
Pastor et al. J Cheminform (2021) 13:31
https://doi.org/10.1186/s13321-021-00509-z

SOFTWARE

Flame: an open source framework for model
development, hosting, and usage in production
environments
Manuel Pastor*  , José Carlos Gómez‑Tamayo and Ferran Sanz 

Abstract 

This article describes Flame, an open source software for building predictive models and supporting their use in
production environments. Flame is a web application with a web-based graphic interface, which can be used as a
desktop application or installed in a server receiving requests from multiple users. Models can be built starting from
any collection of biologically annotated chemical structures since the software supports structural normalization,
molecular descriptor calculation, and machine learning model generation using predefined workflows. The model
building workflow can be customized from the graphic interface, selecting the type of normalization, molecular
descriptors, and machine learning algorithm to be used from a panel of state-of-the-art methods implemented
natively. Moreover, Flame implements a mechanism allowing to extend its source code, adding unlimited model
customization. Models generated with Flame can be easily exported, facilitating collaborative model development.
All models are stored in a model repository supporting model versioning. Models are identified by unique model IDs
and include detailed documentation formatted using widely accepted standards. The current version is the result of
nearly 3 years of development in collaboration with users from the pharmaceutical industry within the IMI eTRANSAFE
project, which aims, among other objectives, to develop high-quality predictive models based on shared legacy data
for assessing the safety of drug candidates.

Keywords:  Modeling framework, Modeling tools, Reproducibility, Model management, Workflow, QSAR, Model
integration, Web-interfaces, In-silico toxicology

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In the last years, biomedical data is becoming widely
available, thanks to the creation of repositories like
PubChem [1] and ChEMBL [2], databases resulting from
public–private partnerships like eTOX [3, 4], as well as
data policies like FAIR [5], which facilitate the access of
existing data to the scientific community.

An interesting way of exploiting this vast amount
of data is the development of mathematical models

connecting the chemical structure of the substances with
their biological properties. Such models are not new.
Quantitative Structure–Activity Relationships (QSAR)
were first described in the 60 s [6, 7]. QSAR models use
regression methods to identify the structural properties
linked to quantitative biological properties or to predict
these properties for new substances. For biological prop-
erties characterized using qualitative descriptions (e.g.,
positive or negative) conceptually similar approaches
can be applied using classifiers. The first QSAR models
were developed using small series of congeneric com-
pounds, often synthesized and tested ad-hoc for the
study. Nowadays, large series of structurally diverse com-
pounds can be easily obtained from public repositories.

Open Access

Journal of Cheminformatics

*Correspondence: manuel.pastor@upf.edu
Research Programme on Biomedical Informatics (GRIB), Department
of Experimental and Health Sciences, Hospital del Mar Medical Research
Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain

http://orcid.org/0000-0001-8850-1341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-021-00509-z&domain=pdf

Page 2 of 15Pastor et al. J Cheminform (2021) 13:31

Pharmaceutical companies can also extract these series
from their own internal repositories and use them iso-
lated or combined with compounds from external
sources. This fact, combined with recent developments in
machine learning (ML) and deep learning (DL) method-
ologies [8] as well as with the implementation of many of
these methods in open source libraries [9], create an ideal
scenario for the development of predictive models with
biomedical application.

Indeed, the use of ML and DL is becoming very pop-
ular in biomedical research. A few remarkable models
developed recently have been listed in Table 1 as exam-
ples of applications of this methodology, illustrating their
usefulness.

More and more, the models obtained by the applica-
tion of ML are seen as valuable business assets. Accurate
and appropriately shared models can bring a number of
benefits if we are able to make effective use of existing
expertise [17]. However, the true capability of a model for
solving real-world problems critically depends on aspects
related to model implementation, as the following.

Reproducibility
Models must produce the same results when used at dif-
ferent sites or times. This simple, basic requirement is
difficult to meet if (i) the training data is not available
and distinctively identified or (ii) the algorithms used are
not documented with enough detail, or if it is not pos-
sible to use exactly the same software (same version and
same platform). The fast evolution of computational
tools (both hardware and software) makes it difficult to
preserve a model for some time. This topic has been dis-
cussed by various authors, proposing diverse solutions
for mitigating this problem like the use of appropriate
standards for QSAR data interchanges [18] or a workflow
for implementing published QSAR models and recom-
mendations to modelers [19].

Accessibility
Models are digital assets to which the FAIR accessibil-
ity principle can also be applied [5, 20]. Ideally, access
to existing models should be facilitated, particularly for
models developed in academic environments. In practice,
there are barriers related to the intellectual property of

the tools required to generate the predictions. This can
apply to commercial applications used to generate 3D
structures or molecular descriptors or even the modeling
software itself. For this reason, the use of open source
alternatives should be prioritized.

Not all accessibility barriers are related to intellectual
property issues, and models should be implemented in
a way that allows their use in different operative systems
(e.g., Windows, Linux, iOS) and platforms (e.g., imple-
mented as a desktop application or as REST [21] web
services in centralized servers). This is particularly true
in corporative environments, where company restrictive
policies about OS or platforms could hinder access to
useful models. Also, and not less important, is to facili-
tate the model use for non-experts by providing a friendly
end-user interface.

Model management
A good model is a valuable asset for an organization, and
as such, it should be managed using appropriate govern-
ance principles [17]. One of the first steps is to identify
and store the model appropriately. This facilitates com-
mon tasks like knowing which model was used to gener-
ate some prediction or retrieving a certain model cited in
a report. This task is hampered by the fact that models
are not static entities. Models evolve as the software they
use is updated or as the training series is enriched with
new compounds for covering a broader chemical space.
Consequently, models often have many versions that
must be properly identified and stored as well, record-
ing all the changes in the training series and the modeling
software.

A separate task is to document the models. Models can
be documented with different levels of detail for differ-
ent purposes [22]. As a minimum, every model must be
accompanied by documents allowing to reproduce the
algorithm completely and to understand and interpret
the prediction results. The documentation can be used
for other purposes, like demonstrating to regulatory
bodies the quality of the prediction for replacing experi-
mental tests [23]. Therefore, we recommend a layered
documentation structure, including basic mandatory
information and more detailed optional layers.

