binding energy 
higher than − 4  kcal/mol and those already included in 
the reference datasets, two external test datasets which 
have 1973 and 1599 unique compounds were com-
piled for the A2AR and CFX systems, respectively. All 
compounds from DUD-E were treated as query mol-
ecules and their docking scores were calibrated with the 
compounds in the corresponding ChEMBL dataset as 
references.

Docking software and procedure
We docked selected compounds (include training sets, 
test sets and external test sets) to their corresponding 
receptors utilizing the Glide docking program imple-
mented in the Schrodinger software (Maestro 11.2). 
Before docking, the downloaded SDF files of ligands 
were processed with the LigPrep module in Maes-
tro. The downloaded PDB files of receptors were pro-
cessed with the module of Protein Preparation Wizard 
in Maestro: removing co-crystallized solvent and ions, 
adding hydrogen atoms and missing site-chain atoms, 
energy minimization on hydrogen atoms. Then we 
defined the binding site based on the geometric center 
of the native bound ligand without taking constraint or 
rotatable group into consideration. The flexible dock-
ing with post-docking minimization for 11 systems 
was conducted by the following settings: van der Waal 
radius scaling factor was 0.80, the partial charge cut-
off for ligands was 0.15, the intramolecular hydrogen 

http://openbabel.org/docs/dev/Features/Fingerprints.html
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bond formation was rewarded, the number of poses per 
ligand to include was 10. The top binding pose with the 
best docking energy score was retained and stored.

To investigate the impact of different docking scoring 
function on our calibration algorithm, the performance 
of our hybrid scoring functions was also evaluated for 
the AutoDock Vina docking scoring function [26]. Again, 
selected compounds were docked to their correspond-
ing receptors utilizing the AutoDock Vina docking pro-
gram. The receptor preparation was performed following 
the same protocol in Glide docking program. The bind-
ing site and space were defined based on the geometric 
center and the size of the native bound ligand without 
taking constraint or rotatable group into consideration. 
Considering the different docking mechanisms of two 
docking programs, this time, compounds with experi-
mental binding energy higher than − 5  kcal/mol were 
removed from the selected datasets to exclude com-
pounds with weak binding affinities. Then compounds 
were randomly separated into training datasets and test-
ing datasets proportionally and the docking score was 
calibrated using our proposed calibration approach. The 
Glide docking scores and AutoDock Vina docking scores 
as well as the experimental binding affinities (converted 
from Ki values) of compounds in the reference and vali-
dation sets were listed in Additional file  2:  Table  S2A, 
Additional file 3: Table S2B.

Algorithm for docking score calibration
The new algorithm we proposed to calibrate the dock-
ing scores from a normal docking program is described 
as below:

where DS0j  and DSj are the docking score of the jth query 
compound before and after the calibration. Sij is the 
structural similarity between the jth  query compound 
and the ith reference ligand. The exponent p is treated as 
an integer constant with its value varying from 1 to 4 in 
this study, for the exploration of the developed formula. 
We referred Spij as compound similarity effect (CSE) func-
tion for convenience of discussion. n is the total num-
ber of reference ligands in the reference dataset. DSi is 
the docking score of the ith reference ligand. ∆Gi is the 
experimental binding energy (kcal/mol) of the ith  com-
pound in the reference dataset, which is converted from 
the experimental Ki/Kd by the Eq. (1).

(2)DSj = DS0j

[

1

ω

∑n

i �=j
S
p
ij

∆Gi
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∑n

i �=j
S
p
ij

In this study, the structural similarity Sij between two 
compounds is represented by the Tanimoto Coefficient 
(Tc) calculated from their 2D fingerprints: [3]

where x and y are the number of bits in the fingerprints of 
compounds X and Y, z is the number of bits set shared by 
compounds X and Y. Tc has a range between 0 and 1 and 
a larger value means higher structural similarity between 
two compounds. The Tc calculation was carried out by 
utilizing Open Babel under a Python 3.7 environment.

Given a simple example to demonstrate how the algo-
rithm works, we assume there are only two reference 
compounds, i and j, whose docking scores are − 8.0 and 
− 10.0  kcal/mol and their experimental values are − 7.0 
and − 8.0 kcal/mol, respectively. The docking score of the 
query compound is − 9.0 and the similarity between the 
query compound and reference compound i and j are 0.9 
and 0.5, respectively. Assuming p is 4, then after the cali-
bration, the new docking score for the query compound 
becomes:

Apparently, reference compound i has more impact 
than j in the docking score calibration for this query 
compound. It is noted that our algorithm may not always 
improve the performance of docking score. There is a 
possibility that the docking score becomes worse after 
the calibration. However, we expect the similarity-based 
calibration can improve the binding affinity prediction in 
most scenarios with a certain size of the reference set.

