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MolFinder: an evolutionary algorithm 
for the global optimization of molecular 
properties and the extensive exploration 
of chemical space using SMILES
Yongbeom Kwon1,2 and Juyong Lee1*   

Abstract 

Here, we introduce a new molecule optimization method, MolFinder, based on an efficient global optimization 
algorithm, the conformational space annealing algorithm, and the SMILES representation. MolFinder finds diverse 
molecules with desired properties efficiently without any training and a large molecular database. Compared with 
recently proposed reinforcement-learning-based molecule optimization algorithms, MolFinder consistently outper-
forms in terms of both the optimization of a given target property and the generation of a set of diverse and novel 
molecules. The efficiency of MolFinder demonstrates that combinatorial optimization using the SMILES representa-
tion is a promising approach for molecule optimization, which has not been well investigated despite its simplicity. 
We believe that our results shed light on new possibilities for advances in molecule optimization methods.
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Introduction
An inverse molecular design approach, finding valuable 
molecules with desired properties for a given application, 
is drawing attention from chemists recently. Conven-
tional molecular design approaches find novel molecules 
by perturbing known molecules using experienced chem-
ists’ intuition. For validation, the designed molecules 
should be synthesized and tested through experiments. 
This whole procedure requires considerable time and 
resources to complete, which retards the development of 
novel valuable molecules. On the other hand, the inverse 
molecular design determines the desired properties or 
properties first and then searches/generates candidate 
molecules that are assumed to have desired properties 

[1, 2]. With the help of the recent development of artifi-
cial intelligence (AI)/machine learning (ML), the inverse 
molecular design is expected to accelerate the discovery 
of novel molecules in various fields including the phar-
maceutical industry [3].

Various inverse molecular design methods using AI 
have been actively developed recently [4]. The most com-
monly used strategy for molecular design is to use the 
SMILES representation, which is a character-based linear 
notation in which the structure of the molecule is con-
sidered [5]. SMILES strings contain information about 
the structure and stereochemistry of a molecule and 
the presence of electric charges. Here, we briefly review 
a few examples of ML-based molecule generation mod-
els. First, various methods using SMILES have been 
developed based on the variational autoencoder (VAE) 
algorithm [6–8]. Recently, Zhavoronkov and coworkers 
successfully found novel DDR1 inhibitors using a VAE-
based model [9]. VAE-based approaches convert input 
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SMILES strings or molecular graphs into multi-dimen-
sional vectors on a latent space based on their similari-
ties and physicochemical properties. It is also shown that 
molecular transformations are possible by vector trans-
formation on the numerical chemical space.

The second class of approaches used the recurrent neu-
ral network (RNN) algorithms [10, 11]. RNN-models are 
trained to learn the syntax of the SMILES representa-
tion from a large set of molecule database. After initial 
training, the models are used to generate novel SMILES 
strings sequentially. Generally, RNN-based methods have 
two inherent limitations. First, not all generated SMILES 
strings are valid; some generated strings violate the syn-
tax of SMILES. Second, generated SMILES strings may 
overlap with those in the training set.

Efforts are being made to create the models that gen-
erate molecules with desired properties using the idea of 
reinforcement-learning (RL) [9, 11–14]. RL is an area of 
ML that aims to obtain the best of the selectable behav-
iors based on the current environment. As an example, 
the ReLeaSE algorithm [12] performed RL with a SMILES 
generating model using stacked-RNN cells [15] trained 
with known chemical databases. ReLeaSE was shown to 
generate molecules with desired physicochemical prop-
erties and was used to design possible strong binders of 
the JAK2 proteins. Another RL-based molecular design 
model is Molecule DQN (MolDQN) [13], which is based 
on the Deep Q-Networks (DQN) algorithm [16], which 
is one of the state-of-the-art RL algorithms. MolDQN 
uses predefined molecular variation operations to modify 
existing molecules into new molecules suitable for their 
purposes. Together with the VAE approach, RL–VAE 
models that improve the fitness of molecules produced 
by VAE via RL have been suggested [17, 18]. More com-
prehensive reviews of various ML-based molecular gen-
eration and optimization methods are given in detail in 
recent papers [4, 19–21].

The above ML-based models must be trained using 
existing molecular libraries such as ZINC [22], ChEMBL 
[23], and PubChem [24]. One potential limitation of 
ML-based approaches is that the results of these models 
heavily depend on training data. In other words, these 
models may be difficult to generate novel molecules that 
are highly dissimilar to the molecules seen during train-
ing. For example, in the case of the VAE model, the latent 
multi-dimensional space is constructed based on the sim-
ilarities between input molecules, which guarantees good 
interpolation between known molecules. However, it is 
still not clear whether extrapolation on the latent space 
will yield valid molecules. In summary, ML-based models 
suffer from strong training data dependence, which may 
bias the quality and quantity of generated molecules.