Table 1  Examples of ML/DL applications in biomedical research

ML application Brief explanation References

Drug discovery Identification of new bioactive compounds [8–10]

Toxicity prediction Identify hazardous substances [11–13]

Precision medicine Personalize medical treatment to patient idiosyncrasy [14]

Imaging diagnostics Identification of abnormalities from imaging [15, 16]

Page 3 of 15Pastor et al. J Cheminform (2021) 13:31 	

Reporting
For the model developer, the meaning of a model predic-
tion result is obvious; the model estimates the biologi-
cal annotations present in the training series. However,
users not involved in the process of model building lack
this context. This often creates confusion and difficul-
ties for users to interpret the model’s prediction, particu-
larly when the model produces a numerical outcome. For
this reason, as a minimum, model results must explicitly
include the units in which they are expressed, a brief,
concise explanation of how these results must be inter-
preted, and the level of confidence within which the pre-
diction values must be clearly declared [22].

Every prediction has a certain uncertainty associated
as a consequence of the errors present in the training
series annotations, as well as the limitations of the model
predictivity. For this reason, prediction results must be
accompanied by a quantitative estimation of the individ-
ual prediction error. This estimation cannot be generic,
based solely on the error observed for the compounds
in the training series. It must also consider how far the
query compound is away from the model applicability
domain.

In the last decades, several solutions have been pro-
posed for supporting the access to existing QSAR models
or the development of new ones, overcoming the issues
described above. One of the first was a Polynomial Neu-
ral Network published on-line in 1999 [24]. In a recent

review [25], these efforts were classified under four cat-
egories; research group-centric model collections, model
collections from (Q)SAR oriented projects, (Q)SAR mod-
els in integrated modeling environments, and (Q)SAR
model repositories. In the present article, we introduce
Flame, a new modeling framework for facilitating the
development, hosting, and use of predictive models in
production environments. When comparing with exist-
ing resources, Flame belongs to the category of integrated
modeling environments mentioned above. In the “Imple-
mentation” and “Results” sections, apart from describing
its features, we compare Flame with other similar tools,
highlighting the differential characteristics which make it
highly valuable for certain QSAR modeling applications.

Flame was developed in the context of project
eTRANSAFE (IMI2 Joint Undertaking under Grant
Agreement No. 777365), producing integrative data
infrastructures and innovative computational methods
to improve the feasibility and reliability of translational
safety assessment during the drug development process.
For this reason, Flame was originally designed to host
predictive models for drug safety endpoints, even if it can
be used with other applications in biomedical research.

Implementation
The Flame architecture is illustrated in Fig. 1. It con-
sists of a Python library (the Flame backend), which can
be used from a terminal with a command-line interface,

Fig. 1  Flame architecture

Page 4 of 15Pastor et al. J Cheminform (2021) 13:31

called from a Jupyter notebook [26], or scripts written
shell languages (bash, bat, etc.). It also implements a
web server (written in Django [27]) offering the library
features as REST services [21] and a complete web
interface (written in Angular [28]) providing a rich
graphic user interface (GUI).

The GUI can be executed locally as a desktop applica-
tion, starting the web server in the same computer run-
ning the Flame backend. It is also possible to run the
Flame backend in a server and access the REST services
from a remote client, thus allowing to run Flame as a
departmental or global prediction service in corporate
environments. This architecture differentiates Flame
from other integrated modeling environments operat-
ing exclusively as web-services (e.g., CHEMBENCH
[29], OCHEM [30]). The possibility of executing the
software locally, either as a desktop app or in a local
server, is a must when the data used for model training
or prediction is confidential, and the company policies
disallow to send it over the Internet.

The Flame backend and the optional flame web server
make use of Conda [31] to define the libraries required,
facilitate their automatic installation in a private environ-
ment. Conda also allows defining the acceptable library
versions to avoid incompatibilities. Flame can be installed
and used in Linux, Windows, and iOS operative systems.

The code was written using Object Oriented Program-
ming (OOP) as a Python library. The main classes (see
Table 2 and Fig. 2) can be classified as low-level or high-
level. Low-level classes carry out simple tasks while the
high-level classes execute model building and model pre-
diction workflows using the low-level classes. For exam-
ple, the default model building workflow implemented in
high-level class build (Fig. 2) starts from a training series
of annotated chemical structures. It uses class idata
to import their chemical structures, normalize them,
extract the biological annotations and generate molecu-
lar descriptors which are stored in a numerical matrix.
The molecular descriptors and the annotations are sent

to the class learn, which normalizes the numerical values
and builds models using machine learning (ML) tools like
Random Forest (RF). This model is stored in a machine-
readable format (as a pickle serialized version of the
scikit-learn estimator object [9, 32]) suitable to predict
the biological properties of novel compounds. Finally,
the class odata is used to format the results and produce
suitable output. The default prediction workflow (Fig. 2)
uses exactly the same low-level idata class to import and
pre-process the structures. This workflow design has
the advantage of guaranteeing that the predictions use
exactly the same code used for model building, for equiv-
alent tasks, thus producing consistent results. Then, the
low-level class apply retrieves the estimator saved previ-
ously during the model building process for computing

Table 2  Main Python classes used in Flame

Type Class Functionality Input Output

High-level Build Generates a model Training series Model

Predict Uses an existing model to generate a prediction for a query compound Query compound Prediction

Manage Handles (create, delete, export and import) models in the repository – –

Low-level Idata Processes chemical structures to obtain molecular descriptors as an X
matrix and annotations as a Y matrix (when provided)

Chemical structures X (Y) numerical matrices

Learn Generates a model from the X and Y numerical matrices X and Y numerical matrices Model

Apply Uses an existing model to generate a prediction from an X matrix X numerical matrix Prediction

odata Formats results as human-readable output or computational formats
suitable for the GUI

Results Formatted results

Fig. 2  Overview of the main workflows implemented natively in
Flame; predict and build. Boxes represent Python classes carrying out
specific workflow tasks. As can be seen, some objects (idata, odata)
are reused in both workflows, guaranteeing that the same code is
used in model building and prediction

Page 5 of 15Pastor et al. J Cheminform (2021) 13:31 	

the prediction results, which are formatted by the odata
class to generates suitable output.