Performance evaluation
To reduce the systematic error during the calculation, the 
random separation of compounds into training and test-
ing sets before the calibration was repeated for ten times 
for each target. The mean value and 95 % CI for all per-
formance metrics were then calculated. To evaluate the 
scoring and ranking performance of our algorithm, for 
each receptor, the docking score of compounds in the test 
set was compared to their experimental energies individ-
ually utilizing four different measurements, RMSE, MAE, 
R2 and PI. By comparing the mean calibrated docking 
score with the original docking score, the scoring func-
tion was considered to be improved if RMSE and MAE 
reduced, while R2 and PI increased. We also calculated 
the difference between the calibrated docking score and 
the original one. The difference is respectively repre-
sented by dRMSE, dMAE, dR2 and dPI. For the evalua-
tion of screening power, the area under the curve (AUC) 
of receiver operating characteristic (ROC) curve and 

(4)Tc(X ,Y ) =
z

x+ y− z

DScali = −9.0
1

0.94 + 0.54

[

0.94
−7.0

−8.0
+ 0.54

−8.0

−10.0

]

= −7.82
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enrichment factor (EF) at 10 % (EF10 %) and 40 % (EF40 %) 
levels were adopted as the performance metrics. In com-
parison to the simple docking scoring function, our new 
calibration algorithm on docking score was considered 
to have better screening power if AUC and EF increased. 
We applied the same protocols to evaluate the perfor-
mance of the calibration algorithm on the datasets of 
A2AR and CFX targets from the DUD-E database, except 
that the enrichment factors were calculated with differ-
ent hit rates. Considering the sample sizes of datasets for 
these two targets are relatively large in the DUE-E data-
base, we utilized EF1 % and EF10 % to evaluate the screen-
ing power. The equations for the calculation of metrics 
PI and EF were described in detail in Supplementary 
Information.

We defined two scenarios, “focus library” and “diverse 
library”, which are respectively appliable to drug lead 
optimization and lead identification in drug discovery, 
to evaluate the algorithm by limiting the range of Tc. In 
other words, the training compounds which did not meet 
the criterion of Tc range were excluded from calculations 
for the calibration. In the “focus library” scenario, for 
each system, we set up a lower bound Tc value. Below this 
threshold, Tc will be too low to improve the performance 
of the scoring function. In the “diverse library” scenario, 
besides the lower bound Tc value, we also set up an upper 
bound for Tc. We randomly collected 10,000 screening 
compounds from ZINC database [27] (https​://zinc.docki​
ng.org/) and calculated the structural similarity between 
testing compounds and screening compounds individu-
ally. The Tc value at which more than a half of screening 
compounds are lower than is selected as the upper bound 
Tc value. It is noted that this is a very stringent method to 
determine the Tc upper bound value.

Results and discussion
The impact of fingerprint and CSE function
We first studied the calibration performance using the 
Glide scoring function. For all 11 systems, the scor-
ing power measured by RMSE and MAE and ranking 
power measured by R2 and PI of the original docking 
scoring function and the hybrid scoring functions apply-
ing different fingerprints and CSE function are shown in 
Additional file  1:  Tables S3, S4 and Fig.  2. According to 
Additional file 1: Tables S3, S4, the developed algorithm 
can improve the accuracy of original docking score for 
most of systems, no matter what fingerprint was used 
or what CSE function was adopted. Specifically, when 
FP2 fingerprint was used for the similarity calculation 
between compounds in our algorithm, the docking scores 
can improve, regardless of types of systems or CSE func-
tion. Similarly, when CSE = S4ij , the performance of the 
scoring function enhanced for all 4 fingerprints. The 

comparison among the performance of the algorithms 
when employing different fingerprints and CSE func-
tions is clearly illustrated in Fig. 2. For most systems, the 
enhanced effect of the algorithms with different calibrat-
ing functions can be ranked from the largest to the small-
est when the p value varied from 4 to 1. As to fingerprint 
type, Fig.  2 also demonstrated that FP2 stands out as it 
mostly has lower RMSE and MAE, higher R2 and PI than 
other fingerprints.

To test the generalizability of our calibration algorithm, 
we also studied the calibration performance using dock-
ing scores generated by another commonly-used dock-
ing program, AutoDock Vina. As shown in Additional 
file  1:  Table  S5 and Figure S1, the same conclusion was 
reached for this docking program, i.e., the S4 outperforms 
other CES functions and FP2 outperforms other finger-
print types.

It is easy to understand why the performance of the 
algorithm became better when p value increased. As 
p value rises, the impact of the reference compounds 
that are structurally similar to the query compounds 
increases, meanwhile the impact of the reference com-
pounds with low similarity reduces. As such, the weight 
of the similarity contribution will boost if the power of 
the similarity increases in the formula. It can be expected 
if the p value is higher than 4, the algorithm might con-
tinue improving the scoring function even in a more 
positive way. However, to balance the contributions from 
both the original docking scores and compound similar-
ity effect, we let the maximal p value stop at 4.