In addition to recent ML-based approaches, various 
genetic algorithm (GA)-based molecular property opti-
mization algorithms have been developed [25–34]. The 
main advantage of GA-based algorithms is that they do 
not require a large amount of molecule data relevant to 
a given optimization task because they search novel mol-
ecules in a combinatorial and stochastic way. Also, they 
do not need to train a molecule generator, which takes 
considerable computational time and resources. Most 
existing GA-based molecular optimization algorithms 
are based on the graph representation of a molecule. 
In recent studies, they showed competitive, sometimes 
better, performance compared to ML-based methods 
in generating novel molecules with desired properties 
[26, 27, 29, 30]. In addition, the design of any arbitrary 
operation may be limited because generally it is tightly 
coupled with the molecular manipulation functionality 
of underlying cheminformatics libraries, such as RDKit 
[35]. Alternative to graph-based approaches, Yoshikawa 
et  al. proposed a GA method by converting a SMILES 
string into a 200-dimensional integer array based on a 
certain grammar [31]. However, interestingly, performing 
GA using the SMILES representation itself has not been 
well investigated despite its simplicity and computational 
efficiency [32, 34]. The approach has been considered less 
efficient than the graph-based approaches [29, 30, 33, 34].

Here, we propose the MolFinder method, which is a 
new molecular design algorithm using the conforma-
tional space annealing (CSA) algorithm [36], a class of 
an evolutionary algorithm. Previously, it has been con-
sidered that performing GA with SMILES is inefficient 
because the random crossover and the mutation opera-
tions of SMILES strings mostly result in invalid SMILES 
strings [29, 30]. For the global optimization of molecular 
properties, MolFinder employs the CSA algorithm, which 
has been successfully applied to many global optimiza-
tion problems in various disciplines [36–40]. Compared 
to conventional GA, the CSA algorithm has sophisticated 
selection procedures to control the diversity of popula-
tions/solutions during sampling.

In this study, to show that MolFinder, a GA-based 
approach using SMILES, is an orthogonal and comple-
mentary approach to RL-based approaches for molecu-
lar property optimization, we compared the sampling 
efficiency of MolFinder with two widely used RL-based 
methods, ReLeaSE and MolDQN. The ReLeaSE method 
is one of the earliest attempts to apply reinforcement 
learning to find molecules with optimized properties and 
is being widely used. The MolDQN has also been widely 
used since its publication because the method uses the 
deep Q-Network (DQN), one of the state-of-the-art RL 
algorithms. The DQN method has shown its efficiency in 
various tasks, such as training a human-level model that 
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plays Atari games [16]. Here, we show that MolFinder 
finds novel molecules with better properties than the 
RL-based methods, while keeping the diversity of sam-
pled molecules. Additionally, it is demonstrated that 
MolFinder successfully explores a wider range of chemi-
cal space than the other RL-based methods tested here.

Methods
Global property optimization using conformational space 
annealing
The goal of this study is to develop an efficient algorithm 
that performs global optimization of molecular proper-
ties on chemical space. We call our method MolFinder. 
In this study, the CSA algorithm, a highly efficient global 
optimization algorithm, was utilized for the global search 
on chemical space [36, 38, 40–42]. CSA combines the 
strengths of GA, simulated annealing [43], and Monte-
Carlo minimization [44]. It performs an extensive search 
during the initial stage of search and intensive optimiza-
tion near many different local minima during the later 
stage of the search by controlling distance constraints 
between candidate solutions. The detailed description 
of the general CSA algorithm and its efficiency are dis-
cussed in detail elsewhere [37].

MolFinder performs a global search on chemical 
space using the SMILES representation. The workflow 
of MolFinder is illustrated in Fig.  1. During the search, 
MolFinder uses a set of molecules called a bank, and its 
size, Nbank , is kept constant during the search. In this 
study, Nbank is set to 1000. MolFinder starts with a prede-
fined number of random molecules. The average distance 
between all pairs of molecules in the first bank is calcu-
lated, Davg . The half of Davg is set as an initial distance 
cutoff, Dcut = Davg/2 , which is used to keep the diversity 
of the bank. A distance between a pair of molecules is 
defined as 1− S(mi,mj) , where S(mi,mj) is the similar-
ity between the two molecules, mi and mj . In this study, 
a similarity between the two molecules is calculated by 
using the Tanimoto coefficient of their RDKit fingerprint 
vectors [35].

Among Nbank molecules, a subset of best molecules in 
terms of a given objective function with a size of Nseed is 
selected as seed molecules for generating new molecules. 
In this study, we set Nseed = 600 . Afterward, one mol-
ecule is randomly selected from this seed set, and the 
other from the entire bank. New molecules, child solu-
tions, are generated from this pair through cross-over 
and mutation operations (Fig. 2). From a single seed mol-
ecule, 40 molecules are generated by crossover. Mutation 
operations consist of addition, deletion, and substitution 
of an atom, and 20 molecules are generated by each oper-
ation, respectively. In summary, a total of 100 molecules 
are generated from one seed molecule.

The generated molecules are followed by local opti-
mization. For local optimization, atoms in a molecule 
are randomly substituted with other elements for a cer-
tain number of times. If the objective value of a mol-
ecule becomes better, the change is accepted, otherwise 
rejected. In this study, we tested the two versions of 
MolFinder, with and without this local optimization step. 
Sampling with local optimization is called MolFinder-
local in this paper.