Most of the building and prediction workflow
steps are configurable. For example, we can select the
structure normalization algorithms or the molecu-
lar descriptors calculation method. Also, the methods
themselves can be configured by adjusting their inter-
nal parameters. In Flame, the methods used to build a
model and their configurable parameters are defined
in a single parameter file (parameters.yml), which can
be seen as the model blueprint. This file is stored in a
folder, together with the original training series and
the estimator generated by build. This folder contains a
complete and comprehensive definition of how a model
has been built. The model repository is a user-defined
path in the computer filesystem where all these folders
are stored. Flame can work simultaneously with diverse
model repositories located in local or remote filesys-
tems, a convenient feature to maintain separate model
collections per project or user.

Flame models are used to predict the biological prop-
erties of new compounds using the predict workflow
(see Fig. 2). Since models are folders, they can be saved,
compressed, backed-up, or transmitted between Flame
instances installed in different computers. In any of these
cases, Flame guarantees that the predictions are repro-
ducible. In this sense, Flame models can be seen as self-
contained prediction engines. Flame provides commands
to export and import models as a single binary file, con-
sisting in the compressed version of the model folder.
On import, the version of the libraries used to generate
the model is checked to guarantee full compatibility and
reproducibility.

The use of the parameter file described above offers
limited customization since the user can select only
among the algorithms and methods implemented
natively in Flame. To overcome this limitation, the model
workflows do not call the low-level classes directly but
use a derived class stored locally within the model folder
(see Fig. 3). These derived or child classes inherit all of
the parent class properties, and in simple models this
mechanism is the exact equivalent to calling the Flame
classes directly. However, the child class methods can be
overridden, allowing unlimited model customization. For
example, advanced users can insert code calling external
tools to generate molecular descriptors, include extra
steps in the model building or prediction workflow or
adapt the output to generate customized reports. Since
these changes are written in the child class instance,
stored locally within the model folder, they do not affect
other models. Moreover, these changes are preserved
when the model is saved or exported. This possibility
to embed custom code in the building and prediction

workflows differentiates Flame from other integrated
environments, either on-line or downloadable. To the
best of our knowledge, it is only present in eTOXlab [33],
a modeling framework developed in our group some
time ago.

Results
Model building features
Flame can build predictive models starting from a sin-
gle file in SDFile format containing the structures and
the biological properties of a training series. The default
model building workflow takes care of reading the struc-
tures, normalizing them, extracting the annotations, gen-
erating molecular descriptors, scaling their values and
building a machine-learning model that is saved in a for-
mat suitable for predicting new compounds’ properties.

Flame provides defaults for methods and parameters,
but the user can customize them, either editing the
parameter file parameters.yml when using Flame in com-
mand line mode or using the model building dialogue
(Fig. 4) when using the Flame GUI.

Table 3 describes the methods implemented natively in
Flame. All of them make use of open source libraries. The
choice of models can be easily extended to include com-
mercial products or external tools, using the code over-
riding technique described in “Implementation” section.

Typically, models are built starting from a collection of
annotated chemical structures, but Flame can also use
as input a tab-separated (TSV) table with pre-calculated
molecular descriptors and annotations. Another option,
rarely found in other modeling frameworks (but present

Fig. 3  OOP method overriding. Models incorporate children
instances of the main low-level classes (see Table 2). By default, the
children are empty, and the parent class code is run, but advanced
users can edit the code and override the parent class methods to
customize the workflow

Page 6 of 15Pastor et al. J Cheminform (2021) 13:31

in OCHEM [30]), is the possibility to use as input the
prediction results of other models present in the reposi-
tory. This option, called in Flame “model ensemble”, is
interesting for integrating the results of multiple mod-
els. For qualitative models, multiple results can be sum-
marized using majority voting. The prediction results of
an ensemble of quantitative models can be summarized
using their means or medians. Regressors and classifiers
can also be trained with the model ensemble, using it as
a sort of “molecular descriptors”, to generate a smarter
result combination and obtain better predictions. When
the ensemble models estimate the individual prediction

error, this information is considered by Flame, using
appropriate probabilistic methods, to generate an estima-
tion of the final prediction error. The description of these
algorithms is beyond the present work scope and will be
published in a separate article.

The last step of model building workflows is estimating
the model quality using cross-validation. Flame presents
information about the model goodness of fit, predictive
quality, and some statistical information of the train-
ing series (e.g., value distribution). Since Flame can use
diverse ML methods, we tried to generate comparable
model quality indexes to facilitate the selection of the

Fig. 4  Dialogue used to define the model building workflow methods and parameters (simplified)

Page 7 of 15Pastor et al. J Cheminform (2021) 13:31 	

best methods and parameters. The values shown are
summarized in Table 4 for qualitative and quantitative
endpoints.

The Flame GUI provides additional information ori-
ented to diagnose the quality of the model and the train-
ing series, as shown in Fig. 5. For qualitative endpoints
(left side of Fig. 5), the confusion matrix is shown as
a 2 × 2 matrix. A radar plot is also used to represent,
in the radius of its four sections, the relative size of the
true positive, true negative, false positive, and false nega-
tive results. This information is shown separately for
the model fitting and prediction, the latter being calcu-
lated using cross-validation methods selected by the
user (default to five k-fold). Besides, Flame displays a

scatterplot of the training series using the two first Prin-
cipal Components (PCs) obtained by running a Principal
Component Analysis (PCA) with the calculated molecu-
lar descriptors. Objects (compounds) are colored red or
blue according to their biological annotations (positive or
negative, respectively). The positive and negative ratio of
substances in the training series is depicted using a pie
chart.

For quantitative endpoints (right side of Fig. 5), apart
from the parameters mentioned in Table 4, the interface
shows scatterplots of fitted/predicted values versus the
experimental annotations. For conformal models, the
confidence interval for the defined confidence level is
also shown. Flame displays a scatterplot of the training
series in a separate tab, like the one shown for qualita-
tive endpoints. However, in this case, the substances are
colored using the continuous scale included in the plot.
The distribution of the annotation values is shown using
a violin-type plot, which offers valuable information to
diagnose a skewed value distribution or the presence of
outliers. All the graphics representing the training series
are interactive, and hovering the mouse cursor over the
dots allows to display the 2D structure of the compounds
they represent.

The model quality reports described above are per-
sistent. All this information is stored within the model
folder and can be retrieved and shown in subsequent
work sessions.