Another interesting factor that can affect the perfor-
mance of the algorithm is the type of fingerprints. The 
different underlying mechanisms of those fingerprints 
are likely to explain their different effects. Unlike FP3, 
FP4 and MACCS that are substructure-based finger-
prints based on sets of SMARTS patterns, FP2 is a path-
based fingerprint that indexes small molecules fragments 
based on linear segments of up to 7 atoms, which might 
elucidate why FP2 performed better in our algorithm 
[28]. As FP2 is more specific and can be used in any ini-
tial chemical searches, we assume the similarity calcula-
tion based on FP2 is able to amplify the weights of those 
structurally similar references to a greater extent and bet-
ter offset the shortage of traditional scoring function. For 
example, the traditional docking score is always averagely 
high even for those ligands with relatively low binding 
affinity, leading to insufficient differentiation of docking 
results. On the other hand, the different performances 
of those three substructure-based fingerprints (FP3, FP4 
and MACCS), are likely caused by more complicated 
reasons. One probable reason is their different number 
of descriptors. For example, utilizing FP3 improved the 
scoring function very limitedly, which might be explained 

https://zinc.docking.org/
https://zinc.docking.org/
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by its limited number of bits of 55 versus FP4 with 307 
bits and MACCS with 166 bits stored in Open Babel [29].

The calibration performance using the best hybrid 
function is similar for the two docking scoring func-
tions. As shown in Table 2, for the tested 11 receptors 
with related thousands of ligands, on average, MAE 
decreased from 2.05 (Glide) to 1.34, 1.74 (AutoDock 
Vina) to 1.15; RMSE decreased from 2.53 (Glide) to 

1.69, 2.11 (AutoDock Vina) to 1.47; while R2 increased 
from 0.14 (Glide) to 0.44, and from 0.16 (AutoDock 
Vina) to 0.50; PI increased from 0.34 (Glide) to 0.66, 
and from 0.39 (AutoDock Vina) to 0.71. In other 
words, the improvement for average values of mean 
MAE, RMSE, R2 and PI over 11 receptors are 0.71 kcal/
mol, 0.84 kcal/mol, 0.30, and 0.32 respectively for the 
Glide docking scoring function, and the corresponding 

Fig. 2  The comparison of RMSE, MAE, R2 and PI values before and after the calibration for 11 drug receptors under the conditions of different 
fingerprint type and chemical similarity effect function. “orig” refers to original docking scores before the calibration
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values are 0.59  kcal/mol, 0.64  kcal/mol, 0.34 and 0.32 
for the AutoDock Vina scoring function. Interestingly, 
the boost performance on scoring power (RMSE and 
MAE) is better for Glide docking scoring function, 
while the ranking power (R2 and PI) is better for Auto-
Dock Vina.

On the other hand, the improvement of performance 
on screening power by using our calibration algorithm 
further validated our approach. As shown in Table  3, 
EF10 % and EF40 % of the docking results after the cali-
bration are better than the results before the calibra-
tion for all the scenarios except for EF10 % of VEGFR2, 
for which the value before the calibration is slightly 
better (2.18 vs. 2.15). Considering the small sample 
size for rRNA receptor, it is reasonable to find signifi-
cant larger enrichment factor values in the calculated 
metrics. After excluding the rRNA target, on average 
the mean EF10 % and EF40 % increased about 25 % and 
22 % after the calibration of docking scores. Similarly, 
mean AUC of the docking results after the calibration 
is significantly improved for all the targets, as shown 
in Table 3 and illustrated in Fig. 3. Without consider-
ing the performance on rRNA target, on average the 
AUC improved approximately 20 % for the docking 
results after the calibration. Of note that the measure-
ment of screening power may be biased for some drug 
target due to the imbalance between the number of 
actives and inactives, such as the actives only account 
for about 12 % of the total compounds in the test sets.

