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Abstract 

Quantitative structure activity relationships (QSAR) modelling is a well-known computational tool, often used in a 
wide variety of applications. Yet one of the major drawbacks of conventional QSAR modelling is that models are set 
up based on a limited number of experimental and/or theoretical conditions. To overcome this, the so-called mul-
titasking or multitarget QSAR (mt-QSAR) approaches have emerged as new computational tools able to integrate 
diverse chemical and biological data into a single model equation, thus extending and improving the reliability of this 
type of modelling. We have developed QSAR-Co-X, an open source python–based toolkit (available to download at 
https://​github.​com/​ncord​eirfc​up/​QSAR-​Co-X) for supporting mt-QSAR modelling following the Box-Jenkins moving 
average approach. The new toolkit embodies several functionalities for dataset selection and curation plus computa-
tion of descriptors, for setting up linear and non-linear models, as well as for a comprehensive results analysis. The 
workflow within this toolkit is guided by a cohort of multiple statistical parameters and graphical outputs onwards 
assessing both the predictivity and the robustness of the derived mt-QSAR models. To monitor and demonstrate the 
functionalities of the designed toolkit, four case-studies pertaining to previously reported datasets are examined here. 
We believe that this new toolkit, along with our previously launched QSAR-Co code, will significantly contribute to 
make mt-QSAR modelling widely and routinely applicable. 
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Introduction
Quantitative Structure–Activity Relationships (QSAR) 
modelling is one of the most frequently employed in 
silico techniques for chemical data mining and analysis. 
Though QSAR has been introduced more than 50 years 
ago, it remains as an efficient technique for build-
ing mathematical models to find out crucial structural 
requirement for targeting specific response variables (e.g., 
activity, toxicity, physicochemical properties, etc.). At 
the same time, QSAR provides one of the most effective 
strategies for predicting properties of new chemicals and 
also for identifying potential hits through virtual screen-
ing of chemical libraries [1, 2]. The last few decades have 

witnessed several transformations in the field of QSAR 
modelling, owing to the progress in model development 
strategies, data mining techniques, validation methodol-
ogies, along with machine learning and statistical analy-
sis tools [3, 4]. Nevertheless, the quest for new modelling 
strategies is still ongoing to further improve the overall 
efficacy of QSAR modelling [1, 5, 6]. For example, one of 
the major limitations of conventional QSAR is that mod-
els are developed for the response variable(s), regardless 
of the experimental (or theoretical) conditions followed 
to obtain such response variable(s). In reality however, 
the researchers come across data-points pertaining to 
various experimental and/or theoretical conditions, the 
inclusion of which may significantly improve the scope of 
QSAR modelling. This has paved the way to unconven-
tional computational modelling approaches, so-called 
multitasking, or multitarget QSAR (mt-QSAR), which 
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are able to integrate data under different conditions into 
a single model equation for simultaneous prediction of 
the targeted response variable(s) [7–9]. Therefore, the 
interest of QSAR practitioner researchers over such mt-
modelling has been growing steadily [1, 5]. In particular, 
mt-QSAR modelling techniques based on the Box-Jen-
kins moving average approach have already proved to 
be highly efficient in dealing with datasets pertaining 
to multiple conditions [10–14]. Our group has recently 
developed an open source standalone software “QSAR-
Co” (https://​sites.​google.​com/​view/​qsar-​co) [15] to set 
up classification-based QSAR models. Briefly, QSAR-Co 
enables users to set up linear or non-linear classification 
models, by resorting to the Genetic Algorithm based 
Linear Discriminant Analysis (GA-LDA) [16, 17] or to 
the Random Forests (RF) [18] classifier, respectively. As 
per our experience so far, mt-QSAR modelling is highly 
sensitive to the strategies used for model development 
especially because the number of starting descriptors 
increases depending on the number of experimen-
tal (and/or theoretical) conditions. The possibility of 
employing a larger range of development strategies will 
definitely improve the usefulness and scope of such mt-
QSAR modelling. The present work moves a step forward 
and describes a new toolkit named QSAR-Co-X, which 
apart from supporting the development of multitarget 
QSAR models based on the Box-Jenkins moving aver-
age approach, allows the usage of various descriptor gen-
eration schemes, along with several model development 
strategies, feature selection algorithms and machine 
learning tools, as well as model selection and validation 
methodologies. As it will be seen, the QSAR-Co-X soft-
ware implements a number of additional utilities that 
renders a much more compact and well-designed plat-
form for multitarget QSAR modelling, following the 
principles of QSAR modelling recommended by the 
OECD (Organization for Economic Cooperation and 
Development) [19]. The major differences between these 
two software tools are listed and commented in Table 1.

As can be seen, two additional feature selection tech-
niques were included for establishing LDA models, 
namely fast-stepwise (FS) and sequential forward selec-
tion (SFS). Even though the GA implemented earlier 
in QSAR-Co has proved to be a highly efficient feature 
selection technique, judging from our previous analyses 
[11, 20], the implementation of these additional feature 
selection techniques in QSAR-Co-X improves the scope 
of LDA modelling in multiple ways. Firstly, the applica-
tion of more feature selection techniques enhances the 
chances of obtaining more predictive models especially 
for big data analysis [21]. Secondly, the GA selection 
involves the random generation of an initial popula-
tion, which usually requires several runs to produce the 

most statistically significant (or optimised) model. Also, 
due to this randomisation step, the models generated by 
GA-LDA lack reproducibility. As such, both FS and SFS 
techniques are more straightforward and reproducible, 
allowing the swift establishment of linear discriminant 
models. Finally, simultaneous application of GA with the 
two newly implemented feature selection algorithms can 
help finding a greater number of LDA models, thereby 
increasing the possibility of consensus modelling. Addi-
tionally, the QSAR-Co-X software provides significant 
modifications as far as strategies for the development of 
non-linear models are concerned. First of all, it comprises 
a toolkit for building non-linear models by resorting to 
six different machine learning (ML) algorithms. One of 
its modules assists in tuning hyperparameters of such 
ML tools (not included in QSAR-Co [15]) for achieving 
optimised models. As an alternative, a separate mod-
ule is available for setting up user-specific parameters 
meant to a rapidly development of non-linear models. 
Alike QSAR-Co, model development in QSAR-Co-X is 
guided by descriptor pre-treatment, two-stage exter-
nal validation, and determination of the applicability 
domain of linear and non-linear models. Still the QSAR-
Co-X’ toolkit applies additional options for calculat-
ing the modified descriptors using different types of the 
Box-Jenkins moving average operators. It also provides a 
modified Y-based randomisation method [15], so-called 
Yc-randomisation, to check the robustness of the derived 
linear model. The latter may be used for ‘condition-wise 
prediction’ in which the user may check its predictivity 
for each experimental/theoretical condition. The rel-
evance of whole these new utilities implemented in the 
toolkit are exemplified with four case studies.

Implementation
The QSAR-Co-X version 1.0.0 is an open source stan-
dalone toolkit developed using Python 3 [22]. It can be 
downloaded freely from https://​github.​com/​ncord​eirfc​
up/​QSAR-​Co-X. The manual provided along with the 
toolkit describes in detail its operating procedures. The 
QSAR-Co-X toolkit comprises four modules, namely: (i) 
LM (abbreviation for linear modelling); (ii) NLG (abbre-
viation for non-linear modelling with grid search); (iii) 
NLU (abbreviation for non-linear modelling with user 
specific parameters); and (iv) CWP (abbreviation for con-
dition-wise prediction). Details about the functionalities 
of each of these modules are described below.

Module 1 (LM)
This module assists in dataset division, the calculation 
of deviation descriptors from input descriptors using 
the Box-Jenkins scheme and data pre-treatment. Along 
with these, the module comprises two feature selection 
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algorithms for development and validation of the LDA 
models (see the screenshot in Fig. 1). The following sixth-
step procedure is adopted for establishing the linear 
models.