Model predictions
Models stored in the repository can be used to predict the
biological properties of a compound entering an SDFile

Table 3  Overview of the main modeling methods and tools
implemented natively in Flame

Modeling task Method Source

Structure normalization Standardiser [34]

ChEMBL pipeline [35, 36]

Molecular descriptors calculation RDKit properties [37]

RDKit md [37]

RDKit Morgan fingerprints [37]

Scaling Raw –

Autoscaling [9]

Machine learning RF [9, 38]

SVM [9, 39]

PLS [9, 40]

XGBOOST [41]

Conformal regression [42, 43]

Table 4  Model quality parameters shown in the Flame GUI

Endpoint type Parameter Definition

Qualitative Sensitivity (fitting and prediction) TP
TP+FN

Specificity (fitting and prediction) TN
TN+FP

MCC (fitting and prediction) (TP∗TN)−(FP∗FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Quantitative SDEC (fitting)
√

∑

(Yexp−Ypred)
2

n

SDEP (prediction)
√

∑

(Yexp−Ypred)
2

n

r2 (fitting) ∑

(Yexp−Ypred)
2

∑

√
(Ymean−Ypred)

q2 (prediction) ∑

(Yexp−Ypred)
2

∑

√
(Ymean−Ypred)

Conformal models Conformal coverage Samples inside confidence boundaries
Total number of samples

Conformal accuracy Samples predicted correctly
Total number of samples

Mean interval (only quantitative)
∑

|Ymax−Ymin|
n

Page 8 of 15Pastor et al. J Cheminform (2021) 13:31

with its structure or sketching it in the included molecu-
lar editor. The prediction workflow will then apply to this
structure the same pretreatment, molecular descriptors
calculation, and x-matrix scaling used for the training
series, using exactly the same source code, thus guaran-
teeing the maximum consistency. The molecular descrip-
tors obtained are projected using the stored estimator to
obtain the prediction results. Prediction results can be
qualitative or quantitative, depending on the nature of
the training series annotations. Models built using con-
formal regression [43] generate additional information
about the prediction uncertainty. For quantitative end-
points, they provide a confidence interval, while for qual-
itative (binary) endpoints, the prediction result can be
“uncertain”, meaning that the model cannot ascertain if
the result is positive or negative. In either case, the model
reports the prediction uncertainty at a probability (the CI
confidence level or the probability that the result is cor-
rect, respectively) defined by the user.

Models are watermarked using a unique ID (a random
string of ten ASCII uppercase chars) generated during
the model building process. This ID is useful to guaran-
tee the model identity, even when different models are

assigned the same name or exported to different Flame
instances. Furthermore, when a model is used for pre-
diction, its unique model ID is stored together with the
prediction results. Predictions stored in the prediction
repository keep record of the model version used to gen-
erate it, guaranteeing complete traceability.

As stated in the introduction, prediction results are
often difficult to understand and interpret by users not
involved in the model building. For this reason, the Flame
GUI presents the prediction results in various formats,
decorated with extra information aiming to facilitate the
result interpretation and its use for decision making.

As shown in Fig. 6, results are displayed in three alter-
native views. First, they are presented as a list, including
for every predicted compound its name, 2D structure,
prediction result, and uncertainty information when
available. This list is paged, searchable, and can be
ordered by column values. It can also be exported to
Excel or PDF formats, printed, or copied to the clipboard.
Clicking in any of the list items displays a more detailed
report for a single compound. Reports show the com-
pound name, structure, and prediction result as well
as complementary information about how to interpret

Fig. 5  Model output for qualitative (left) and quantitative (right) endpoints

Page 9 of 15Pastor et al. J Cheminform (2021) 13:31 	

the result (extracted from the model documentation).
Besides, a list of the closest compounds in the training
series, labeled with their biological annotations, is also
shown. For obtaining this list, the similarity is computed
using the same molecular descriptors used for building
the model.

When an ensemble of models is used for prediction,
the prediction report shows the individual result of the
low-level models and the combined result (Fig. 7). For

conformal binary classifiers (left of Fig. 7), the graphic
shows the low-level model prediction results, indicating
if the query compound belongs to class 0 (negative), class
1 (positive), both of them (inconclusive type I) or neither
(inconclusive type II). For conformal quantitative models
(right of Fig. 7), the predictions are shown with the cor-
responding confidence intervals.

Finally, the prediction results are also projected on
the training series PCA scores scatterplot, generated as

Fig. 6  Representation of the model prediction results in the Flame GUI

Fig. 7  Visualization of prediction results obtained with ensemble models for qualitative (left) and quantitative (right) endpoints

Page 10 of 15Pastor et al. J Cheminform (2021) 13:31

explained in the previous section (Fig. 5). The aim of this
representation is to show whether the predicted com-
pound belongs to a region of the chemical space well
represented by the training series or if it belongs to a
less populated region. In this representation, the train-
ing series compounds can be displayed as grey dots
or colored by the biological annotation. The predicted
compound can be displayed as green circles with the
compound names, as red dots, or as dots colored by the
compound distance to model (DModX, see [44]). A high
DModX value indicates that the predicted compound has
original features not present in the training series, which
can be detrimental to the prediction quality.

Finally, it should be mentioned that the predictions are
stored in a persistent prediction repository, and there-
fore, it is possible to revisit previous predictions until
they are actively removed by the user.

Model management
Once a model is built, it is stored in a separate folder of
the model repository. This folder can contain multiple
versions of the model. As a minimum, there is a dev ver-
sion that is used for model development and is overwrit-
ten every time the model is re-built. Precisely for this
reason, the dev version cannot be used for prediction.
Model versions that the model developer considers worth
storing should be published to generate version 1, 2, etc.

The main GUI window shows a list (Fig. 8) where mod-
els can be browsed and selected. Every model is identified
with a name and version and labeled by Maturity, Type,
Subtype, Endpoint, and Species. The labels are defined by
the end-user and can be used to filter the models shown,
making it easier to find models for a particular endpoint,
species, or organ.

The command mode interface and the GUI provide
model management commands for creating new models,
publishing a model version, deleting a whole model tree
with all the versions or any single model version.