The generated new molecules are used to update the 
bank by considering both the diversity of molecules 
and their objective values. First, if a new molecule has a 
worse objective value than the worst of the bank, it is dis-
carded. If it is not discarded, the molecule is compared 
with all molecules in the bank and its nearest neighbor 

Fig. 1  The workflow of MolFinder
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is identified. Then, if the distance between the molecule 
and its nearest neighbor is less than Dcut , the two mol-
ecules are considered to be in the same basin on chemi-
cal space. Thus, only one molecule with a better objective 
value remains. If the distance between the new molecules 
and its nearest neighbor in the bank is larger than Dcut , 
the new molecule is considered to represent a favorable 
novel region and it replaces the molecule with the worst 
objective value in the bank. The Dcut value decreases by 
a power of 0.98 after every generation until it reaches 
Davg/5 . After Dcut becomes Dcut/5 , it remains constant. 
By using this update procedure, the CSA algorithm ena-
bles an extensive search on chemical space and prevents 
the premature convergence of the search.

Crossover operation
The key components of MolFinder are crossover and 
mutation operations using SMILES strings to gener-
ate novel molecules (Fig.  2). The pseudocode of the 
crossover operation is presented in Algorithm 1. A pair 
of SMILES strings are truncated from both the left and 

the right to enhance the diversity of substructures. In 
other words, one string is truncated from the left and the 
other from the right. The positions to be truncated are 
selected almost randomly for both strings by considering 
ring structures. To generate more valid SMILES strings, 
truncation of a SMILES string in the middle of a ring 
structure is avoided. The two truncated strings are con-
catenated and the numbers of open and closing parenthe-
ses are counted. If they do not match, excess parentheses 
are removed or deficient parentheses are inserted at ran-
dom positions. After fixing imbalanced parentheses, the 
validity of the resulting string is checked. If the concat-
enated string is not valid, the procedure is repeated until 
it results in a valid SMILES string. If a valid SMILES is 
not found after 30 iterations, the left and right SMILES 
strings are swapped and the same procedure is repeated 
30 times more. If a valid SMILES is not found, even after 
the additional 30 iterations, the pair is discarded. The 
average rate of generating a valid SMILES via crossover is 
81.7% (Additional file 1: Table S1).

Fig. 2  The Crossover and mutation operators The crossover (a) and mutation operations (b) using SMILES strings
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Mutation operation
Mutation operations consist of the insertion, deletion, 
and substitution of atoms of a molecule. For insertion 
and deletion operations, an atom is inserted or deleted 
at a random position of a SMILES string. If the resulting 
string is not valid, the operation is repeated until a valid 
molecule is generated up to 30 times. The pseudocode 
of the substitution operation is shown in Algorithm 2. A 
random atom of a molecule is substituted with another 
atom considering its neighboring environment, such as 
the number of valences. To consider the valence of an 
atom properly, a SMILES string is converted to a Mol 
type instance of RDKit. The average rate of generating a 
valid SMILES via a mutation operation is over 99%.

Dataset
In this study, initial molecules were randomly sampled 
from the ZINC15 database [22], which consists of pur-
chasable drug-like molecules. As of Nov. 2019, there were 
over 980 million SMILES strings in ZINC15 and they 
were grouped as tranches based on molecular weight 
and logP values. We randomly sampled 1/1000 of each 
tranche, resulting in 982,518 SMILES strings. This subset 
was used as a seed set for both MolFinder and the train-
ing set for other deep-learning-based generation models.

Comparison with reinforcement‑learning‑based methods
To assess the efficiency of MolFinder, we compared the 
objective values and the diversity of generated molecules 
with two generative-model-based molecular property 
optimization approaches, ReLeaSE [12] and MolDQN 
[13]. ReLeaSE uses the reinforcement-learning approach 
[16] and a stacked-RNN model [15] to generate novel 

SMILES strings with desired properties. To compare 
with MolFinder, we used the ReLeaSE code downloaded 
from its Github repository [12]. The initial training of a 
stacked-RNN machine to learn the syntax of SMILES 
was performed with the training set, the random subset 
of ZINC15. A learning rate of 0.00005 was used. After 
initial training, reinforcement-learning was performed 
for 3000 steps to optimize the machine to produce more 
molecules with desired properties.

MolDQN [13] is a molecular property optimiza-
tion approach based on the DQN reinforcement learn-
ing algorithm [16]. With the MolDQN approach, a seed 
molecule is modified by atom addition, bond addition/
deletion operations to optimize target properties. The 
advantage of MolDQN is that it generates valid molecules 
mostly because it generates a new molecule by modi-
fying a seed molecule with the predefined operations. 
We downloaded the MolDQN code from its Github 
repository and reinforcement-learning was performed 
for 40,000 episodes. One episode means the comple-
tion of modifying a seed molecule. Similar to ReLeaSE, 
MolDQN also requires the initial training of its genera-
tive model to learn the syntax of SMILES. The generator 
of MolDQN was trained with the identical training set 
with ReLeaSE. MolDQN simulations were performed 
from the seed molecule provided in their repository.