Step 1‑Dataset division
The first step of any mt-QSAR model encompasses a divi-
sion of the initial dataset into a training and a validation 
set. In this module, that may be performed following 
three schemes, namely: (a) pre-determined data distribu-
tion, (b) random division and (c) k-means cluster analy-
sis (kMCA) based data division [20]. In the first scheme 
(a), the user is allowed to explicitly provide information 

about the training and validation set samples, i.e., the set 
samples are to be tagged as ‘Train’ and ‘Test’, respectively. 
This is extremely important when the user intends to 
compare a model with a specific data-distribution previ-
ously derived from any other in silico tool with the mod-
els developed using QSAR-Co-X. In the second scheme 
(b), the random division of the dataset is obtained on the 
basis of the user-specific percentage of validation set data-
points. At the same time, different training and validation 
sets may be obtained by changing the random seed values. 
As an alternative to random data-splitting, the user may 
opt for a k-Means Cluster Analysis-based rational dataset 
division strategy (kMCA) [20, 23]. In the latter option, the 

Table 1  Major differences between QSAR-Co and QSAR-Co-X

No Utility QSAR-Co QSAR-Co-X Remarks

1 Feature selection One (GA) Two (FS and SFS) –

2 Reproducibility of linear 
modelling

Low High Given the same sample size and 
number of descriptors, GA produces 
different LDA models on different 
runs, whereas both the FS and SFS 
always yield the same model

3 Diagnosis of intercollinearity 
among variables

Not available Available and automatically performed Very helpful for ascertaining the 
robustness of the derived linear 
models

4 Dataset division options Random, Kennard-Stone, 
Euclidean-based

Random, pre-defined, k-MCA Since only the random division option 
is fast, the other QSAR-Co options 
were replaced to reduce computa-
tional time

5 Automatic generation of the 
validation set

Not available Available Unlike QSAR-Co, QSAR-Co-X allows 
generating both the screening and 
validation sets

6 Statistical parameters for the 
validation set

Manual calculations are 
required

Automatic calculation Automatic calculation allows fast 
selection of the models

7 Number of Box-Jenkins opera-
tors available

One (pre-defined) Four (three pre-defined and one user-
specific)

Additional and more flexible operators 
were added to QSAR-Co-X

8 Yc randomisation Not available Available A modified form of the Y-randomisa-
tion technique that incorporates the 
influence of experimental elements

9 Machine-learning tools One (RF only) Six (kNN, SVM, RF, NB, GB, and MLP) QSAR-Co-X affords several non-linear 
modelling tools

10 Number of parameters that 
may be altered in RF model-
ling

5 8 QSAR-Co-X offers more flexibility for 
setting up RF models

11 Comparative analysis of multi-
ple ML methods

Not possible Possible Useful to decide which ML method 
performs best

12 Hyperparameter tuning 
options for ML methods

Not available Available Extremely useful to find optimised 
non-linear models

13 User specific parameter set-
tings for building non-linear 
models

For RF only For kNN, SVM, RF, NB, GB, and MLP –

14 Display of ROC plots (linear 
modelling)

For sub-training and test 
sets

For sub-training, test and validation 
sets

–

15 Condition-wise prediction Not available Available Useful to understand how the 
developed model performs against 
individual experimental conditions, 
particularly for large datasets
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dataset is first divided into n (user specific) clusters on the 
basis of input descriptors. Subsequently, a specific num-
ber of validations set samples are randomly collected from 
each cluster. Similar to the random division scheme, the 
ratio between the training and validation sets may be var-
ied and, simultaneously, different combinations of these 
sets obtained by changing the random seed value. The 
python code KMCA.py included in the toolkit allows per-
forming the kMCA-based dataset division.

Step 2‑box−jenkins moving average approach
The most important part of current mt-QSAR model-
ling is the calculation of the deviation descriptors from 
the input descriptors, following the Box-Jenkins moving 
average approach. The input descriptors can be calcu-
lated using any commercial or non-commercial software 
packages (e.g.: DRAGON [24] or QuBiLS-MAS [25]) but 
then these have to be modified to incorporate the influ-
ence of different experimental (and/or theoretical) ele-
ments ( cj).

The mathematical details of the Box-Jenkins moving 
average approach have been extensively described in 
the past [8, 9, 26], so we will restrict ourselves to a short 
description highlighting only its most important aspects. 

There are different ways for calculating the modified 
descriptors by this approach, the simplest one being as 
follows:

Specifically, the new descriptors �(Di)cj are calculated 
by the difference between the input descriptors of the 
active chemicals (Di) and their averages avg (Di)cj − i.e. 
their arithmetic mean for a specific element of the exper-
imental and/or theoretical conditions (ontology) cj [8]:

In recent years, different forms for these modified 
descriptors have however been suggested depending 
on the conditions. For example, the descriptors may be 
standardised by resorting to the maximum ( Dimax ) and 
minimum ( Dimin ) values of input descriptors [12]:

(1)�(Di) cj = Di − avg (Di) cj

(2)avg (Di)cj =

n(cj)
∑

i=1

Di/n(cj)

(3)�(Di)cj =
Di − avg (Di)cj

Dimax − Dimin

Fig. 1  Screenshot of the Module1 graphic user interface from toolkit QSAR-Co-X
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Analogously, the elements of cj may be also standard-
ised, as recently proposed by Speck-Planche [27], leading 
to the following expression for the modified descriptors:

In this equation p(cj) represents the a priori probability 
of finding the datapoints pertaining to particular condi-
tions and so, p(cj)c may simply be obtained by dividing 
the number of actives in the data under a specific ele-
ment of cj−n(cj)−by the total number of datapoints N 
(see Eq. 5). More details about this topic will be discussed 
within the case study 3 reported in this work.

In the present toolkit, the user can choose one of the 
four methods provided (Method1-4) to compute the 
modified descriptors. The first three ones are based on 
Eqs. 1, 3 and 4, respectively. Note that both Method2 and 
Method3 do not work with invariant descriptors and that 
may hamper further calculations. Therefore, in these two 
methods, a descriptor pre-treatment is carried to remove 
constant descriptors. Finally, Method4 allows the user 
to apply its own proper scheme for establishing the p(cj) 
values [27, 28], and the resulting modified descriptors are 
thus represented as follows:

where the term p(cj)u denotes the user-specific p(cj) , 
whose values should be provided as inputs. Within that 
context, the p(cj) values do not need to be always calcu-
lated since these may also be obtained from experimen-
tal and/or theoretical data. As an example, in a previous 
study [26], p(cj) accounted for the degree of reliability 
of the experimental information and the values of 0.55, 
0.75 and 1.00 were used for the data-points, which were 
classified as ‘auto-curation’, ‘intermediate’ and ‘expert’ 
according to the labelling of the CHEMBL database, 
respectively.

Similar to QSAR-Co, the current toolkit uses two stages 
of external validation for mt-QSAR modelling, thereby 
requiring two separate test sets as well. As mentioned 
earlier, the dataset is initially split into training and vali-
dation sets by employing pre-defined sets, random divi-
sion or kMCA-based systematic division schemes. The 
Box-Jenkins moving average approach is then applied to 
calculate the modified descriptors for the training set, by 
selecting one of the methods described above. The train-
ing set and their corresponding modified descriptors are 
subsequently randomly sub-divided into a sub-training 

(4)�(Di)cj =
Di − avg(Di)cj

(Dimax − Dimin) p(cj)c

(5)p(cj)c =
n
(

cj
)

N

(6)�(Di)cj =
Di − avg(Di)cj

p(cj)u

and a test set (or calibration set). Here, it is important 
to remark that the avg(Di)cj values obtained from the 
training set are applied to calculate the modified descrip-
tors for the validation set and thus, the latter can be 
recognised as the ‘ideal test set’ due to the fact that its 
data-points do not participate either in the model devel-
opment or in the descriptor calculation. On the other 
hand, the test set may be employed both as a ‘calibration 
set’ (especially for GA-LDA) and as an ‘external valida-
tion set’.

Step 3‑Data pre‑treatment
The user specific data pre-treatment step of this mod-
ule includes: (a) removal of highly correlated descrip-
tors based on the user specified correlation cut-off, and 
(b) removal of the descriptors with less variation based 
also on the user specified variation cut-off. What is more, 
constant descriptors fail to produce models for all feature 
selection procedures.

Step 4‑Linear model development
Two feature selection algorithms are used for setting up 
the linear discriminant analysis (LDA) models, namely: 
(a) fast stepwise (FS) and (b) sequential stepwise (SFS). 
Although many feature selection algorithms are available, 
the two chosen here can be highly efficient while han-
dling mt-QSAR modelling because of their ability to fast 
generate models. Both these can be employed along with 
the GA selection, which is available in QSAR-Co, but that 
requires many iterations for finding the optimised LDA 
models. FS is a very popular algorithm in which the inde-
pendent descriptors are included in the model stepwise 
depending on the specific statistical parameter p-value, 
and it has previously been successfully employed to set 
up mt-QSAR models [10, 26]. The usual criteria for for-
ward selection (i.e., p-value to enter) and backward elimi-
nation (p-value to remove) are set in the present toolkit. 
This is, the descriptor with the lowest p-value is included 
first and subsequently other descriptors are included in 
the model based on the lowest p-value only if the crite-
ria for forward selection are met. Yet, if the p-value of a 
descriptor included in the model is found to be greater 
than ‘p-value to remove’, it is eliminated from the model. 
The SFS algorithm adds features into an empty set until 
the performance of the model is not improved either by 
addition of another feature or the maximum number of 
features is reached [29]. Similar to FS, it is also a greedy 
search algorithm where the best subsets of descrip-
tors are selected stepwise and the model performance 
is judged by the user specific statistical parameters, 
denoted as ‘scoring’ parameters. In the current version 
of QSAR-Co-X, two scoring parameters are provided, 
namely: ‘Accuracy’ and ‘AUROC’ (see description below). 
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The users may develop separate models by varying these 
two scoring parameters in QSAR-Co-X (see Case Study 4 
for more details).