Models can be exported using a command that pro-
duces a compressed version of the whole model folder.
This file can be easily stored, backed-up, or sent in elec-
tronic formats (e.g., as an e-mail attachment). Once
imported in any Flame instance, the model is copied
to the model repository and becomes fully functional.
During the importing step, the versions of the software
libraries used for generating the models are checked,
and in case of version mismatches, a warning message is
shown.

Model documentation
Flame models are documented using a template based on
the QMRF [45], taking advantage of our previous expe-
rience in model documentation [22]. When the model is
built, Flame automatically completes in this template the
fields describing the modeling methodology and quality.
This half-completed document should be edited by the

Fig. 8  The models present in the model repository are shown in the GUI as a model list. Items can be sorted, browsed, and searched by text terms.
Models include user-defined labels which can be used to filter the list content

Page 11 of 15Pastor et al. J Cheminform (2021) 13:31 	

modeler, using the GUI or editing a documentation file in
yaml format using a text editor and importing it into the
model. In either case, the model documentation is stored
in the model folder and is included when the model is
exported or published.

The model documentation has been split into three
sections: General Model information, Algorithms, and
Other information. The first and third sections should
be completed by the modeler, while Flame automatically
completes most of the second section. The Additional
file 1 contains an example of a human-readable file in
yaml format, suitable for being imported into a Flame
model, with all the items included in these three sections.
The Additional file 2 contains a PDF file showing how
the model documentation is presented to the user in the
Flame GUI.

Performance
In a typical modeling workflow, the same code (structure
normalization, molecular descriptors calculation) is run
for every compound in the input series, both for training
series and prediction series. Therefore, the computation
can be speed-up by splitting the series into n sub-series
and assigning them to different computation threads,
which are run in different CPUs. Flame can run in par-
allel the workflow tasks related to the calculation of the
molecular descriptors, obtaining nearly linear speed-up.
Another time-consuming step is model building and vali-
dation. By default, Flame applies the parallel processing
implemented in the ML libraries (e.g., scikit-learn imple-
ments parallel processing in cross-validation and grid-
search, while XGBoost uses it in the model building and
validation). The use of GPUs is under development. A
special Flame version supporting GPUs is planned to be
released in the future, facilitating the efficient use of deep
learning within the framework.

Additionally, during model development, it is common
to rebuild the model repeatedly using diverse machine
learning settings to optimize them. To speed up this pro-
cess, Flame stores intermediate results of the calculation
(e.g., the molecular descriptors matrix), thus saving the
work of re-computing them in every cycle.

Flame has been used to develop models using series
of very different size and characteristics. To give an idea
of Flame performance and limitations we have included
Table 5 with some benchmarking results.

Error handling
Any modeling software aiming to solve real-life problems
should know how to deal with errors present in the input
files. These errors can stop the modeling workflow for
many reasons: input molecules can have a wrong struc-
ture, contain metals, counterions or water molecules. The

model building can also fail when the annotations are
not correct. For this reason, a lot of effort was devoted
to implementing appropriate error handling methods in
Flame, able to identify and remove automatically mole-
cules that cannot be processed and producing informa-
tive error reporting both in the GUI and the console. As
an example of Flame robustness, the D series in Table 5
contains 480,000 structures extracted directly from
ChEMBL, with no curation. Flame was able to process
the series removing automatically 249 structures (0.05%),
for which RDKit was not able to generate molecular
descriptors. Modelers know that there are many poten-
tial sources of error, and Flame does not claim to be able
to handle all error types. However, years of development
and use by different modeling teams established Flame as
a rather robust software.

Comparison with other integrated modeling environments
As mentioned in the introduction, many tools for sup-
porting the development of QSAR models are available.
A comparison of Flame with a representative sample of
related software would be helpful to highlight its advan-
tages. This comparison is focused on software that can
be installed locally, discarding purely on-line tools like
CHEMBENCH [29] or OCHEM [30]. In many cases,
these are excellent options, but in situations where
the models should be trained with confidential data or
used to predict confidential data, they are not usable.
Indeed, Flame was developed specifically for support-
ing modeling activities in the project eTRANSAFE, aim-
ing to develop predictive models for the pharmaceutical
industry using their confidential data. Another selection
criterion is software accessibility. For example, OpenMol-
GRID [46] was one of the first integrated modeling envi-
ronments, but it is not accessible anymore. Also related
to the accessibility, commercial software, and software

Table 5  Computation time for series of diverse size

Computation tasks involving structure normalization, computation of RDKit
descriptors, generation of a XGBoost model, and validation using fivefold
validation (for series A and B) and twofold validation (for series C and D).
a  Compounds removed from the computation because RDKit was unable to
compute molecular descriptors
b  Wall clock times, in a desktop PC with Windows 10 professional 64 bits, 32b Gb
RAM and an AMD Ryzen 5 3600(6 cores) CPU

Series Original series
size

Compounds
removeda

Final series size Time (s)b

A 2685 11 2674 20 s

B 5832 0 5832 32 s

C 126,368 114 126,254 600 s (10 min)

D 480,000 249 479,751 2160 s (36 min)

Page 12 of 15Pastor et al. J Cheminform (2021) 13:31

requiring registration or special agreements (e.g., QSA-
RIN-chems [47] and ChemProp [48]) is excluded from
the comparison, focusing our attention on open source
freely accessible tools. After applying these criteria, we
have selected the tools listed in Table 6 as a representa-
tive sample of the state-of-the-art, which does not intend
to be exhaustive.

The first tool listed, eTOXlab [33] was developed in
our group, and part of its conceptual design was reused
in Flame. It is an integrated modeling framework devel-
oped in Python and distributed as a source code or
pre-installed in a virtual machine. It can develop new
models starting from an annotated SDFile, store models
in a repository, and use them for prediction. As in Flame,
models can include children of the source coded classes
for model customization. However, eTOXlab offers lim-
ited features, and, for example, it cannot be used as a web
service, has a more limited panel of methods, and its GUI
is primitive. VEGA-QSAR [49] and EPI-suite [50] are
prediction-oriented tools containing a collection of very
useful models, but they lack the Flame ability to develop
new models. The Kausar Automated framework for
QSAR model building [51] is a fully featured collection
of KNIME workflows for model development and predic-
tion. However, it is oriented mainly to model developers
and lacks an interface that makes it suitable for end-
users. Moreover, KNIME is not open source, hampering
its installation in non-academic environments.