The impact from receptor categories on the calibration 
performance
As shown in Table  2; Fig.  2 and Additional file  1: Fig-
ure S1, the basic performance of docking score for all 
systems is different. Take the Glide docking scoring 
function as an example, for ERK2 drug target, the per-
formance of original docking results is acceptable with 
a low mean MAE (1.20 kcal/mol) and RMSE (1.55 kcal/
mol), and a relatively high mean R2 (0.35) and PI (0.74). 
On the other hand, for some receptors such as MOR, 
the performance of the original docking results is not 
satisfying with a high mean MAE (3.28  kcal/mol) and 
RMSE (3.94  kcal/mol), and a low mean R2 (0.02) and 
PI (0.11). Therefore, in order to further compare the 
improved effect of the algorithm between different sys-
tems by excluding the impact from initial baselines of 
various systems, we quantitatively estimated the differ-
ence between the calibrated docking score and original 
docking score using parameters dRMSE, dMAE, dR2 
and dPI which quantitively measure the difference of 
those measurements before and after the calibration 
(Additional file  1: Table  S4 and Fig.  4). It is observed 
that the extent of the improvement by using this algo-
rithm varied from system to system, which indicates 
that although the developed algorithm can be adapt-
able for various receptors, its enhanced effect can still 
differ and depends on the receptor to some extent. 
The improvement on the scoring power and ranking 
power is more prominently for those systems with poor 

Table 2  Mean RMSE (kcal/mol), MAE (kcal/mol), R2 and  PI before  and  after calibration using the  best hybrid scoring 
function (FP2 fingerprint with CSE = S4) for 11 receptors

“cali” and “orig” represent the calibrated and original docking scores, respectively

Receptor Glide AutoDock Vina

 MAE  RMSE  R2  PI  MAE  RMSE R2  PI

cali orig cali orig cali orig cali orig cali orig cali orig cali orig cali orig

 CFX 1.50 2.10 1.89 2.60 0.52 0.18 0.72 0.41 1.40 1.96 1.76 2.35 0.50 0.12 0.72 0.33

 D2R 1.60 2.49 2.03 3.02 0.17 0.01 0.41 0.09 1.35 1.85 1.71 2.23 0.26 0.03 0.52 0.14

 ERK2 0.88 1.20 1.16 1.55 0.57 0.35 0.81 0.74 0.67 1.48 0.89 1.78 0.70 0.11 0.87 0.54

 ER 1.28 2.01 1.59 2.45 0.69 0.36 0.82 0.63 1.30 1.76 1.70 2.17 0.51 0.14 0.71 0.36

 MOR 1.87 3.28 2.33 3.94 0.18 0.02 0.41 0.11 1.42 1.73 1.78 2.10 0.38 0.10 0.64 0.31

 VEGFR2 1.71 1.80 2.08 2.33 0.39 0.25 0.64 0.51 1.02 1.43 1.32 1.80 0.67 0.42 0.83 0.66

 5HT2AR 1.28 2.38 1.61 2.88 0.39 0.05 0.63 0.23 1.27 1.59 1.62 1.98 0.32 0.11 0.58 0.36

 A2AR 1.32 1.88 1.74 2.32 0.46 0.08 0.68 0.29 1.30 1.89 1.70 2.33 0.44 0.03 0.67 0.14

 CB1 1.23 1.76 1.59 2.15 0.39 0.04 0.64 0.20 1.12 1.99 1.41 2.38 0.49 0.15 0.71 0.39

 M1R 1.36 1.83 1.72 2.27 0.49 0.14 0.72 0.33 1.18 1.62 1.48 1.99 0.58 0.31 0.77 0.54

 rRNA 0.70 1.86 0.85 2.35 0.58 0.08 0.74 0.19 0.63 1.88 0.80 2.10 0.70 0.26 0.78 0.48

 Average 1.34 2.05 1.69 2.53 0.44 0.14 0.66 0.34 1.15 1.74 1.47 2.11 0.50 0.16 0.71 0.39
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docking performance, such as D2R, MOR, 5HT2AR, 
and CB1. After the calibration using the best hybrid 
scoring function, the PI increases by 356 %, 273 %, 
174 % and 220 % for the four systems correspondingly 
(Table  2). After the calibration, not only the docking 
performance is enhanced, but also the standard devia-
tions and the CIs of the metrics measuring the docking 

performance are decreased among different drug 
receptors.

Application of calibration in drug lead identification
In above, we discussed our hybrid scoring function can 
enhance screening performance for focused compound 
libraries in drug lead optimization. Next, we evaluated 

Fig. 3  The mean ROC curves of screening results before and after calibration of Glide docking scores using the best hybrid scoring function (FP2 
fingerprint with CSE = S4) for 11 receptors. “cali” and “orig” represent the calibrated and original docking scores, respectively
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how well the best hybrid function (FP2 fingerprint and 
CSE = S4) performs for diverse compound libraries in 
drug lead identification using two studies. First, we cre-
ated “diverse libraries” by imposing an upper limit of Tc 
as described in Methods section. When we calibrated the 
docking score of a query compound, we applied an upper 
limit of Tc value to exclude reference compounds which 
are structurally similar to the query compound to par-
ticipate calibration. Encouragingly, even applying rela-
tively low upper bound Tc values, our best hybrid scoring 
function can still enhance the docking performance for 
all receptors as shown in Table 4, even though the extend 
of the enhancement becomes much smaller as expected. 
The average values of mean MAE and RMSE decreased 
by 14.1 %, 14.7 %, respectively; and R2 and PI increased 
by 26.7 % and 17.1 %, respectively, after the calibration. 
In a real situation, the enhancement may be significantly 
larger as demonstrated in the second study.