In contrast to GA, in which the generation of models 
is based on a randomisation process, these two feature 
selection algorithms for LDA are systematic and there-
fore faster. In this work, we resorted to the tool Sequen-
tialFeatureSelector from the library mlxtend (version 
0.17.1: http://​rasbt.​github.​io/​mlxte​nd/) for developing 
the FS-/SFS-LDA models. In both, the singular value 
decomposition (svd), recommended for data containing 
large number of features is applied within the Scikit-learn 
Linear Discriminant Analysis package [30, 31].

Step 5‑model validation
The reliability and statistical significance of the models 
are evaluated by goodness-of-fit as well as by internal and 
external validation criteria.

Goodness-of-fit for the sub-training set is assessed by 
looking at the usual p and F (Fisher’s statistics) param-
eters along with the Wilks’ lambda (λ) statistic [32]. The 
latter essentially measures the discriminatory power of 
the LDA classification models, i.e., how well they sepa-
rate cases into groups. It is equal to the proportion of the 
total variance in the discriminant scores not explained by 
differences among groups, and can take values from zero, 
perfect discrimination, to one, no discrimination. Simi-
lar to Wilk’s λ, the F-test measures how better a com-
plex model is in comparison to a simpler version of the 
same model in itscapacity to explain the variance in the 
response variable [33].

All these statistical parameters are calculated with the 
help of the “Statsmodel” ordinary least square python 
library (https://​www.​stats​models.​org/​stable/​api.​html/).

The overall predictivity of the models is checked by 
examining the confusion matrix, which includes the 
number of true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) samples. Simul-
taneously based on those numbers, other statistical 
parameters such as the Sensitivity, Specificity, Accuracy, 
F1-score, and the Matthew correlation coefficient (MCC) 
are computed for the sub-training, test and validation 
sets (see Eq.  7), as well as the area under the receiver 
operating characteristic curve (AUROC) [34–36]. Addi-
tionally, the ROC curves are automatically created for 
each model. 

Sensitivity = TP/(TP+ FN)

Specificity = TN/(TN+ FP)

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN)

Apart from confirming the internal and external pre-
dictivity, the choice of the best linear model should be 
guided through additional criteria. For example, highly 
correlated descriptors in the linear model may reduce its 
overall significance and therefore, the degree of collinear-
ity among its descriptors must be carefully examined. To 
do so, the current module automatically generates the 
cross-correlation matrix for the selected sub-training set 
descriptors. It is also important to assess the applicability 
domain (AD) of the derived model−i.e., the response and 
chemical structure space within which the model makes 
reliable predictions. Here, the models’ AD is estimated by 
the standardisation approach as proposed earlier by Roy 
et al. [37], allowing as well to identify possible structural 
chemical outliers. The python code for this approach is 
provided in the applicability.py file of the toolkit.

Step 6‑Yc‑randomisation
In the previous QSAR-Co [15], the Y-randomization 
scheme has been implemented to judge the performance 
of the derived linear models. That is, following a classi-
cal scheme, the statistical quality in data description of 
the original linear model is compared to that of models 
generated upon randomly shuffling several times the 
response variable based upon the user specified ‘num-
ber of runs’−n. Since in the Box-Jenkins based mt-QSAR 
modelling, the experimental/theoretical conditions ele-
ments participate in the determination of modified 
descriptors, the Y-randomization is slightly modified 
here and named Yc-randomization−i.e., Y randomiza-
tion with conditions. In this new scheme, along with the 
response variables, the experimental elements cj are also 
scrambled n times, and thus n randomised data-matrices 
being generated. The several models are subsequently 
rederived with these randomised data and averages and 
the Wilks’ lambda (λr) and accuracy (Accuracyr) calcu-
lated. In a robust model, the values obtained for these 
two parameters should be considerably less than Wilks’ λ 
and accuracy of the original model. The phyton code ycr.
py tackles this scheme in QSAR-Co-X.

Module 2 (NLG)−hyperparameter tuning
Module 2 assists in setting up non-linear models using a 
grid search based hyperparameter optimisation scheme 
(see Fig.  2). Six machine learning tools have been so 
far implemented in QSAR-Co-X, namely: (a) k-Nearest 
Neighbourhood (kNN) [38], (b) Bernoulli Naïve Bayes 

F1− score = 2TP/(2TP+ FP+ FN)

(7)

MCC =
TP · TN− FP · FN

√

[(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)]

http://rasbt.github.io/mlxtend/
https://www.statsmodels.org/stable/api.html/
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(NB) classifier [39], (c) Support Vector Classifier (SVC) 
[40], (d) Random Forests (RF) [18], (e) Gradient Boost-
ing (GB) [41], and f ) Multilayer Perceptron (MLP) neural 
networks [42]. For all these non-linear modelling tech-
niques, the Scikit-learn machine learning package is used 
[30, 31]. Similarly, the data pre-treatment option may be 
utilised in this module as well as in Module 3. In both 
these modules, the sub-training, test and validation sets 
set up with Module 1 of QSAR-Co-X are required to be 
uploaded one after another for development of the non-
linear models.

In Module 2, a range of parameters of the machines 
learning tools are varied to obtain the most robust and 
predictive non-linear models, based on a n-fold (i.e., 
user specific) cross-validation scheme using the Grid-
SearchCV of Scikit-learn [30, 31]. In this module, a 
parameter file should be provided as.csv file that includes 
the parameter names with their values that are required 
to be optimised. In https://​github.​com/​ncord​eirfc​up/​
QSAR-​Co-X however, six such parameter files related 
to the various machine learning techniques are avail-
able, namely: grid_knn.csv, grid_nb.csv, grid_svc.csv, 
grid_mlp.csv, grid_rf.csv and grid_gb.csv. The param-
eter names and their values mentioned in these files are 
shown in Table  2 below. The files were prepared based 
upon the importance of the parameters as well as con-
sidering our previous experience regarding overall time 
requirements for the calculations. Nevertheless, the 
scope of this module is not only limited to these param-
eters (and values), because the users may select their 
own options for hyperparameter tuning by simply alter-
ing them. After selecting the best parameters, internal 
validation of the sub-training set is carried out by n-fold 
(i.e., user-specific) cross validation, as well as external 
validation of both the test and validation sets. Similar 
to Module 1, the statistical results obtained for the non-
linear models are automatically generated along with the 
optimised parameters, as well as ROC curves for the test 
and validation sets. Similar to QSAR-Co, the non-linear 
models’ AD is determined by the confidence estimation 
approach [43, 44].

Module 3 (NLU)−user specific parameter settings
The functionality of Module 3 (Fig.  2) is the same as 
that of Module 2, i.e., development of non-linear mod-
els. However, in Module 3, the user may specify the 
parameter settings. Since grid search is a time consum-
ing but recommended technique, this module could be 
used for fast generation of the non-linear models. Even 
after hyper-parameter tuning, the optimised parameters 

obtained from Module 2 can be specified in Module 3 for 
rapid obtention of the optimised models. Other utilities 
of Module 3, such as calculation of statistics for internal 
and external validation, pre-treatment of data-files, and 
making ROC curves for both the test and the validation 
sets, are similar to Module 2.

Module 4 (CWP)−condition‑wise prediction
The QSAR-Co-X toolkit includes this automated and 
simple analysis tool that can be used for checking the 
mt-QSAR obtained results. Indeed, since the mt-QSAR 
modelling implemented in QSAR-Co-X leads to a unique 
model for datasets containing several experimental and/
or theoretical conditions, one may need to assess how 
much the derived model is predictive to a specific con-
dition. Module 4 (see Fig.  2) is then to be employed to 
inspect the models’ performance against each condition, 
due to different reasons. For example, if the user often 
ends up with almost equally predictive models, he/she 
might select one of them on the basis of being more pre-
dictive towards a particular condition of interest. Moreo-
ver, the conditions over which the model is less predictive 
may be removed to obtain more predictive and/or more 
significant models. Finally, experimental or theoretical 
conditions with negligible number of cases may in addi-
tion be identified through this analysis and if the derived 
model is found less predictive towards such conditions, 
these may be removed also to rebuild the model.

The overall workflow of this new toolkit along with 
whole of its described modules can be seen in Fig. 3.