The two remaining tools in the table are special cases.
ToxTree [52] is a tool for the estimation of Toxic Hazard
using only the decision tree approach. The OECD QSAR
ToolBox [53], in spite of its name, is not specifically
aimed to develop or apply QSAR models. Its scope is
broader, oriented to obtain chemical hazard assessments
by retrieving experimental data from internal databases,
simulating metabolism, and profiling the chemical prop-
erties of chemicals. This information is then used for
read-across, finding structurally and mechanistically
defined analogs and chemical categories.

Discussion
The development of Flame was justified by the need for
an integrated modeling framework in the eTRANSAFE
project, meeting its specific needs as well as providing
pragmatic solutions to the general requirements of any
predictive model listed in the introduction. How Flame
addresses these requirements?

Reproducibility
Models generated and stored in Flame are fully reproduc-
ible across Flame instances and can be easily exported
and imported, always obtaining the same results. The
use of controlled Conda environments and the tagging
of the library versions used during the model generation
provides reasonable control of the software libraries and
versions used. However, Flame cannot avoid the obsoles-
cence of the software and hardware. For medium to long-
term model storage, saving images of the whole system
using docker or virtual machines is recommended.

Accessibility
Flame is open source and uses only open source soft-
ware. It is available in the most popular operative systems
(Linux, Windows, and iOS). It can be used as a desktop
application with a rich GUI, from the command line,
integrated into scripts, in Jupyter notebooks, or as a web
service. The GUI was designed for non-expert users, but
experienced modelers can customize the models without
limitations. Additionally, Windows and Linux installers
are distributed on the GitHub page to facilitate its instal-
lation by non-expert users. These installers are self-con-
tained, including all the libraries needed to install and
run Flame without an Internet connection. This is an
essential feature for its installation in corporate environ-
ments where security is critical and Internet connection
is either blocked or filtered.

Table 6  Locally installable software usable as an integrated modeling environment

Name Version License Platform Language Model
prediction

Model building

eTOXlab [33] 0.9.6 GNU GPL-3 Any Python/VM Yes Yes

VEGA-QSAR [49] 1.1.5.47 GNU GPL-3 Any Java Yes No

EPI-suite [50] 4.11 Copyright EPA, free of use Windows Yes No

Kausar Automated-framework [51] na na Any KNIME Yes Yes

ToxTree [52] 3.1.0 GNU GPL-2 Any Java Yes No

OECD QSAR ToolBox [53] 4.4.1 requires registration Windows Yes No

Page 13 of 15Pastor et al. J Cheminform (2021) 13:31 	

Governance
Flame incorporates advanced model management
tools, supporting the whole model development cycle.
Models can be developed, improved, and stored in a
persistent model repository, where they can be labeled
using up to four types of keywords. Models are also
thoroughly documented using widely accepted stand-
ards and given a unique ID. The documentation is
organized in sections using a structure close to the lay-
ered approach proposed in the introduction.

Reporting
Flame predictions are presented to the users in a vari-
ety of formats, some of them specifically designed to
facilitate the interpretation by non-expert users, provid-
ing contextual information about the biological annota-
tions and the result interpretation. Whenever the model
allows, the prediction result is presented with informa-
tion about its uncertainty, using rigorous formalisms
(e.g., conformal regression) expressed in formats familiar
to experimentalists (confidence intervals).

Conclusions
We presented Flame, an open source modeling frame-
work that can be used for the easy development of
QSAR-like models. The incorporated model building
workflow only requires the input of a single annotated
SDFile to generate a model, using default options. This
workflow can be easily customized to use any of the
natively supported methods and a wide variety of method
parameters. Moreover, it incorporates mechanisms to
implement unlimited customization by using model-
linked source code overriding.

Many predictive modeling applications depend criti-
cally on addressing implementation issues that hinder
the use of models in production environments. Our
modeling framework provides reasonable solutions for
most of these issues and facilitates a seamless transition
from model development to model production with little
effort. Models can be easily maintained, stored, exported,
and imported, facilitating the collaboration between aca-
demic and private institutions.

Flame uses innovative methods to combine models by
building models based on the results of other models.
This adds unique flexibility for combining multiple mod-
els addressing the same endpoint or combining models
representing multiple mechanisms contributing to the
same endpoint in the toxicological field. Some interesting
applications of this model combination tool have been
obtained and will be published in due time.

Flame incorporates a rich web-based GUI, facilitating
the model building, administration, and use in prediction.

Prediction results are presented to the user in various
formats, including information like the substances in the
training series closer to the predicted compound or pro-
jections of the query compounds on the training series
chemical space.

Flame has been developed within eTRANSAFE, a large
European project involving numerous farmaceutical
companies, some of which are testing Flame internally.
The feedback obtained in this interaction has been a pre-
cious resource for designing a tool that can help drug
developers and drug safety experts in their daily work.

The comparison with similar tools, installable locally,
was favorable to Flame and highlighted some of its
advantages. If the comparison is extended to include
on-line services like CHEMBENCH and OCHEM, these
platforms outperform Flame in some aspects, even if
they lack the advanced model customization offered by
locally installable tools.

For all these reasons, Flame can be considered a very
useful tool with unique features. As yet, it does not incor-
porate all the modeling tools available, but we plan to
keep enriching their features, incorporating other molec-
ular descriptor generators and machine learning toolkits.
In this respect, we plan to expand the Flame user’s com-
munity beyond the eTRANSAFE consortium and inter-
est developers that can contribute their code in future
versions.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​021-​00509-z.

Additional file 1. Model documentation exported in human-readable
yaml format that can be edited and imported.

Additional file 2. Large figure showing the aspect of the model docu‑
mentation GUI in Flame.

Acknowledgements
We wish to thank Thomas Steger-Hartmann (Bayer AG, Pharmaceuticals,
Berlin), Francois Pognan and Nils Oberhauser (Novartis, Basel) for manuscript
review and valuable comments.

Authors’ contributions
MP coded most of the Flame software and prepared the manuscript. JCGT
wrote significant sections of the software and contributed to the manuscript.
FS contributed to the software concept and design and reviewed the manu‑
script. All authors read and approved the final manuscript.