Implementation detail
MolFinder was implemented with Python version 3.7.6. 
To compute molecular similarities and properties, RDKit 
version 2019.09.3.0 [35] was used. MolDQN was per-
formed with Tensorflow version 1.15 [45] and ReLeaSE 
with PyTorch version 1.4 [46].
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Results and discussion
Optimization of drug‑likeness
To assess the efficiency of molecular property optimiza-
tion approaches, we sampled molecules by optimizing 
the following objective function, a modified drug-like-
ness score, SmQED:

where SQED(m) is the original quantitative estimate of 
drug-likeness (QED) score [47] of a molecule m, SSA(m) 

(1)SmQED(m) = wSQED(m)− (1− w)SSA(m),

Table 1  A comparison of modified drug-likeness optimization 
results by the MolFinder, ReLeaSE and MolDQN methods

ZINC MolFinder MolFinder-local ReLeaSE MolDQN

Mean 0.7086 0.9237 0.9240 0.8473 0.8677

Std. 0.1248 0.0020 0.0027 0.0380 0.0240

Min. 0.3263 0.9209 0.9199 0.7570 0.8281

Max. 0.9224 0.9316 0.9326 0.9317 0.9235

Fig. 3  A comparison of modified drug-likeness scores of the generated molecules The violin plots of the modified drug-likeness scores of 
generated molecules by MolFinder, MolFinder-local, ReLeaSE, and MolDQN (top). The histogram of QED (left bottom) and SA score (right bottom) 
values of the generated molecules by MolFinder (orange), ReLeaSE (green), and MolDQN (red), and those of the initial ZINC15 database (blue)
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is the synthetic accessibility [48] of m, and w is the weight 
of SQED . In this study, we used w = 0.994 . The QED score 
ranges from 0 to 1, and more drug-like molecules have 
values closer to 1. The synthetic accessibility score spans 
from 0 to 10, and a higher score indicates that a molecule 
is expected to be harder to synthesize [48]. Thus a high 
modified QED value, SmQED , indicates that a molecule 
has similar molecular properties to known drugs and is 
easy to synthesize.

To assess the optimization efficiency of ReLeaSE and 
MolDQN, we generated 10,000 SMILES strings with each 
method using SmQED (Eq. 1). The validity of the strings was 
checked and only valid ones were kept for further analy-
sis. All SMILES strings generated by MolDQN were valid. 
However, after removing redundancy, only 4273 molecules 
remained. This shows that more than half of the generated 
molecules by MolDQN were redundant. ReLeaSE gener-
ated 9821 valid SMILES strings from 10,000 trials. After 
removing redundancy, only 1340 molecules remained. In 
other words, more than 80% of the generated molecules by 
ReLeaSE were redundant suggesting that generative mod-
els may have limitations in sampling diverse molecules. 
For a fair comparison, the top-1000 molecules in terms of 
SmQED were selected from each generated set.

A comparison of the top-1000 molecules obtained 
with MolFinder and the other approaches demon-
strates that MolFinder discovers better molecules than 
the other methods (Table 1 and Fig. 3). MolFinder-local 
achieved the highest mean SmQED of 1000 molecules, 
0.9240. The molecule with the highest SmQED , 0.9326, 
was also obtained with MolFinder-local. It is notice-
able that the minimum SmQED values obtained with both 
MolFinder models, 0.921 and 0.920, are significantly 
higher than those of the ReLeaSE and MolDQN results, 
which are 0.847 and 0.868, respectively. These numbers 
indicate that even the worst molecules generated by the 
MolFinder are comparable to those generated by the RL-
based methods. When the two versions of MolFinder 
methods are compared, it is identified that MolFinder-
local finds slightly better molecules than MolFinder.

Overall, the ReLeaSE results have the lowest mean and 
minimum SmQED values. However, it found one molecule 
that has a higher SmQED value than the best of MolFinder, 
but lower than that of MolFinder-local. This indicates 
that the molecules generated by ReLeaSE have a wide 
distribution in terms of SmQED . Similarly, MolDQN gen-
erated a few molecules with SmQED values higher than 
0.9. However, the SmQED values of most molecules gen-
erated by MolDQN were distributed between 0.85 to 
0.90, which were significantly lower than the MolFinder 
and MolFinder-local results (Fig.  3).  More details are 
displayed  in  Additional file  1:  Figure S1. To show the 
statistical significance of this difference, we performed 

the two-sample t-tests by using the MolFinder results 
as a reference (Additional file  1: Table  S2). The t-test 
results show that the MolFinder results have higher 
objective values than the RF-based methods statistically 
significantly.

For further analysis, we compared the distributions 
of the original QED score and the SA score indepen-
dently (the bottom plots of Fig.  3). The analysis shows 
that MolFinder results have significantly higher origi-
nal QED values than the other methods (left bottom of 
Fig. 3). All molecules generated by MolFinder had SQED 
values of higher than 0.92. On the other hand, the results 
of the other methods have lower SQED values. Following 
MolFinder, the most frequently observed SQED values of 
MolDQN and ReLeaSE results are centered around 0.90. 
On average, MolDQN results have slightly higher SQED 
values than the ReLeaSE results. All optimization results 
have higher SQED values than ZINC15 on average.