Results
To check as well as to demonstrate the utilities of the 
developed QSAR-Co-X toolkit, four case studies pertain-
ing to previously compiled datasets [9, 11, 26, 27] are 
examined in this section. For all of them, both the activity 
cut-off values and the descriptors employed in the origi-
nal publications were used here (exact details about those 
can be found in the original papers). The main purpose of 
these four chosen case studies are as follows:

Case study 1: Demonstrate how linear and non-linear 
mt-QSAR models may be developed with this toolkit.
Case study 2: Show how different models may be 
generated using different data-splitting facilities of 
the toolkit.
Case study 3: Describe how models may be gener-
ated using the various available Box-Jenkins opera-
tors.
Case study 4: Perform a comparative analysis 
between the model development techniques of the 
former QSAR-Co and the new QSAR-Co-X toolkit.

https://github.com/ncordeirfcup/QSAR-Co-X
https://github.com/ncordeirfcup/QSAR-Co-X
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Case study‑1 (CS1)
The first dataset comprises 726 inhibitors of four I 
phosphoinositide 3-kinase (PI3K) enzyme isoforms 
(PI3K-α, -β, -γ, -δ), the activities of which have been 
assayed against 34 mutated or wild human cell lines 
[11]. The experimental conditions considered in this 
dataset can be expressed as an ontology of the form 
cj → (bt, cl, mt), i.e., corresponding to the combination 
of the three following elements: bt (biological enzyme 
target), cl (cell line) and mt (mutated or wild cell lines).

Compounds with IC50/Ki /Kd values ≤ 600  nM were 
assigned as active whereas the remaining data samples 
considered as inactive. The dataset contained 536 active 
(+ 1) and 190 (− 1) inactive compounds and the mt-
QSAR models were developed for predicting the activ-
ity of inhibitor compounds against these four isoforms 
of PI3K under various experimental conditions.

Linear interpretable models
The dataset was first divided into a training and valida-
tion set using a random division scheme (22% of the 
data taken as the validation set, seed value = 2). Sub-
sequently, the Box-Jenkins operator (Method1, Eq.  1) 
was applied to produce a sub-training set (nstr = 452), a 

test set (nts = 114) and a validation set (nvd = 160), using 
a seed value of 2. The FS-LDA model was then derived 
with the following options: (a) correlation cut-off of 
0.999, (b) variance cut-off of 0.001, (c) p-value to enter of 
0.05, and (d) p-value to remove of 0.05. Meanwhile, the 
SFS-LDA model was built using the following: (a) cor-
relation cut-off of 0.999, (b) variance cut-off of 0.001, (c) 
Floating = True, and (d) Scoring = Accuracy. For both 
models, a maximum of ten descriptors were allowed, the 
sub-training results of being shown in Supplementary 
Information (Additional file 1: Table S1). As can be seen 
in Table S1, the FS-LDA model shows a higher goodness-
of-fit than the SFS-LDA model.

The FS-LDA model that was developed in the first 
attempt depicted high inter-collinearity with a maximum 
Pearson correlation coefficient (r) of 0.926 between two of 
its descriptors. Therefore, the maximum allowed paired-
correlation coefficient was reduced to 0.90, and the final 
rebuilt model yielded a Wilk’s λ of 0.261. Similarly, the 
first SFS-LDA model developed also presented a high 
inter-collinearity between two of its descriptors (r > 0.98). 
Therefore, the later model was rebuilt by reducing the 
correlation cut-off to 0.95, and this revised SFS-LDA 
model depicted a much satisfactory inter-collinearity 

Fig. 2  Screenshots of the Module 2 (a), Module 3 (b), and Module 4 (c) graphic user interface from toolkit QSAR-Co-X
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among descriptors (maximum r = 0.808). The overall pre-
dictivity of the linear models is depicted in Table 3.

As can be seen, the SFS-LDA model was found to be 
more predictive than the FS-LDA model. The average 
accuracy and MCC values found for the newly devel-
oped SFS-LDA model are 94.95% and 0.873, respectively. 
After analysing the AD computed by the standardisa-
tion approach, in the FS-LDA model, 15 data-points of 
the sub-training set, 6 data-points of the test set, and 5 
data-points of the validation set are found to be outliers. 
While, in the SFS-LDA model, 43 sub-training set, 13 test 
set and 14 validation set samples emerged as structural 
outliers. Therefore, based on the results of AD, it may 
be inferred that the FS-LDA model was developed with 
descriptors that yield a considerably smaller number of 

structural outliers compared to the SFS-LDA model. The 
ROC plots of FS-LDA and SFS-LDA models generated 
with the current toolkit can be found in Supplementary 
Information (Additional file 1: Figure S1).

Non‑linear models
This dataset was then subjected to non-linear model 
development using the QSAR-Co-X toolkit. For such a 
purpose, the hyperparameter tuning implemented in its 
Module 2 was employed. Details about the correspond-
ing optimised parameters along with the accuracy values 
obtained for the sub-training, test and validation sets 
can be found in Supplementary Information (Additional 
file 1: Table S2). It can be observed that, except for Ber-
noulli NB, all other machine learning tools are able to 
produce highly predictive mt-QSAR models. However, 
the RF and GB tools lead to the most significant non-
linear mt-QSAR models, judging from their internal and 
external validation parameters (i.e., accuracy in this case; 
see Table  4). Although the same accuracy is obtained 
for the validation set, on the basis of overall predictivity, 
the RF model is found to be slightly superior to the GB 
model. Table  4 shows the overall statistical predictivity 
of the latter two models, whereas the ROC plots for the 
validation and test sets are depicted in Supplementary 
Information (Additional file  1: Figure S2). Interestingly, 
the external predictivity of the RF model matches exactly 
with the FS-LDA model (cf. Table 3).

Finally, Module 4 of QSAR-Co-X was applied for a 
condition-wise prediction of the FS-LDA model, and the 
obtained results are listed in Table 5. Note that a similar 
analysis might have been also performed with any of the 
non-linear models. Here, it should be mentioned that the 
present dataset pertains to as many as 34 experimental 
condition elements, and from Table 5 it can be observed 
that not all the latter appear in both the test and valida-
tion sets. However, owing to the high external predictiv-
ity of the model, most of these experimental elements are 
predicted with high accuracy values. Nevertheless, it can 
be additionally seen that samples pertaining to elements 
18 and 24 are not only present in less number but are also 
poorly predicted. These samples may then be removed, or 
alternate models been generated with other techniques in 
which the predictivities for these experimental condition 
elements are higher. Similarly, a ‘condition-wise predic-
tion’ analysis might also be performed using the derived 
non-linear models with the help of the present module. 
The results, i.e., the output files generated for the FS-
LDA, SFS-LDA, RF and GB models of CS1 are given in 
Additional file 2.

Table 2  Hyper-parameters tuning options available in QSAR-
Co-X toolkit

a  For further details on these parameters, check the manual associated with the 
toolkit in https://​github.​com/​ncord​eirfc​up/​QSAR-​Co-X
b  This option is automatically selected

Technique Parameters tuninga

RF Bootstrap: True/ Falseb

Criterion: Gini, Entropy,

Maximum depth: 10, 30, 50, 70, 90, 100, 200, None

Maximum features: Auto, Sqrt

Minimum samples leaf: 1, 2, 4

Minimum samples split: 2, 5, 10

Number of estimators: 50, 100, 200,500

kNN Number of neighbours: 1–50

Weight options: Uniform, Distance

Algorithms: Auto, Ball tree, kd_tree, brute

Bernoulli NB Alpha:1, 0.5, 0.1

Fit_prior: True, False

SVC C: 0.1, 1, 10, 100, 1000

Gamma: 1, 0.1, 0.01, 0.001

Kernel: RBF, Linear, Poly, Sigmoid

MLP Hidden layer sizes: To be specified by the user

Activation: Identity, Logistic, Tanh, Relu

Solver: SGD, Adam

Alpha: 0.0001, 0.001, 0.01, 1

Learning rate: Constant, Adaptive, Invscaling

GB Loss: deviance, exponential

Learning rate: 0.01, 0.05, 0.1, 0.2

Min samples split: 0.1,0.2,0.3,0.4,0.5

Minimum samples leaf: 0.1,0.2,0.3,0.4,0.5

Maximum depth: 3,5,8

Maximum features: Log2, Sqrt

Criterion: Friedman MSE, MAE

Subsample: 0.5, 0.6, 0.8

Number of estimators: 50,100,200,300

https://github.com/ncordeirfcup/QSAR-Co-X
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Case study‑2 (CS2)
The second case study aims at investigating the impact of 
data-distribution during the development of mt-QSAR 
models. Further, the significance of Yc randomization as 
an extra criterion for justifying the robustness of linear 
models is aimed to be demonstrated also. A previously 
collected dataset [26] will be employed, which contains 
46,229 datapoints describing the anti-bacterial activ-
ity against Gram-negative pathogens and in  vitro safety 
profiles related to absorption, distribution, metabolism, 
elimination, and toxicity (ADMET) properties. This data-
set pertains to four experimental condition elements (cj), 
namely: bt (biological target), me (measure of effect), ai 
(assay information), and tm (target mapping). Addition-
ally, each datapoint includes a probabilistic factor pc to 
account for the degree of reliability of the experimental 
information. Each case in the data set was assigned as 

one out of two possible categories, namely positive (+ 1) 
or negative (− 1). Cut-off values for different measures 
of toxicity effects of compounds are provided in Supple-
mentary Information (Additional file 1: Table S4).