In the second study, we recalculated docking scores of 
the Glide scoring function for a set of external test com-
pound libraries collected by DUDE-E database for two 
drug targets, A2AR and CFX. Unlike the first study, we 
did not impose an upper bound of Tc in selecting refer-
ence compounds to mimic the real situation in virtual 
screening studies, however, for the test compound librar-
ies, we eliminated all the entries which were duplicated 
with reference compounds. The performance of the 
best hybrid docking scoring function is summarized in 
Additional file 1: Tables S6, S7 and shown in Additional 
file 1: Figures S2, S3. The MAE and RMSE were respec-
tively dropped from 1.44 to 1.05, and 1.78 to 1.37  kcal/
mol for A2AR; and the two scoring power metrics were 
decreased from 2.71 to 1.66 and 3.25 to 2.13 kcal/mol for 

CFX. Similarly, the ranking power metrics R2 and PI were 
also significantly increased for both systems. For A2AR, 
R2 changed from 0.05 to 0.19 and PI changed from 0.24 
to 0.46 (a 92 % increase); and for CFX, R2 changed from 
0.02 to 0.16, and PI changed from 0.14 to 0.42 (a 200 % 
increase). As for the screening power, the EF1 % and EF10 % 
respectively enhanced from 1.18 to 1.35 and from 1.12 to 
1.32 for CFX, while these two metrics correspondingly 
increased from 0.98 to 1.06 and 1.13 to 1.28 for A2AR. 
Last, the AUC values were increased from 0.58 to 0.71 for 
CFX and from 0.61 to 0.71 for A2AR.

Taken together, in the scenario of drug lead identifi-
cation, our calibration algorithm can still significantly 
improve the docking performance measured by MAE 
and RMSE for scoring power, R2 and PI for the rank-
ing power and EF and AUC for screening power. On the 
other hand, we pointed out that our method is based on 
docking results, hence the final performance on ranking 
compounds after our calibration algorithm may not meet 
the high standards of correctly ranking and prioritizing 
top compounds in the next stage of lead optimization, for 
which the more rigorous but much more expensive meth-
ods, such as alchemical free energy calculation using free 
energy perturbation [9] and thermodynamic integration 
[30, 31], are usually adopted.

Conclusions
In summary, we developed a novel algorithm for quickly 
improving the scoring power and ranking power of a 
general scoring function used in a docking program by 
calibrating the docking score according to the struc-
tural similarities between the query compound and a set 
of reference compounds, whose experimental binding 

Table 3   Mean AUC, EF10 % and  EF40 % of  screening results before  and  after calibration of  Glide docking scores using 
the best hybrid scoring function (FP2 fingerprint with CSE = S4) for 11 receptors

“cali” and “orig” represent the calibrated and original docking scores, respectively. The average numbers of compounds allocated in the active and inactive sets are 
shown in the table. 95 % CI for each metrics is displayed in the parenthesis

Receptor EF10 % EF40 % AUC​ Actives Inactives

cali orig cali orig cali orig

CFX 2.24 (0.13) 1.85 (0.15) 1.72 (0.08) 1.46 (0.08) 0.85 (0.02) 0.72 (0.03) 84 (6) 62 (3)

D2R 1.96 (0.31) 1.34 (0.15) 1.48 (0.14) 1.14 (0.12) 0.68 (0.05) 0.53 (0.05) 55 (4) 104 (6)

ERK2 7.73 (0.43) 6.26 (0.41) 2.44 (0.07) 2.40 (0.09) 0.97 (0.02) 0.93 (0.02) 20 (2) 151 (7)

ER 2.67 (0.25) 1.91 (0.42) 2.24 (0.09) 1.90 (0.16) 0.95 (0.01) 0.86 (0.03) 18 (3) 32 (4)

MOR 1.52 (0.33) 1.19 (0.31) 1.36 (0.13) 1.13 (0.10) 0.72 (0.05) 0.59 (0.04) 45 (4) 51 (8)

VEGFR2 2.15 (0.12) 2.18 (0.10) 1.75 (0.06) 1.64 (0.06) 0.86 (0.03) 0.79 (0.03) 59 (6) 70 (4)

5HT2AR 1.81 (0.15) 1.20 (0.18) 1.54 (0.08) 1.13 (0.04) 0.81 (0.02) 0.58 (0.02) 77 (5) 85 (5)