In terms of synthetic accessibility, the ReLeaSE results 
have the lowest average SSA value meaning that they are 
relatively easier to synthesize, followed by the MolFinder 
and MolDQN results (right bottom of Fig. 3). It is notice-
able that the MolDQN results have significantly higher 
SSA values than the initial molecules from ZINC15. This 
suggests that MolDQN tends to optimize seed mol-
ecules by modifying them into complicated and harder 
ones to synthesize (Additional file 1: Figure S2). On the 
other hand, the reinforced ReLeaSE is inclined to gen-
erate rather simpler molecules (Additional file  1: Figure 
S3). In summary, although both ReLeaSE and MolDQN 
are based on the reinforcement learning algorithms, 
they optimize molecules in the opposite way: making 
molecules simpler and more complex. The SSA values of 
MolFinder results are distributed between those of the 
ReLeaSE and MolDQN results, which are also improved 
than the ZINC15 set (Additional file 1: Figure S4, S5).

The top-12 molecules discovered by MolFinder are pre-
sented in Fig.  4. It appears that all molecules consist of 
relatively simple fragments and high SQED values. All top-
12 molecules in Fig. 4 have low SSA values, less than 2.5, 
suggesting that they are readily synthesizable. It is notice-
able that, even though we optimized SmQED in this study, 
the SQED values of the top-12 molecules are identical or 
comparable to the best reported values obtained from the 
sole optimization of SQED [26]. In conclusion, the above 
results indicate that molecule optimization of SmQED 
using MolFinder successfully generated a set of mole-
cules with good drug-likeness and synthetic accessibility 
simultaneously. This clearly demonstrates that MolFinder 
can help accelerate the drug discovery process by gener-
ating novel drug candidates that are readily synthesizable.

Through extensive sampling of chemical space using 
MolFinder, we found that many different molecules have 
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similarly high QED values. In other words, the QED 
measure itself has high degeneracy. This high degeneracy 
is due to the innate characteristics of QED design [47]. 
QED is calculated based on the histograms of eight rep-
resentative chemical properties of 771 orally absorbable 
drugs. QED is designed to be scored highest if the prop-
erties of molecules correspond to the modes of the his-
tograms. For example, the mode of molecular weight is 
in the range between 290 and 300 and the mode of the 
number of aromatic rings is two. Thus, considering the 
vast size of chemical space, the existence of many mol-
ecules with similar properties to known orally absorbable 
drugs is possible and MolFinder successfully discovered 
them. However, the RL-based methods have large varia-
tions in objective values because they are not fully con-
verged to the global maximum of the objective function 
during optimization. When ReLeaSE and MolDQN were 
iterated ten times, each optimization calculation finished 
at quite different points in chemical space, which demon-
strates that MolFinder performs more extensive sampling 
than the RL-based methods.

To assess whether the performance of MolFinder 
depends on the choice of the weight of SmQED , we 
performed additional calculations with different 
weights (Additional file  1: Table  S3). With w = 0.5 , the 

average SmQED of the top-1000 molecules obtained 
with MolFinder is − 0.274 while those of ReLeaSE and 
MolDQN are − 0.514 and − 1.101, respectively. Similarly, 
when w = 0.9 , the average SmQED of the best molecules 
of MolFinder results is 0.675 while those of ReLeaSE 
and MolDQN are 0.551 and 0.288. With w = 0.95 , the 
average SmQED of MolFinder results is 0.804 while those 
of ReLeaSE and MolDQN are 0.667 and 0.473. Overall, 
these results show that the performance of MolFinder is 
invariant to the change of the weights of SmQED and all 
generated molecules are unique. The structures of opti-
mized molecules are illustrated as Additional file 1: Fig-
ures S6, S7 and S8.

Fig. 4  Top-12 molecules discovered by MolFinder The modified drug-likeness scores (TARGET, Eq. 1) and their drug-likeness (QED) and synthetic 
accessibility score (SA score) are presented

Table 2  A comparison of pairwise similarities between 
generated molecules by the MolFinder, ReLeaSE and MolDQN 
methods

Mean Std.

MolFinder 0.3106 0.0716

MolFinder-local 0.3211 0.1116

ReLeaSE 0.4330 0.0782

MolDQN 0.3693 0.0719
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We also tested optimization of the normalized form 
of SmQED , S′mQED , with various weights. The normalized 
SmQED is defined as follows so that the contribution of 
SA-score is scaled from 0 to 1:

The structures of best molecules obtained with different 
weights are illustrated as Additional file 1: Figures S9 to 
S13. When the weight is high, i.e., w > 0.9 , the molecules 
with high objective values are similar to those obtained 
with Eq. 1. When the weight is low, i.e., synthetic acces-
sibility is considered more importantly, most molecules 
have rather simple chemical structures and are highly 
similar to each other. For example, with w = 0.1 and 0.3, 
all highest-scored molecules have only two benzene rings 
connected with three or four bonds (Additional file  1: 
Figure S9). This simplicity seems to be due to the bias of 
SA-score [48].