Two different models were generated and in the first 
case the probabilistic factor pc was discarded, and the 
models developed using ‘Method1’. Then, in the sec-
ond case, the models were developed considering the 
influence of pc and due to its presence, the Box-Jenkins 
operator based on ‘Method4’ (Eq. 6) was employed. For 
both cases, we applied three dataset distribution meth-
ods available in QSAR-Co-X for splitting the data into 
the training and validation sets. In the first method 
(i.e., pre-defined sets), the training (75% of the data) 
and validation (25% of the data) sets coming from the 
original work were used. In the second method (i.e., 
random division), 25% of the data was placed in the 

Fig. 3  Illustration of the overall functionalities of toolkit QSAR-Co-X
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validation set using a random seed value of 2. In the 
third method (i.e., kMCA based division), the data was 
divided into ten clusters and, from each of these, 25% of 
the data was selected as the validation set, and subse-
quently each training set was divided into sub-training 
(80%) and test (20%) sets using a random seed value of 
3. For each of these data distributions, SFS-LDA mod-
els were developed using the current toolkit with the 
following parameters: (a) correlation cut-off of 1.0, (b) 
variance cut-off of 0.001, (c) maximum steps = 6, (d) 
Floating = True, and (e) Scoring = Accuracy. The statis-
tical results then gathered as well as the ROC plots for 
the derived three linear models can be found in Sup-
plementary Information (Additional file  1: Figure S3, 
Tables S3 and S4). The latter plots along with the cor-
responding AUROC values allows one to infer the clas-
sification ability of the generated mt-QSAR models.

As one may observe from Additional file  1: Table  S4, 
irrespectively of the data-distribution method used, the 
models generated with ‘Method4’ display slightly better 
statistical parameters. That thus suggests that the prob-
abilistic factor considered in the original investigation 
truly influences in determining the response variable.

Focusing now only on ‘Method4’ based models, the 
Wilk’s λ values obtained for these pre-defined, random 
and kMCA division-based models were 0.438, 0.432 and 
0.440, respectively. Such low values for the sub-training 
sets show that all these models display an adequate dis-
criminatory power and a satisfactory goodness-of-fit. In 
addition, at first sight (Additional file  1: Table  S4), there 

are no significant differences between these models as 
regards their statistical quality indicating that no matter 
which data-distribution method is considered, the quality 
of the linear model remains almost similar. However, after 
verifying the internal and external validation results, the 
random division-based model is seen to be the best linear 
mt-QSAR model. Further, the degree of collinearity among 
the variables of the model is not too high, the maximum 
correlation coefficient between two of its descriptors being 
0.831. To further judge the statistical significance of this 
model, we applied the Yc randomization scheme imple-
mented in QSAR-Co-X. To do so, the response variable and 
experimental elements were randomised 100 times, and 
the resulting 100 randomised data matrices were then sub-
jected to the same Box-Jenkins operator (i.e., ‘Method4’) 
used for generating the original model. Subsequently, 100 
models were created with the randomised sub-training 
set using the descriptors of the original model. The aver-
age Wilk’s λ (λr) and average accuracy (Accuracyr) found 
for such models were 0.999 and 58.09, respectively, which 
compared to those attained for the original model (i.e., 
0.432 and 96.37) confirm that the latter is unique and lacks 
chance correlations. The results, i.e., the output files from 
the current toolkit, of these SFS-LDA models for CS2 are 
shown in Additional file 3.

Case study‑3 (CS3)
The purpose of third case study is to disclose how dif-
ferent Box-Jenkins’s operators may have an impact on 
the statistical quality of the derived models. The dataset 

Table 3  Overall predictivity of the linear models produced for CS1

The most significant results are highlighted in bold
a  TP: True positive, TN: True negative, FP: False positive, FN: False negative, Sn: Sensitivity, Sp: Specificity, Acc: Accuracy.
b  Matthews correlation coefficient.
c  Score for the area under the receiver operating characteristic curve.
d  Sub-training set.
e  Test set.
f  Validation set

Classificationa FS-LDA SFS-LDA

Strd Tse Vdf Strd Tse Vdf

TP 332 77 110 333 77 110

TN 102 32 36 106 33 36

FP 9 3 8 5 2 8

FN 9 2 6 8 2 6

Sn (%) 91.89 91.43 81.82 95.49 94.29 81.82

Sp (%) 97.36 97.47 94.83 97.65 97.47 94.83

Acc (%) 96.02 95.61 91.25 97.12 96.49 91.25
F1 score (%) 97.36 96.85 94.02 98.08 97.47 94.02

MCCb 0.892 0.896 0.778 0.923 0.917 0.778

AUROCc 0.946 0.944 0.883 0.966 0.959 0.883
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of CS3 was retrieved from a recently published work in 
which the toxicity of 260 pesticides have been targeted 
by mt-QSAR modelling with artificial neural networks 
(ANN) [27]. The dataset comprised a total of 3610 data-
points related to four primary experimental condition 
elements (cj), namely: me (measure of toxicity), bs (bioin-
dicator species), ag (assay guideline) and ep (exposure 
period). For detailed information about the cut-off values 
employed for the different measures of toxicity effects, 
please refer to the Supplementary Information (Addi-
tional file  1: Table  S5). Further details about me, bs, ag 
and ep can be obtained from the original work [27]. The 
dataset contained 1992 toxic (+ 1) and 1618 nontoxic 
(− 1) compounds. Additionally, three other experimental 
condition elements have been taken into consideration 
while modelling, these being the concentration lethality 
(lc), target mapping (tm) and time classification (tc). The 
latter three may be specified as secondary experimental 
elements ( cj2 ) due simply to the fact that lc, tm and tc are 
related to me, bs and ep, respectively. On the basis of these 
related primary and secondary experimental elements, 
three probabilistic factors were calculated in that work as 
follows [27]:

(8)p(me)lc =
nT(me)

NT(lc)

(9)p(bs)tm =
nT(bs)

NT(tm)

where nT(cj) and NT(cj2) stand for the number of the 
training set samples, including toxic and non-toxic data 
points, within the primary and secondary experimental 
elements, respectively.

In that work, another probabilistic factor was also 
included based on the following equation [27]:

where NT stands for the total number of samples in the 
training set, and notably this equation is just like Eq. 5, 
already implemented within one of the Box-Jenkins 
operators (‘Method3’) in QSAR-Co-X, because it merely 
corresponds to a normalisation by all the number of 
elements.

Each of these probabilistic factors may be simply 
denoted as p(cj) and so, the final deviation descriptors 
employed in such a work [27] are similar to the stand-
ardised modified descriptors presented in Eq. 4. Yet these 
final descriptors embody a more complex moving aver-
age operator that is not implemented in QSAR-Co-X (cf. 
Equations 3–6). Yet ‘Method4’ (Eq. 6) may still be applied 
with a slight modification to obtain the same modified 
descriptors used in that work. To that end, the python 
code of ‘Method4’ was adapted to calculate the modi-
fied descriptors (‘Method4 modified’, cf. Table  6) from 
the starting descriptors reported in such work [27]. Then, 
non-linear mt-QSAR models were developed using a 

(10)p(ep)tc =
nT(ep)

NT(tc)

(11)p(ag ) =
n(ag )

NT

Table 4  Overall predictivity of the derived RF and GB models

a  TP: True positive, TN: True negative, FP: False positive, FN: False negative, Sn: Sensitivity, Sp: Specificity, Acc: Accuracy
b  Matthews correlation coefficient
c  Score of area under the receiver operating characteristic curve
d  Sub-training set
e  Test set
f  Validation set