A2AR 2.45 (0.13) 1.66 (0.22) 1.87 (0.06) 1.37 (0.05) 0.86 (0.01) 0.66 (0.02) 67 (5) 109 (6)

CB1 2.09 (0.15) 1.67 (0.21) 1.83 (0.08) 1.32 (0.12) 0.84 (0.02) 0.63 (0.03) 54 (4) 76 (4)

M1R 2.39 (0.24) 2.33 (0.28) 1.90 (0.08) 1.33 (0.11) 0.87 (0.02) 0.67 (0.03) 42 (5) 73 (6)

rRNA 11.50 (2.99) 0.00 2.59 (0.20) 2.59 (0.20) 1.00 0.86 (0.03) 1 13 (2)
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affinities have been measured. To evaluate the perfor-
mance of the algorithm, we collected 11 receptors from 
different categories and estimated the enhanced effect 
of our algorithm on the Glide docking score by utiliz-
ing merit metrics of RMSE, MAE, R2, PI, EF and AUC. 
Fingerprint type and structural similarity effect func-
tion, the two factors which can significantly impact the 
performance of the calibration algorithm were system-
atically explored. The results showed that our algorithm 
could enhance the performance of the original docking 

scoring function in both the focused-library and diverse-
library scenarios. We found that a combination of using 
FP2 fingerprint and a S4 CSE function can maximize the 
calibration performance for most systems. For the sce-
nario of using the hybrid scoring function in drug lead 
optimization, the PI increased by 0.32 for both the Glide 
and AutoDock Vina scoring functions; for the scenario 
of using the hybrid scoring function in drug lead identifi-
cation, the PI values of docking screenings using external 
test sets increased by 0.22 and 0.28 for A2AR and CFX 

Fig. 4  The changes of RMSE, MAE, R2 and PI values between the calibrated docking scores and the original docking scores using the Glide docking 
scoring function under the conditions of different fingerprint type and chemical similarity effect function, Sp, where p takes a value of 1, 2, 3 or 4



Page 12 of 13Ji et al. J Cheminform           (2021) 13:11 

systems, respectively. Thus, we successfully developed 
an algorithm which integrates structure-based docking 
scores and ligand-based structural similarity scores into 
a hybrid scoring function and make a good use of known 
experimental values. With more and more measured 
binding affinity data collected by public databases like 
ChEMBL, our calibration algorithm could have more 
and more broad applications in structure-based drug 
design. Afterall, the significantly enhanced performance 
is achieved by a simple calibration algorithm whose 
computational cost is neglectable.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1332​1-021-00493​-4.

Additional file 1: Table S1. Lists the name, entry code, resolution, 
released date and deposition author for each receptor studied in this 
paper. Table S3. Lists the RMSE, MAE, R2 and PI values before and after cal-
ibration of the Glide docking scores under the conditions of different CSE 
function and fingerprint. Table S4. Lists the difference of metrics for the 
measurement of docking performance before and after the calibration, 
i.e., dRMSE, dMAE, dR2 and dPI for the Glide scoring function. Table S5. 
Lists and Figure S1. Shows the RMSE, MAE, R2 and PI values before and 
after calibration of the AutoDock Vina docking scores under the condi-
tions of different CSE functions and fingerprints. Table S6. Shows RMSE, 
MAE, R2 and PI values before and after calibration of Glide docking scores 
for compounds in the external test sets from DUD-E database. Figure S2. 
Shows the comparison of RMSE, MAE, R2 and PI values before and after 
the calibration of the Glide docking scores for A2AR and CFX external test 
sets using the best hybrid scoring function (FP2 fingerprint with CSE = S4). 
Table S7. Displays AUC, EF1 % and EF10 % values before and after calibration 
of Glide docking scores for compounds in the external test sets from 
DUD-E database. Figure S3. Shows ROC curves before and after calibra-
tion of the Glide docking scores for A2AR and CFX external test sets. 

Additional file 2: Table S2A. Glide docking scores (kcal/mol) and experi-
mental energies (kcal/mol) of selected compounds for all 11 targets in 
reference set and validation set. 

Additional file 3: Table S2B. AutoDock Vina docking scores (kcal/mol) 
and experimental energies (kcal/mol) of selected compounds for all 11 
targets in reference set and validation set.

Acknowledgements
The authors also thank the computing resources provided by the Center for 
Research Computing (CRC) at University of Pittsburgh.

Author contributions
JW designed the experiment; BJ conducted the experiment and analyzed the 
data; all authors discussed and wrote the paper. All authors read and approved 
the final manuscript.

Funding
This work was supported by the funds from National Science Founda-
tion (1955260) and National Institutes of Health (R01GM079383 and 
P30DA035778).

Availability of data and materials 
All data come from publication domain. The associated parameters of the 
hybrid scoring functions for each drug target were presented in tables. 