(2)
S′mQED = wSQED(m)+ (1− w)(1− (SSA(m)− 1)/9).

Diversity of generated molecules
To assess the sampling efficiency of the tested 
approaches, pairwise similarities between the generated 
molecules were investigated (Table 2). It is demonstrated 
that MolFinder and MolFinder-local find more diverse 
sets of molecules than the other RL-based approaches. 
This suggests that MolFinder performs a more exten-
sive exploration of chemical space than the others. The 
average pairwise similarities of molecules sampled by 
MolFinder and MolFinder-local were 0.3106 and 0.3211, 
while those of ReLeaSE and MolDQN were 0.4330 and 
0.4097, respectively. From the histogram of pairwise sim-
ilarities, it is evident that most pairs of molecules have 
similarity values between 0.1 and 0.4 (Fig.  5). Although 
the ReLeaSE results show a peak of around 0.2, which is 
similar to the MolFinder results, they also include many 
pairs of molecules whose similarities are over 0.4. The 
MolDQN results have a peak of around 0.38, which is sig-
nificantly larger than those of the other methods. In other 
words, the molecules generated by the MolFinder meth-
ods are highly diverse while those generated by ReLeaSE 
and MolDQN are much more similar to each other. This 
implies that RL-based methods are likely to be biased and 
their results may be confined to a certain region of chem-
ical space possibly due to training data dependency.

Recently, to avoid the problem of low-diversity of RL 
results, Blaschke and coworkers developed a memory-
assisted reinforcement learning to generate diverse opti-
mized molecules [49]. In their algorithm, the model 
has the memory of previously generated molecules. If a 
newly generated molecule is highly similar to a saved one, 
a reward function is penalized. In this way, the authors 
showed that the RL can be improved to generate more 
diverse molecules while optimizing a given objective.

To identify the training/initial data dependency of 
the methods, the distributions of generated molecules 
are displayed by using the t-SNE dimension reduction 
method [50] (Fig.  6). A molecular similarity was cal-
culated using the MACCS key [51]. From the plot, it is 

Fig. 5  Pairwise similarities between generated molecules. The 
density plots of pairwise similarities between generated molecules 
by MolFinder (blue), MolFinder-local (yellow), ReLeaSE (green), and 
MolDQN (red). The pairwise similarity was calculated using the RDKit 
fingerprint and Tanimoto coefficient

Table 3  A comparison of uniqueness and novelty of generated molecules and their scaffolds

a  Pscaffolds represents the fraction of distinct scaffolds.
b  The fraction of novel scaffolds was calculated by comparison with scaffolds that are contained in the training dataset

Method Unique Novel (M) Scaffolds (N) Pscaffolds (N/M)a Novel 
scaffold 
%b

ZINC 1000 – 956 0.956 –

MolFinder 1000 1000 860 0.860 99.2

MolFinder-local 1000 1000 828 0.828 98.6

MolDQN 1000 997 880 0.883 96.1

ReLeaSE 967 967 213 0.220 92.0
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clear that MolFinder and MolFinder-local sampled dif-
ferent regions of chemical space compared to the initial 
data from ZINC15. On the t-SNE plot, MolFinder results 
form several distinct clusters that are widely spread over 
chemical space. On the other hand, molecules generated 
by ReLeaSE are mostly clustered at the right top of the 
plot, which suggests that they are similar to each other 
and the sampling of ReLeaSE may be biased. Also, mol-
ecules from ZINC15 are highly populated at the right top 
region and they are largely overlapped with the ReLeaSE 
results. MolDQN results overlap with the training data 
most. Molecules from ZINC15 and MolDQN are mostly 
clustered around the center and the left-center region 
of the plot. This indicates that molecules generated by 
MolDQN are highly similar to seed molecules, which 
may limit the sampling efficiency of the method. In sum-
mary, MolFinder and MolFinder-local explore wider 
regions of chemical space than the other methods.

Assessment of novelty of molecules
To further analyze the sampling efficiencies of the molec-
ular optimization methods, the uniqueness and novelty 
of molecules and their Bemis–Murcko scaffolds [52] were 
investigated (Table  3). Almost all molecules generated 
by MolFinder and MolFinder-local were novel, absent 
in the input database. Only one molecule generated by 
MolFinder was found in the input database and none by 
MolFinder-local. Thirty-three molecules generated by 
ReLeaSE were redundant. In terms of scaffolds, MolDQN 
found the most unique scaffolds, 880. However, as identi-
fied by higher SA scores in Fig. 3, MolDQN results have 
relatively complex chemical structures, such as many 
fused rings, which make them hard to synthesize and less 
practical (Additional file  1: Figure S2). The MolFinder 
and MolFinder-local methods generated 860 and 828 
scaffolds, respectively, which are comparable to the 
MolDQN results. However, their SSA values are signifi-
cantly lower than those of the MolDQN results (Fig. 3). 
In other words, most molecules discovered by MolFinder 
were drug-like and reasonably easy enough to synthesize 
(Additional file 1: Figures S4 and S5). It is noticeable that 
ReLeaSE generated only 213 unique scaffolds, which are 
remarkably smaller than the other methods. Many mol-
ecules generated by ReLeaSE were identified to have 
similar scaffolds and only peripheral groups were differ-
ent (Additional file  1: Figure S3). This suggests that the 
reinforced generator of ReLeaSE may be biased to yield 
only similar molecules, which limit the efficiency of RL-
based models.