Classificationa RF GB

Str (fivefold CV) d Tse Vdf Str (fivefold CV)d Tse Vdf

TP 330 77 110 331 75 108

TN 98 32 36 97 32 38

FP 13 3 8 14 3 6

FN 11 2 6 10 4 8

Sn (%) 96.77 91.43 81.82 97.07 91.43 86.36

Sp (%) 88.29 97.47 94.83 87.39 94.94 93.10

Acc (%) 94.69 95.61 91.25 94.69 93.86 91.25

F1 score (%) 96.49 96.85 94.02 96.50 95.54 93.91

MCCb – 0.896 0.778 – 0.857 0.784

AUROCc – 0.944 0.883 – 0.932 0.897
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pre-defined data-distribution, i.e. to use the same train-
ing and validation sets employed in the original work 
[27]. Eighty percent of the training dataset was treated 
as the sub-training set whereas the remaining was used 
as the test set for setting up RF based non-linear mod-
els. However, instead of employing pre-selected features 
for developing the non-linear models, just as it has been 
done on that original work, here we resort to a maxi-
mum descriptor space for model generation. In order to 
remove less descriptive highly correlated features, a data 
pre-treatment was carried out by setting the correlation 

cut-off in 0.95 and the variance cut-off in 0.001. In addi-
tion, a fivefold cross-validation was used for grid search 
as well as for inspecting the internal predictivity of the 
sub-training set. After developing the model using the 
adapted ‘Method4’, this model was also compared to 
models derived based on other operators (i.e., with the 
original Methods1–4) implemented in QSAR-Co-X. 
However, to calculate the descriptors using Methods 1–3, 
the probabilistic factors (i.e., the original p(me)lc , p(bs)tm , 
and p(ep)tc factors) could not be accommodated. There-
fore, for these methods the influence of all secondary 

Table 5  Condition-wise prediction for the FS-LDA model built in CS1

The experimental condition elements not well predicted by the model are highlighted in bold

SN Experimental condition element (cj) Test set Validation set

cl mt bt #Instances %Accuracy #Instances %Accuracy

1 Normal- MCF7-neo/Her2 Non-mutant PI3K-α 2 100 3 100

2 Normal-B-cells Non-mutant PI3K-δ 8 100 12 100

3 Normal-BT20 Non-mutant PI3K-α 2 100 1 100

4 Normal-BT474 Mutant PI3K-α 7 85.71 10 90

5 Normal-BT474 Non-mutant PI3K-α 14 85.71 13 84.62

6 Normal-HCC1954 Non-mutant PI3K-β 1 100 1 100

7 Normal-HCT116 Mutant PI3K-α 4 100 2 100

8 Normal-HCT116 Non-mutant PI3K-α 1 100 3 100

9 Normal-HEK293 Non-mutant PI3K-β 1 100 na na

10 Normal-HL60 Non-mutant PI3K-α 3 66.67 6 100

11 Normal-HL60 Non-mutant PI3K-β 5 100 2 50

12 Normal-HL60 Non-mutant PI3K-γ 2 100 na na

13 Normal-HL60 Non-mutant PI3K-δ na na 6 83.33

14 Normal-HL60 Non-mutant PI3K-γ na na 6 100

15 Normal-JeKo1 Non-mutant PI3K-δ 4 100 4 100

16 Normal-MDA-MB-453 Mutant PI3K-α 4 100 5 100

17 Normal-MDA-MB-468 Non-mutant PI3K-β 3 100 10 100

18 Normal-PBMC Non-mutant PI3K-δ na na 1 0
19 Normal-PC3 Non-mutant PI3K-α 7 100 12 91.67

20 Normal-PC3 Non-mutant PI3K-β 2 100 na na

21 Normal-PC3 Non-mutant PI3K-γ 1 100 na na

22 Normal-Ramos Non-mutant PI3K-δ 1 100 na na

23 Normal-Ri-1 Non-mutant PI3K-δ na na 5 80

24 Normal-THP1 Non-mutant PI3K-β 1 0 na na
25 Normal-THP1 Non-mutant PI3K-δ 3 100 6 66.67

26 Normal-THP1 Non-mutant PI3K-γ 1 100 na na

27 Normal-U2OS Non-mutant PI3K-α 2 100 3 100

28 Normal-U87MG Non-mutant PI3K-α 7 100 15 86.67

29 Normal-U937 Non-mutant PI3K-δ 1 100 na na

30 PTEN-deficient-MDA-MB-468 Non-mutant PI3K-β 5 100 7 100

31 PTEN-deficient-PC3 Non-mutant PI3K-β 10 100 19 89.47

32 PTEN-deficient-U87MG Non-mutant PI3K-α 3 100 na na

33 PTEN-Null-MDA-MB-468 Non-mutant PI3K-β 8 100 8 100

34 PTEN-Null-PC3 Non-mutant PI3K-α 1 100 na na
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experimental elements was discarded. However, these 
probabilistic factors were considered in the model devel-
oped by Method4. The results of the RF models devel-
oped with all five type of moving average operators and 
related deviation descriptors are shown in Table 6.

As seen, the models obtained here reveal to display 
more predictive ability than that of the model reported 
in the original investigation (MCC score of 0.524 for the 
test set) [27]. Nevertheless, the latter is more interpret-
able since only a limited number of features was used for 
its development. Therefore, a direct comparison of the 
reported model with the current RF models is not fea-
sible, yet nor it is the purpose of the current case study. 
Rather, our aim here is to disclose the importance of 
different operators implemented in QSAR-Co-X. Even 
though the variations in the operators did not have sig-
nificant impact on the statistical quality of all these mod-
els, the mt-QSAR model obtained from ‘Method1’ is 
found to produce the best solution relying on both inter-
nal and external predictivity. However, this outcome is 
based only on one data-distribution technique and one 
machine learning method. Therefore, no final conclusion 
might be drawn regarding the utility of these operators. 
The case study however demonstrates that the multiple 
operators implemented in QSAR-Co-X may be utilised 
to judge which option is most suitable for a specific data. 
The results, i.e., the output files from the current toolkit, 
obtained from RF model by applying Method1 for CS3 
are given in Additional file 4.

Finally, it is important to remark here that, the previ-
ously reported model was developed by resorting to a 
commercial software.

Case study‑4 (CS4)
Case studies 1–3 were examined mainly to demonstrate 
some of the basic utilities of QSAR-Co-X. In the final 
case study, we attempted however to compare the per-
formances of previously reported QSAR-Co models with 
newly created QSAR-Co-X models. For such purpose, we 
collected a previously reported dataset containing 2,123 
peptides (amino acid length 4–119) with antibacterial 
activities against multiple Gram-negative bacterial strains 
and cytotoxicity against multiple cell types [9]. This data-
set pertains to two experimental condition elements (cj), 
namely: bs (biological target) and me (measure of effect). 
Each peptide in the data set was assigned to one out of 
two possible categories, namely: positive (+ 1) − i.e., indi-
cating high antibacterial activity or low cytotoxicity, or 
negative (− 1) − i.e., showing low antibacterial activity or 
high cytotoxicity. The cut-off values to annotate a peptide 
as positive were: MIC ≤ 14.97 μM, or CC50 ≥ 60.91 μM, 

or HC50 ≥ 105.7  μM. For more details, please refer to 
the original investigation [9]. Mt-QSAR modelling of this 
dataset has already been performed using the QSAR-
Co tool [15], being the linear model developed with the 
GA-LDA technique and the non-linear model with the 
RF technique. In this case study, three additional linear 
models were built using QSAR-Co-X, keeping the same 
maximum number of descriptors (i.e., four) and data-
distributions. Table  7 shows the statistical parameters 
obtained for all these models. Note that two LDA mod-
els were set up by applying SFS for feature selection with 
the two different scoring parameters (i.e., Accuracy and 
AUROC).

The Wilks’ lambda (λ) value obtained for the original 
developed GA-LDA model is 0.422, whereas those of the 
FS-LDA, SFS-LDA (Scoring: Accuracy) and SFS-LDA 
(Scoring: AUROC) models are 0.421, 0.444 and 0.451, 
respectively. As seen in Table 7, among the QSAR-Co-X 
linear models, the SFS-LDA model generated with the 
AUROC scoring parameter is found to be the best one, 
judging from its overall predictivity results. Furthermore, 
overall predictivity of this model is significantly higher 
than that of the GA-LDA model previously reported [15].

Similarly, in this case study, we also developed two 
non-linear models through the RF and GB techniques. 
It is important to mention here that QSAR-Co does not 
provide any option for hyperparameter optimisation and 
therefore the earlier reported RF model has been gener-
ated without it. On the other hand, the models generated 
by QSAR-Co-X were set up with hyperparameter optimi-
sation by supplying the values for the parameter settings 
in its Module 2. Table  8 shows the attained results for 
these models.

By inspecting the statistical parameters given in 
Table  8, it is clear that the GB model affords the best 
predictivity and leads to a significant improvement in 
the external predictive accuracy when compared to that 
of the previously reported RF model generated with 
QSAR-Co. However, it is noteworthy that the signifi-
cance of this GB based model is not only limited to its 
better performance. Since this model has been devel-
oped with hyperparameter optimization, its overall 
acceptability is much higher than the RF model gener-
ated with QSAR-Co, without any tuning of hyperpa-
rameters [45, 46]. On the whole, the results shown in 
Tables 7, 8 clearly suggest that the QSAR-Co-X toolkit 
provides some very useful strategies for setting up lin-
ear and non-linear mt-QSAR models.