Authors’ information
MP is the head of the Pharmacoinformatics laboratory at the GRIB (UPF), and
leader of modeling related work packages at eTRANSAFE project. JCGT is a
post-doctoral fellow at the MP’s Pharmacoinformatics laboratory. FS is the
head of the GRIB and eTRANSAFE academic coordinator.

Funding
This work has received funding from the eTRANSAFE project (Grant Agree‑
ment No. 777365), developed under the Innovative Medicines Initiative
Joint Undertaking (IMI2), resources of which are composed of a financial
contribution from the European Union’s Seventh Framework Programme

https://doi.org/10.1186/s13321-021-00509-z
https://doi.org/10.1186/s13321-021-00509-z

Page 14 of 15Pastor et al. J Cheminform (2021) 13:31

(FP7/2007–2013) and EFPIA companies’ in kind contributions. The authors of
this article are also involved in other related IMI projects which contributed
funding, such as TransQST (No. 116030) as well as the H2020 EU-ToxRisk
project (No. 681002) and FAIRplus (No. 802750). The Research Programme
on Biomedical Informatics (GRIB) is a member of the Spanish National
Bioinformatics Institute (INB), funded by ISCIII and FEDER (PT17/0009/0014).
The DCEXS is a ‘Unidad de Excelencia María de Maeztu’, funded by the AEI
(CEX2018-000782-M). The GRIB is also supported by the Agència de Gestió
d’Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya (2017 SGR
00519).

Availability of data and materials
Flame source code is available at GitHub under GNU GLP-3.0 license at the
following repositories: https://​github.​com/​phi-​grib/​flame (backend), https://​
github.​com/​phi-​grib/​flame_​API (web server), https://​github.​com/​phi-​grib/​
flame​Web2 (frontend). No dataset was described nor required to support the
conclusions of the manuscript.
Project name: Flame. Project home page: https://​github.​com/​phi-​grib/​flame
(backend), https://​github.​com/​phi-​grib/​flame_​API (web server), https://​github.​
com/​phi-​grib/​flame​Web2 (frontend). Operating system(s): Platform independ‑
ent. Tested in Windows, Linux, and iOS. Programming language: Python,
Typescript (Angular). Other requirements: Flame uses a Conda environment
defining dependencies to other Python libraries. License: GNU GPL-3.0

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 10 November 2020 Accepted: 8 April 2021

References
	1.	 Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and com‑

pound databases. Nucleic Acids Res 44:D1202–D1213. https://​doi.​org/​10.​
1093/​nar/​gkv951

	2.	 Gaulton A, Hersey A, Nowotka ML et al (2017) The ChEMBL database
in 2017. Nucleic Acids Res 45:D945–D954. https://​doi.​org/​10.​1093/​nar/​
gkw10​74

	3.	 Sanz F, Pognan F, Steger-Hartmann T, Díaz C (2017) Legacy data sharing
to improve drug safety assessment: the eTOX project. Nat Rev Drug
Discov 16:811–812. https://​doi.​org/​10.​1038/​nrd.​2017.​177

	4.	 eTOX dashboard. https://​etoxs​ys.​eu/​etoxs​ys.​v3-​demo-​bk/​dashb​oard.
Accessed 11 Feb 2021

	5.	 Wilkinson MD, Dumontier M, IjJ A et al (2016) The FAIR guiding principles
for scientific data management and stewardship. Sci Data 3:160018.
https://​doi.​org/​10.​1038/​sdata.​2016.​18

	6.	 Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where
have you been? Where are you going to? J Med Chem 57:4977–5010.
https://​doi.​org/​10.​1021/​jm400​4285

	7.	 Muratov EN, Bajorath J, Sheridan RP et al (2020) QSAR without borders.
Chem Soc Rev 49:3525–3564. https://​doi.​org/​10.​1039/​D0CS0​0098A

	8.	 Rifaioglu AS, Atas H, Martin MJ et al (2019) Recent applications of deep
learning and machine intelligence on in silico drug discovery: methods,
tools and databases. Brief Bioinform 20:1878–1912. https://​doi.​org/​10.​
1093/​bib/​bby061

	9.	 Varoquaux G, Buitinck L, Louppe G et al (2015) Scikit-learn. GetMobile
Mob. Comput Commun 19:29–33

	10.	 Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine
learning in drug discovery and development. Nat Rev Drug Discov
18:463–477. https://​doi.​org/​10.​1038/​s41573-​019-​0024-5

	11.	 Luechtefeld T, Rowlands C, Hartung T (2018) Big-data and machine learn‑
ing to revamp computational toxicology and its use in risk assessment.
Toxicol Res 7:732–744. https://​doi.​org/​10.​1039/​c8tx0​0051d

	12.	 Luechtefeld T, Marsh D, Rowlands C, Hartung T (2018) Machine learning
of toxicological big data enables read-across structure activity relation‑
ships (RASAR) outperforming animal test reproducibility. Toxicol Sci
165:198–212. https://​doi.​org/​10.​1093/​toxsci/​kfy152

	13.	 Rabesandratana T (2016) A crystal ball for chemical safety. Science (80-)
351:651. https://​doi.​org/​10.​1126/​scien​ce.​351.​6274.​651

	14.	 Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S (2018) Rise of
deep learning for genomic, proteomic, and metabolomic data integra‑
tion in precision medicine. OMICS 22:630–636. https://​doi.​org/​10.​1089/​
omi.​2018.​0097

	15.	 Abraham A, Pedregosa F, Eickenberg M et al (2014) Machine learning for
neuroimaging with scikit-learn. Front Neuroinform 8:14. https://​doi.​org/​
10.​3389/​fninf.​2014.​00014

	16.	 Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis.
Annu Rev Biomed Eng 19:221–248. https://​doi.​org/​10.​1146/​annur​
ev-​bioeng-​071516-​044442

	17.	 Palczewska A, Fu X, Trundle P et al (2013) Towards model governance
in predictive toxicology. Int J Inf Manag 33:567–582. https://​doi.​org/​10.​
1016/j.​ijinf​omgt.​2013.​02.​005

	18.	 Spjuth O, Willighagen EL, Guha R et al (2010) Towards interoperable and
reproducible QSAR analyses: exchange of datasets. J Cheminform 2:1–7.
https://​doi.​org/​10.​1186/​1758-​2946-2-5