Additionally, the percentages of novel scaffolds were 
investigated. If a scaffold was not found in the ini-
tial dataset, it was considered novel. MolFinder results 
showed the highest percentage of a novel scaffold, 99.2%. 

The percentages of novel scaffolds of the ReLeaSE and 
MolDQN results, 96.1% and 92.0%, were lower than 
those of MolFinder and MolFinder-local. This demon-
strates that the MolFinder methods not only optimize a 
target property more efficiently but also perform a wider 
exploration of chemical space than the other methods.

Computational efficiency
To compare the computational efficiency of MolFinder 
and other RL-based methods, we compare the total 
runtime of each method. One of the advantages of GA-
based methods over RL-based methods is that RL-based 
models require pre-training of a model to learn the syn-
tax of SMILES generally, while GA-based algorithms 
do not. Overall, MolFinder required about 24 h to 36 h 
to obtain converged results depending on the weight 
on a single Intel Xeon Gold 6132 processor  (Additional 
file  1:  Table  S4). The variation in runtime is due to the 
complexity of optimized molecules. When the weight 
of QED is small, relatively simple and similar molecules 
were generated, leading to less computational time to 
generate the fingerprints of molecules.

For the RL-based models, all deep-learning calcula-
tions were performed on a single RTX-2080Ti card. A 
MolDQN model required about 50 h to complete 40,000 
episodes of reinforcement on average. To train a ReLeaSE 
model, it required about 100 h to train a generative 
model, which learns the syntax of SMILES and 33.5 h to 
perform reinforcement learning, optimization, on aver-
age. These results show that the computational efficiency 
of MolFinder is comparable to those of the RL-based 
methods.

Guacamol benchmark
In the previous section, we showed that MolFinder sam-
ples better molecules in terms of SmQED . However, it 
was suggested that optimization of QED is trivial and 
may not be an effective way to assess the efficiency of a 
molecular optimization method [29]. Thus, for a more 
rigorous assessment of our method, we performed the 
optimization of the goal-directed tasks of the Guacamol 
benchmark set [29]. The Guacamol benchmark consists 
of multiple non-trivial optimization tasks related to the 
optimization of physicochemical properties of drug-like 
molecules and provides a common ground to assess the 
efficiency of molecular property optimization methods.

For each Guacamol goal-directed task, we repeated 
MolFinder calculations ten times and obtained the maxi-
mum objective values (Additional file  1:  Table  S5). The 
results demonstrate that the optimization efficiency of 
MolFinder is comparable to existing state-of-the-art 
methods (Table 4). MolFinder successfully found the best 
ones, with an objective value of 1.0, for the rediscovery 
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tasks. For the Median molecules 2 and Amlodipine multi-
property optimization (MPO) tasks, MolFinder found the 
highest objective values than the reported values. Only 
for the zaleplon MPO task, MolFinder is showing a worse 
result than the other methods, which is probably due to 
the lack of a bond-order changing operation.

Generating similar molecules to a reference
Designing novel molecules based on a specific scaffold or 
a core structure is a commonly used approach for molec-
ular design. Thus, generating molecules with desired 
properties while preserving a specific scaffold has practi-
cal advantages. To benchmark this, we optimized the fol-
lowing objective function used by Zhou et al. [13] using 
MolFinder and MolDQN:

where Ssim(m,mref) is the Tanimoto similarity between 
a molecule m and a reference molecule mref calculated 
with the Morgan fingerprint and w is the weight coeffi-
cient of the similarity term. Here, we set w = 0.8 . For this 
test, we compared MolFinder with MolDQN because, 
based on the previous benchmarks, MolDQN performs 
much wider sampling of chemical scaffolds (Table 3).

Independent molecular generation calculations were 
repeated ten times using MolFinder and MolDQN based 
on the same reference molecule used to benchmark 

(3)f (m) = wSsim(m;mref)+ (1− w)SQED(m)

Fig. 6  An overview of the distribution of generated molecules on 
chemical space The t-SNE plot of the top-1000 molecules generated 
by MolFinder (yellow), MolFinder-local (green), MolDQN (red), and 
ReLeaSE (purple). For comparison, initial/seed molecules from ZINC15 
(blue) are illustrated together. The sizes of circles are proportional to 
the molecules’ SmQED values. The best molecule generated by each 
method is emphasized with black border lines