The results of the SFS-LDA and GB models, i.e., the out-
put files from the current toolkit, obtained for CS4 are given 
in the Supplementary Information (Additional file 5).
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Conclusions
In this work, we described the user-friendly open-source 
QSAR-Co-X toolkit that is an extension of our previously 
launched java-based tool QSAR-Co [15], and has a num-
ber of advantages over the latter to support mt-QSAR 
modelling efforts. Indeed, the current toolkit move a step 
forward by including more updated and advanced strate-
gies, namely in what concerns data-distribution options, 

schemes for calculation of modified descriptors, feature 
selection algorithms, machine learning methods, valida-
tion strategies as well as analysis techniques. The QSAR-
Co-X toolkit is based on Python, which is undoubtedly 
one of the most popular and highly accessed program-
ming languages, especially in the field of data science 
[22]. The current toolkit utilises some well-known 
Python based libraries, such as NumPy [47], SciPy [48], 

Table 7  Overall performance of the final linear models for CS4

The most significant results are highlighted in bold
a  Model previously reported in [21]
b  TP: True positive, TN: True negative, FP: False positive, FN: False negative, Sn: Sensitivity, Sp: Specificity, Acc: Accuracy
c  Sub-training set
d  Test set
e  Validation set
f  Matthews correlation coefficient

Classificationb QSAR-Coa QSAR-Co-X

GA-LDA FS-LDA SFS-LDA SFS-LDA

(Scoring: Accuracy) (Scoring: AUROC)

Strc Tsd Vde Strc Tsd Vde Strc Tsd Vde Strc Tsd Vde

TP 941 418 315 940 422 323 934 413 322 930 407 328

TN 932 389 311 925 388 302 947 393 309 956 406 317

FP 67 33 16 74 34 25 52 29 18 43 16 10

FN 97 33 40 98 29 32 104 38 33 108 44 27

Sn (%) 90.65 92.68 88.73 92.59 91.94 92.35 94.79 93.13 94.49 95.7 96.21 96.94

Sp (%) 93.29 92.18 95.11 90.56 93.57 90.99 89.98 91.57 90.7 89.59 90.24 92.39

Acc (%) 91.95 92.44 91.79 91.56 92.78 91.64 92.34 92.32 92.52 92.59 93.13 94.57
MCCf 0.839 0.849 0.838 0.831 0.855 0.833 0.848 0.847 0.851 0.853 0.864 0.893

Table 8  Overall performance of the final non-linear models for case study 4

a  The most significant results are highlighted in bold. QSAR-Co-X were generated using random state 1 in Module 2 of the toolkit
b  TP: True positive, TN: True negative, FP: False positive, FN: False negative, Sn: Sensitivity, Sp: Specificity, Acc: Accuracy
c  HPO: Hyperparameter optimisation
d  Model previously reported in [15]
e  Sub-training set
f  Test set
g  Validation set
h  Matthews correlation coefficient

Classification b RF (without HPOc/QSAR-Co)d RF (with HPO/QSAR-Co-X) GB (with HPO/QSAR-Co-X)

Str(tenfold CV)e Tsf Vdg Str(tenfold CV)e Tsf Vd g Str (tenfold CV)e Tsf Vdg

TP 994 431 341 969 433 343 996 443 346

TN 953 405 317 936 405 316 949 406 318

FP 46 17 10 63 17 11 50 16 9

FN 44 20 14 69 18 12 42 8 9

Sn (%) 95.76 95.57 96.06 93.35 95.97 96.64 95.95 96.21 97.46

Sp (%) 95.4 95.97 96.94 93.69 96.01 96.62 94.99 98.22 97.25

Acc (%) 95.58 91.52 96.48 93.52 95.99 96.63 95.48 97.25 97.36
MCCh 0.912 0.915 0.93 0.884 0.920 0.932 0.91 0.945 0.947
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Pandas [49], Matplotlib [50], Tkinter (https://​anzel​jg.​
github.​io/​rin2/​book2/​2405/​docs/​tkint​er/​index.​html), and 
Scikit-learn [30, 31]. The codes of the toolkit are made 
available in public domain so that, necessary modifica-
tions/updates may be easily implemented during their 
utilisation. Similar to QSAR-Co, this toolkit relies pri-
marily on Box-Jenkins based mt-QSAR modelling, which 
has been proved to be highly efficient in handling large 
datasets pertaining to various experimental and/or the-
oretical conditions[10–15, 20, 26–28, 51]. Further, the 
ability to explore all of its code tools simultaneously, as 
well as the graphical user interface itself, provide simple 
and efficient solutions to the main practical challenges 
implicated in mt-QSAR modelling. The latter was clearly 
shown by testing its functionalities on four case studies. 
Indeed, we were able to demonstrate the basic utilities of 
its tools and at the same time, depicted also how differ-
ent feature selection algorithms, machine learning meth-
ods, dataset division options and different Box-Jenkins’s 
operators may play crucial roles in the development of 
more predictive mt-QSAR models. The toolkit allows 
the users to save the developed models and use these for 
predicting properties of new external chemicals. Clearly, 
future investigations using various datasets will lead to a 
better understanding about the utilities and short-com-
ings of the functionalities of the present toolkit and will 
naturally give rise to its upgrading. Yet, on the whole, the 
toolkit presented here has the potential of becoming a 
widely used platform for easily setting up predictive mt-
QSAR models.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​021-​00508-0.

 Additional file 1. File containing the QSAR-Co-X generated ROC plots 
(Figures S1–3) and additional information related to the several case stud-
ies (Tables S1–5). 

Additional file 2. Folder (CS_1) containing the results (i.e., the output files 
from the current toolkit) of the FS-LDA, SFS-LDA, RF and GB models for 
case study 1. 

Additional file 3. Folder (CS_2) containing both the input files and the 
results (i.e., the output files from the current toolkit) of the SFS-LDA mod-
els for Case study-2. 

Additional file 4. Folder (CS_3) containing both the input files and the 
results (i.e., the output files from the current toolkit) obtained from the RF 
model by applying Method1 for Case study-3. 

Additional file 5. Folder (CS_4) containing the input file of SFS-LDA and 
GB models and the results (i.e., the output files from the current toolkit) 
obtained from the SFS-LDA for Case study-4.

Acknowledgements
This work received financial support from FCT - Fundação para a Ciência e 
Tecnologia through funding for the project PTDC/QUI-QIN/30649/2017. The 
authors would like to thank also the FCT support to LAQV-REQUIMTE (UID/
QUI/50006/2020).

Authors’ contributions
AKH designed and implemented the software. MNDSC tested the software. All 
authors read and approved the final manuscript.

Availability of data and materials
Project name: QSAR-Co-X.
Project home page: The source code of the toolkit along with its manual 
and reference data files are available from https://​github.​com/​ncord​eirfc​up/​
QSAR-​Co-X.
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: NumPy, SciPy, Pandas, Matplotlib, Tkinter and Scikit-learn.
License: GNU GPL version 3.
Any restrictions to use by non-academics: None.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 6 December 2020   Accepted: 31 March 2021

References
	1.	 Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, 

Oprea TI, Baskin II, Varnek A, Roitberg A, Isayev O, Curtalolo S, Fourches D, 
Cohen Y, Aspuru-Guzik A, Winkler DA, Agrafiotis D, Cherkasov A, Tropsha 
A (2020) QSAR without borders. Chem Soc Rev 49:3525–3564

	2.	 Lewis RA, Wood D (2014) Modern 2D QSAR for drug discovery. WIRE-
Comput Mol Sci 4:505–522

	3.	 Neves BJ, Braga RC, Melo CC, Moreira JT, Muratov EN, Andrade CH (2018) 
QSAR-based virtual screening: advances and applications in drug discov-
ery. Front Pharmacol 9:1275

	4.	 Gramatica P (2020) Principles of QSAR Modeling: Comments and sugges-
tions from personal experience. Int J Quant Struc-Prop Relation 5:61–97

	5.	 Toropov AA, Toropova AP (2020) QSPR/QSAR: State-of-art, weirdness, the 
future. Molecules 25:1292

	6.	 Polanski J (2017) Big data in structure-property studies—from definitions 
to models. In: Roy K (ed) Advances in QSAR Modeling. Challenges and 
Advances in Computational Chemistry and Physics. Springer, Cham

	7.	 Speck-Planche A (2018) Recent advances in fragment-based computational 
drug design: tackling simultaneous targets/biological effects. Future Med 
Chem 10:2021–2024

	8.	 Speck-Planche A, Cordeiro MNDS (2017) Advanced in silico approaches 
for drug discovery: mining information from multiple biological and 
chemical data through mtkQSBER and pt-QSPR strategies. Curr Med Chem 
24:1687–1704

	9.	 Kleandrova VV, Ruso JM, Speck-Planche A, Cordeiro MNDS (2016) Enabling 
the discovery and virtual screening of potent and safe antimicrobial pep-
tides. Simultaneous prediction of antibacterial activity and cytotoxicity. ACS 
Comb Sci 18:490–498