Competing interests
The authors declare no competing financial interest.

Received: 19 October 2020   Accepted: 3 February 2021

References
	1.	 Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecu-

lar docking and structure-based drug design strategies. Molecules 
20:13384–13421

	2.	 Huang SY, Zou X (2010) Advances and challenges in protein-ligand dock-
ing. Int J Mol Sci 11:3016–3034

	3.	 Willett P, Barnard JM, Downs GM (1998) Chemical Similarity Searching. J 
Chem Inf Comput Sci 38:983–996

	4.	 Klopmand G (1992) Concepts and applications of molecular similarity by 
Mark A. Johnson and Gerald M. Maggiora, eds., John Wiley & Sons, New 
York, 1990, 393 pp. Price: $65.00. J Comput Chem 13(4):539–540. https​://
doi.org/10.1002/jcc.54013​0415

Table 4  Mean RMSE (kcal/mol), MAE (kcal/mol), R2 and  PI before  and  after calibration of  Glide docking scores for  11 
receptors by giving similarity a range with lower and upper bound in diverse library

 “Cali” and “Orig” represent the calibrated and original docking scores, respectively. 95 % CI for each metrics is displayed in the parenthesis

Receptor Tc range MAE RMSE R2 PI

Cali Orig Cali Orig Cali Orig Cali Orig

 CFX [0.30,0.45] 1.96 (0.06) 2.01 (0.07) 2.40 (0.07) 2.52 (0.07) 0.20 (0.04) 0.20 (0.04) 0.46 (0.04) 0.45 (0.04)

 D2R [0.30,0.40] 1.92 (0.05) 2.47 (0.05) 2.41 (0.07) 3.01 (0.06) 0.01 (0.01) 0.01 (0.01) 0.10 (0.04) 0.09 (0.04)

 ERK2 [0.30,0.40] 1.09 (0.03) 1.19 (0.04) 1.38 (0.07) 1.54 (0.05) 0.43 (0.05) 0.36 (0.04) 0.77 (0.04) 0.76 (0.04)

 ER [0.20,0.35] 1.79 (0.09) 2.11 (0.08) 2.15 (0.07) 2.53 (0.06) 0.43 (0.06) 0.37 (0.05) 0.69 (0.05) 0.65 (0.04)

 MOR [0.35,0.40] 2.19 (0.10) 3.11 (0.15) 2.70 (0.10) 3.77 (0.17) 0.07 (0.02) 0.03 (0.02) 0.23 (0.06) 0.14 (0.07)

 VEGFR2 [0.25,0.40] 1.89 (0.08) 1.78 (0.08) 2.34 (0.11) 2.33 (0.09) 0.25 (0.05) 0.24 (0.04) 0.51 (0.05) 0.49 (0.05)

 5HT2AR [0.30,0.45] 1.69 (0.07) 2.36 (0.09) 2.09 (0.08) 2.87 (0.09) 0.09 (0.04) 0.07 (0.03) 0.25 (0.06) 0.24 (0.08)

 A2AR [0.35,0.40] 1.84 (0.08) 1.84 (0.09) 2.29 (0.08) 2.27 (0.09) 0.13 (0.03) 0.09 (0.03) 0.36 (0.05) 0.29 (0.06)

 CB1 [0.25,0.40] 1.65 (0.05) 1.78 (0.05) 2.08 (0.05) 2.19 (0.06) 0.09 (0.03) 0.04 (0.02) 0.30 (0.06) 0.21 (0.06)

 M1R [0.35,0.40] 1.80 (0.10) 1.83 (0.07) 2.20 (0.12) 2.25 (0.08) 0.24 (0.04) 0.13 (0.03) 0.47 (0.04) 0.32 (0.04)

 rRNA [0.30,0.35] 1.64 (0.11) 1.78 (0.23) 1.93 (0.11) 2.24 (0.25) 0.14 (0.06) 0.11 (0.06) 0.41 (0.10) 0.22 (0.18)

 Average 1.77 2.02 2.18 2.50 0.19 0.15 0.41 0.35

https://doi.org/10.1186/s13321-021-00493-4
https://doi.org/10.1186/s13321-021-00493-4
https://doi.org/10.1002/jcc.540130415
https://doi.org/10.1002/jcc.540130415


Page 13 of 13Ji et al. J Cheminform           (2021) 13:11 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	5.	 Stumpfe D, Hu Y, Dimova D, Bajorath J (2014) Recent progress in under-
standing activity cliffs and their utility in medicinal chemistry. J Med 
Chem 57:18–28

	6.	 He X, Man VH, Ji B, Xie XQ, Wang J (2019) Calculate protein-ligand binding 
affinities with the extended linear interaction energy method: application 
on the Cathepsin S set in the D3R Grand Challenge 3. J Comput Aided 
Mol Des 33:105–117