Table 4  Optimization results on the GuacaMol benchmark

Benchmark SMILES LSTM Graph GA CReM MSO EvoMol MolFinder

Celecoxib rediscovery 1.000 1.000 1.000 1.000 1.000 1.000

Troglitazone rediscovery 1.000 1.000 1.000 1.000 1.000 1.000

Thiotixene rediscovery 1.000 1.000 1.000 1.000 1.000 1.000

Aripiprazole similarity 1.000 1.000 1.000 1.000 1.000 1.000

Albuterol similarity 1.000 1.000 1.000 1.000 1.000 1.000

Mestranol similarity 1.000 1.000 1.000 1.000 1.000 1.000

C11H24 0.993 0.971 0.966 0.997 1.000 1.000

C9H10N2O2PF2Cl 0.879 0.982 0.940 1.000 1.000 1.000

Median molecules 1 0.438 0.406 0.371 0.437 0.455 0.412

Median molecules 2 0.422 0.432 0.434 0.395 0.417 0.454

Osimertinib MPO 0.907 0.953 0.995 0.966 0.978 0.945

Fexonadine MPO 0.959 0.998 1.000 1.000 1.000 0.999

Ranolazine MPO 0.855 0.920 0.969 0.931 1.000 0.947

Perindopril MPO 0.808 0.792 0.815 0.834 0.884 0.816

Amlodipine MPO 0.894 0.894 0.902 0.900 0.906 0.924

Sitagliptin MPO 0.545 0.891 0.763 0.868 0.966 0.948

Zaleplon MPO 0.669 0.754 0.770 0.764 0.810 0.695

Valsartan SMARTS 0.978 0.990 0.994 0.994 1.000 0.999

deco hop 0.996 1.000 1.000 1.000 1.000 1.000

scaffold hop 0.998 1.000 1.000 1.000 1.000 0.948
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MolDQN (PubChem CID: 174590) [13]. Each MolDQN 
simulation was performed for 40,000 episodes and only 
the best 1000 non-redundant molecules in terms of the 
objective value (Eq. 3) were analyzed. Thus, 10,000 mol-
ecules were generated by MolFinder and MolDQN, 
respectively, and they are analyzed here.

It is demonstrated that the molecules generated by 
MolFinder have remarkably higher objective values and 
similarities than those generated by MolDQN (Fig.  7). 
The average objective value of the MolFinder results was 
0.716, while that of the MolDQN results was 0.628. All 
molecules generated by MolFinder have higher objective 
function values over 0.7, while MolDQN results peaked 
around 0.6.

This difference is mainly attributed to the higher simi-
larity to the reference molecule [ Ssim(m;mref) in Eq.  3]. 
The molecules generated by MolFinder had an average 
similarity of 0.784 to the reference. However, the mol-
ecules generated by MolDQN were less similar to the 
reference with an average similarity of 0.669. This result 
shows that MolFinder results are much similar to the ref-
erence as intended. In terms of the QED, the MolDQN 
results were slightly better than the MolFinder results, 
0.461 to 0.444, while the difference is much smaller than 
that of the similarity. It is not clear whether such a small 
difference in QED, 0.017, will lead to a significant differ-
ence in the final quality of generated molecules. In sum-
mary, these results suggest that MolFinder outperforms 
MolDQN in generating molecules that have desired 
properties and are similar to a given reference molecule, 
simultaneously.

Conclusion
In this study, we presented a new molecule optimiza-
tion approach, MolFinder, based on the efficient global 
optimization of molecular properties using the SMILES 

representation. This method performs a global search 
on chemical space by using the crossover and mutation 
operations of the SMILES representation, which makes 
the method computationally efficient and straightforward 
to implement. Our work indicates that applying evolu-
tionary algorithms based on the SMILES representation 
to molecular property optimization is promising, which 
has been overlooked by the field despite its simplicity. We 
showed that MolFinder finds better molecules than the 
ML-based molecular property optimization methods in 
terms of a given objective function. In addition, it is also 
demonstrated that MolFinder samples a more diverse set 
of molecules than the other tested methods.

The key components of the efficiency of MolFinder 
are the following two. First, MolFinder uses the sophis-
ticated crossover and mutation operations of SMILES to 
increase the success rate of the operations. Second, the 
diversity of the bank of molecules was kept during the 
exploration of chemical space as much as possible, which 
is one of the key aspects of the CSA algorithm. One com-
mon limitation of conventional GA is that all solutions 
become highly similar to each other, meaning that the 
sampling is trapped in a local minimum or a set of local 
minima. In many previous studies using CSA, it has been 
shown that keeping the diversity of the bank high is criti-
cal in efficient search on multi-dimensional hyper-spaces 
[37–40]. However, despite the efficiency of MolFinder, 
we cannot completely rule out the possibility of any sam-
pling bias caused by crossover and mutation operations.

The results presented in this paper clearly demon-
strate that applying an evolutionary algorithm with the 
SMILES representation can be an effective strategy for 
molecular optimization, which is contrary to the con-
ventional notion [27, 29, 30]. Thus our results will facili-
tate the development of new computational molecular 
design approaches based on the SMILES representation, 

Fig. 7  Assessment of generating similar molecules to a reference Histograms of a objective values (Eq. 3), b similarities to the reference molecules, 
and c drug-likeness scores (QED) of molecules generated by MolFinder (orange) and MolDQN (blue)
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which is advantageous in terms of its interpretability, 
manipulation and sharing data with other researchers. 
In conclusion, we believe that MolFinder is an alternative 
complementary approach to existing GA-based as well as 
ML-based methods and paves a new path for the inverse 
design of molecules via property optimization.
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