	10.	 Halder AK, Natalia M, Cordeiro MNDS (2019) Probing the environmental tox-
icity of deep eutectic solvents and their components: An in silico modeling 
approach. ACS Sust Chem Eng 7:10649–10660

	11.	 Halder AK, Cordeiro MNDS (2019) Development of multi-target chemomet-
ric models for the inhibition of class i pi3k enzyme isoforms: a case study 
using QSAR-Co tool. Int J Mol Sci 20:4191

	12.	 Speck-Planche A (2019) Multicellular target QSAR model for simultane-
ous prediction and design of anti-pancreatic cancer agents. ACS Omega 
4:3122–3132

	13.	 Speck-Planche A, Scotti MT (2019) BET bromodomain inhibitors: fragment-
based in silico design using multi-target QSAR models. Mol Divers 
23:555–572

	14.	 Kleandrova VV, Scotti MT, Scotti L, Nayarisseri A, Speck-Planche A (2020) 
Cell-based multi-target QSAR model for design of virtual versatile inhibitors 
of liver cancer cell lines. SAR QSAR Environ Res 31:815–836

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
https://doi.org/10.1186/s13321-021-00508-0
https://doi.org/10.1186/s13321-021-00508-0
https://github.com/ncordeirfcup/QSAR-Co-X
https://github.com/ncordeirfcup/QSAR-Co-X


Page 18 of 18Halder and Dias Soeiro Cordeiro ﻿J Cheminform           (2021) 13:29 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	15.	 Ambure P, Halder AK, Diaz HG, Cordeiro MNDS (2019) QSAR-Co: An 
open source software for developing robust multitasking or multitarget 
classification-based QSAR models. J Chem Inf Model 59:2538–2544

	16.	 Rogers D, Hopfinger AJ (1994) Application of genetic function approxi-
mation to quantitative structure-activity-relationships and quantitative 
structure-property relationships. J Chem Inf Comput Sci 34:854–866

	17.	 Ambure P, Aher RB, Gajewicz A, Puzyn T, Roy K (2015) “NanoBRIDGES” 
software: Open access tools to perform QSAR and nano-QSAR modeling. 
Chemometrics Intellig Lab Syst 147:1–13

	18.	 Breiman L (2001) Random forests. Mach Learn 45:5–32
	19.	 Organization for Economic Co-Operation and Development (OECD). 

Guidance document on the validation of (quantitative) structure-activity 
relationship ((q)sar) models; OECD Series on Testing and Assessment 69; 
OECD Document ENV/JM/ MONO2007, pp 55−65.

	20.	 Halder AK, Giri AK, Cordeiro MNDS (2019) Multi-Target chemometric model-
ling, fragment analysis and virtual screening with erk inhibitors as potential 
anticancer agents. Molecules 24:3909

	21.	 Khan PM, Roy K (2018) Current approaches for choosing feature selection 
and learning algorithms in quantitative structure-activity relationships 
(QSAR). Expert Opin Drug Disc 13:1075–1089

	22.	 Van Rossum G, Drake FL (2009) Python 3 Reference Manual. CreateSpace, 
CA

	23.	 Gore PA (2000) Cluster Analysis. In: Tinsley HEA, Brown SD (eds) Handbook of 
applied multivariate statistics and mathematical modeling. Academic Press, 
San Diego, p 297

	24.	 Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: An 
easy approach to molecular descriptor calculations. MATCH Commun Math 
Comput Chem 56:237–248

	25.	 Valdes-Martini JR, Marrero-Ponce Y, Garcia-Jacas CR, Martinez-Mayorga K, 
Barigye SJ, Almeida YSV, Perez-Gimenez F, Morell CA (2017) QuBiLS-MAS, 
open source multi-platform software for atom- and bond-based topologi-
cal (2D) and chiral (2.5D) algebraic molecular descriptors computations. J 
Cheminform 9:35

	26.	 Speck-Planche A, Cordeiro MNDS (2017) De novo computational design of 
compounds virtually displaying potent antibacterial activity and desirable 
in vitro ADMET profiles. Med Chem Res 26:2345–2356

	27.	 Speck-Planche A (2020) Multi-scale QSAR approach for simultaneous mod-
eling of ecotoxic effects of pesticides. In: Roy K (ed) Ecotoxicological QSARs. 
Springer, New York

	28.	 Speck-Planche A (2018) Combining ensemble learning with a fragment-
based topological approach to generate new molecular diversity in drug 
discovery: In silico design of Hsp90 inhibitors. ACS Omega 3:14704–14716

	29.	 Menzies T, Kocagüneli E, Minku L, Peters F, Turhan B (2015) Complexity: 
using assemblies of multiple models. In: Menzies T, Kocagüneli E, Minku L, 
Peters F, Turhan B (eds) Sharing data and models in software engineering. 
Morgan Kaufmann, Boston

	30.	 Hao JG, Ho TK (2019) Machine learning made easy: a review of scikit-learn 
package in python programming language. J Educ Behav Stat 44:348–361

	31.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel 
M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau 
D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in 
python. J Mach Learn Res 12:2825–2830

	32.	 Wilks SS (1932) Certain generalizations in the analysis of variance. Biometrika 
24:471–494

	33.	 Hans-Vaugn DL, Lomax RG (2020) An introduction to statistical concepts. 
Routledge, NY

	34.	 Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced 
data using Matthews Correlation Coefficient metric. PLoS ONE 12:e0177678

	35.	 Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 
27:861–874

	36.	 Hanczar B, Hua JP, Sima C, Weinstein J, Bittner M, Dougherty ER (2010) Small-
sample precision of ROC-related estimates. Bioinformatics 26:822–830

	37.	 Roy K, Kar S, Ambure P (2015) On a simple approach for determining appli-
cability domain of QSAR models. Chemometr Intell Lab Sys 145:22–29

	38.	 Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans 
Inf Theory 13:21–27

	39.	 McCallum A, Nigam K (2001) A comparison of event models for naive bayes 
text classification. Work Learn Text Categ 752:41–48

	40.	 Boser BE, Guyon IM, Vapnik VN A training algorithm for optimal margin 
classifiers. In Proceedings of the fifth annual workshop on Computational 
learning theory ACM 144–152.

	41.	 Friedman JH (2001) Greedy function approximation: a gradient boosting 
machine. Ann Stat 29:1189–1232

	42.	 Huang GB, Babri HA (1998) Upper bounds on the number of hidden neu-
rons in feedforward networks with arbitrary bounded nonlinear activation 
functions. IEEE Trans Neural Netw 9:224–229

	43.	 Ambure P, Bhat J, Puzyn T, Roy K (2019) Identifying natural compounds 
as multi-target-directed ligands against Alzheimer’s disease: an in silico 
approach. J Biomol Struct Dyn 37:1282–1306

	44.	 Mathea M, Klingspohn W, Baumann K (2016) Chemoinformatic classification 
methods and their applicability domain. Mol Inform 35:160–180

	45.	 Probst P, Boulesteix AL, Bischl B (2019) Tunability: importance of hyperpa-
rameters of machine learning algorithms. J Mach Learn Res 20:1–32

	46.	 Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H (2019) Hyperparameter 
optimization for machine learning models based on bayesian optimization. 
J Electr Sci Technol 17:26–40

	47.	 van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure 
for efficient numerical computation. Comput Sci Eng 13:22–30

	48.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, 
Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson 
J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, 
Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, 
Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, 
van Mulbregt P, Contributors S (2020) SciPy 1.0: Fundamental algorithms for 
scientific computing in Python. Nat Methods 17:261–272

	49.	 McKinney W (2010) Data structures for statistical computing in python, 
In: Proceedings of the 9th Python in Science Conference, Austin, Texas, 28 
June-3 July 2010.

	50.	 Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 
9:90–95

	51.	 Halder AK, Melo A, Cordeiro MNDS (2020) A unified in silico model based on 
perturbation theory for assessing the genotoxicity of metal oxide nanopar-
ticles. Chemosphere 244:125489

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	QSAR-Co-X: an open source toolkit for multitarget QSAR modelling
	Abstract 
	Introduction
	Implementation
	Module 1 (LM)
	Step 1-Dataset division
	Step 2-box−jenkins moving average approach
	Step 3-Data pre-treatment
	Step 4-Linear model development
	Step 5-model validation
	Step 6-Yc-randomisation

	Module 2 (NLG)−hyperparameter tuning
	Module 3 (NLU)−user specific parameter settings
	Module 4 (CWP)−condition-wise prediction

	Results
	Case study-1 (CS1)
	Linear interpretable models
	Non-linear models

	Case study-2 (CS2)
	Case study-3 (CS3)
	Case study-4 (CS4)

	Conclusions
	Acknowledgements
	References