	7.	 Wang E, Sun H, Wang J et al (2019) End-point binding free energy calcula-
tion with MM/PBSA and MM/GBSA: strategies and applications in drug 
design. Chem Rev 119:9478–9508

	8.	 He X, Liu S, Lee T-S et al (2020) Fast, accurate, and reliable protocols for 
routine calculations of protein-ligand binding affinities in drug design 
projects using AMBER GPU-TI with ff14SB/GAFF. ACS Omega 5:4611–4619

	9.	 Wang L, Wu Y, Deng Y et al (2015) Accurate and reliable prediction of rela-
tive ligand binding potency in prospective drug discovery by way of a 
modern free-energy calculation protocol and force field. J Am Chem Soc 
137:2695–2703

	10.	 Gaulton A, Hersey A, Nowotka M et al (2016) The ChEMBL database in 
2017. Nucleic Acids Res 45:D945–D954

	11.	 Liu J, Wang R (2015) Classification of current scoring functions. J Chem Inf 
Model 55:475–482

	12.	 Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. 
Nucleic Acids Res 28:235–242

	13.	 Davies M, Nowotka M, Papadatos G et al (2015) ChEMBL web services: 
streamlining access to drug discovery data and utilities. Nucleic Acids Res 
43:W612–W620

	14.	 Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 
2017. Nucleic Acids Res 45:D945-d954

	15.	 Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for 
rapid, accurate docking and scoring. 1. Method and assessment of dock-
ing accuracy. J Med Chem 47:1739–1749

	16.	 Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten 
docking programs on a diverse set of protein-ligand complexes: the 
prediction accuracy of sampling power and scoring power. Phys Chem 
Chem Phys 18:12964–12975

	17.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison 
GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33

	18.	 Luccarelli J, Michel J, Tirado-Rives J, Jorgensen WL (2010) Effects of water 
placement on predictions of binding affinities for p38α MAP kinase 
inhibitors. J Chem Theory Comput 6:3850–3856

	19.	 Michel J, Verdonk ML, Essex JW (2006) Protein-ligand binding affinity 
predictions by implicit solvent simulations: a tool for lead optimization? J 
Med Chem 49:7427–7439

	20.	 Pearlman DA, Charifson PS (2001) Are free energy calculations useful in 
practice? A comparison with rapid scoring functions for the p38 MAP 
kinase protein system. J Med Chem 44:3417–3423

	21.	 Jain AN, Nicholls A (2008) Recommendations for evaluation of computa-
tional methods. J Comput Aided Mol Des 22:133–139

	22.	 Sanner MF (1999) Python: a programming language for software integra-
tion and development. J Mol Graph Model 17:57–61

	23.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison 
GR (2011) Open Babel: an open chemical toolbox. J Cheminformatics 
3:33

	24.	 Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular 
docking. J Med Chem 49:6789–6801

	25.	 Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful 
decoys, enhanced (DUD-E): better ligands and decoys for better bench-
marking. J Med Chem 55:6582–6594

	26.	 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accu-
racy of docking with a new scoring function, efficient optimization, and 
multithreading. J Comput Chem 31:455–461

	27.	 Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially avail-
able compounds for virtual screening. J Chem Inf Model 45:177–182

	28.	 Poli G, Galati S, Martinelli A, Supuran CT, Tuccinardi T (2020) Develop-
ment of a cheminformatics platform for selectivity analyses of carbonic 
anhydrase inhibitors. J Enzyme Inhib Med Chem 35:365–371

	29.	 Shen H, Zamboni N, Heinonen M, Rousu J (2013) Metabolite identifica-
tion through machine learning- tackling CASMI challenge using FingerID. 
Metab 3:484–505

	30.	 Lee T-S, Cerutti DS, Mermelstein D et al (2018) GPU-accelerated molecular 
dynamics and free energy methods in Amber18: performance enhance-
ments and new features. J Chem Inf Model 58:2043–2050

	31.	 Lee T-S, Hu Y, Sherborne B, Guo Z, York DM (2017) Toward fast and accu-
rate binding affinity prediction with pmemdGTI: an efficient implemen-
tation of GPU-accelerated thermodynamic integration. J Chem Theory 
Comput 13:3077–3084

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Incorporating structural similarity into a scoring function to enhance the prediction of binding affinities
	Abstract 
	Introduction
	Materials and methods
	Work outline
	Preparation of receptor datasets
	Preparation of ligand datasets
	Docking software and procedure
	Algorithm for docking score calibration
	Performance evaluation

	Results and discussion
	The impact of fingerprint and CSE function
	The impact from receptor categories on the calibration performance
	Application of calibration in drug lead identification

	Conclusions
	Acknowledgements
	References