	19.	 Patel M, Chilton ML, Sartini A et al (2018) Assessment and reproducibility
of quantitative structure–activity relationship models by the nonexpert. J
Chem Inf Model 58:673–682. https://​doi.​org/​10.​1021/​acs.​jcim.​7b005​23

	20.	 Commission E (2018) Turning FAIR into reality. https://​op.​europa.​eu/s/​
oLAK. Accessed 11 Feb 2021

	21.	 Roy Thomas Fielding (2000) Architectural styles and the design of
network-based software architectures. University of California, Irvine

	22.	 Pastor M, Quintana J, Sanz F (2018) Development of an infrastructure for
the prediction of biological endpoints in industrial environments. Lessons
learned at the eTOX project. Front Pharmacol 9:1–8. https://​doi.​org/​10.​
3389/​fphar.​2018.​01147

	23.	 Rovida C (2020) Internationalization of read-across as a validated new
approach method (NAM) for regulatory toxicology. Altex. https://​doi.​org/​
10.​14573/​altex.​19121​81

	24.	 Tetko IV, Aksenova TI, Volkovich VV et al (2000) Polynomial neural network
for linear and non-linear model selection in quantitative-structure activity
relationship studies on the internet. SAR QSAR Environ Res 11:263–280.
https://​doi.​org/​10.​1080/​10629​36000​80332​35

	25.	 Tetko IV, Maran U, Tropsha A (2017) Public (Q)SAR services, integrated
modeling environments, and model repositories on the web: state of the
art and perspectives for future development. Mol Inform 36:1600082.
https://​doi.​org/​10.​1002/​minf.​20160​0082

	26.	 Kluyver T, Ragan-Kelley B, Pérez F et al (2016) Jupyter notebooks—a
publishing format for reproducible computational workflows. In: Loizides
F, Schmidt B (eds) Positioning and power in academic publishing players,
agents and agendas. IOS Press, Amsterdam, pp 87–90

	27.	 Django project. https://​www.​djang​oproj​ect.​com/
	28.	 Angular. https://​angul​ar.​io/
	29.	 Capuzzi SJ, Kim IS-J, Lam WI et al (2017) Chembench: a publicly acces‑

sible, integrated cheminformatics portal. J Chem Inf Model 57:105–108.
https://​doi.​org/​10.​1021/​acs.​jcim.​6b004​62

	30.	 Sushko I, Novotarskyi S, Körner R et al (2011) Online chemical modeling
environment (OCHEM): web platform for data storage, model develop‑
ment and publishing of chemical information. J Comput Aided Mol Des
25:533–554. https://​doi.​org/​10.​1007/​s10822-​011-​9440-2

	31.	 Conda. https://​docs.​conda.​io/​proje​cts/​conda/​en/​latest/
	32.	 scikit-learn estimator term definition. https://​scikit-​learn.​org/​stable/​gloss​

ary.​html#​term-​estim​ator
	33.	 Carrió P, López O, Sanz F, Pastor M (2015) eTOXlab, an open source mod‑

eling framework for implementing predictive models in production envi‑
ronments. J Cheminform 7:8. https://​doi.​org/​10.​1186/​s13321-​015-​0058-6

	34.	 Atkinson F standardizer. https://​github.​com/​flatk​inson/​stand​ardis​er
	35.	 ChEMBL standardiser. https://​github.​com/​chembl/​ChEMBL_​Struc​ture_​

Pipel​ine
	36.	 Bento AP, Hersey A, Félix E et al (2020) An open source chemical structure

curation pipeline using RDKit. J Cheminform 12:1–16. https://​doi.​org/​10.​
1186/​s13321-​020-​00456-1

	37.	 RDKit: open-source cheminformatics software. https://​www.​rdkit.​org/
	38.	 Ho TK (1995) Random decision forests. Proc Int Conf Doc Anal Recognit

1:278–282. https://​doi.​org/​10.​1109/​ICDAR.​1995.​598994
	39.	 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–

297. https://​doi.​org/​10.​1023/A:​10226​27411​411

https://github.com/phi-grib/flame
https://github.com/phi-grib/flame_API
https://github.com/phi-grib/flame_API
https://github.com/phi-grib/flameWeb2
https://github.com/phi-grib/flameWeb2
https://github.com/phi-grib/flame
https://github.com/phi-grib/flame_API
https://github.com/phi-grib/flameWeb2
https://github.com/phi-grib/flameWeb2
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1038/nrd.2017.177
https://etoxsys.eu/etoxsys.v3-demo-bk/dashboard
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1021/jm4004285
https://doi.org/10.1039/D0CS00098A
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1039/c8tx00051d
https://doi.org/10.1093/toxsci/kfy152
https://doi.org/10.1126/science.351.6274.651
https://doi.org/10.1089/omi.2018.0097
https://doi.org/10.1089/omi.2018.0097
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1016/j.ijinfomgt.2013.02.005
https://doi.org/10.1016/j.ijinfomgt.2013.02.005
https://doi.org/10.1186/1758-2946-2-5
https://doi.org/10.1021/acs.jcim.7b00523
https://op.europa.eu/s/oLAK
https://op.europa.eu/s/oLAK
https://doi.org/10.3389/fphar.2018.01147
https://doi.org/10.3389/fphar.2018.01147
https://doi.org/10.14573/altex.1912181
https://doi.org/10.14573/altex.1912181
https://doi.org/10.1080/10629360008033235
https://doi.org/10.1002/minf.201600082
https://www.djangoproject.com/
https://angular.io/
https://doi.org/10.1021/acs.jcim.6b00462
https://doi.org/10.1007/s10822-011-9440-2
https://docs.conda.io/projects/conda/en/latest/
https://scikit-learn.org/stable/glossary.html#term-estimator
https://scikit-learn.org/stable/glossary.html#term-estimator
https://doi.org/10.1186/s13321-015-0058-6
https://github.com/flatkinson/standardiser
https://github.com/chembl/ChEMBL_Structure_Pipeline
https://github.com/chembl/ChEMBL_Structure_Pipeline
https://doi.org/10.1186/s13321-020-00456-1
https://doi.org/10.1186/s13321-020-00456-1
https://www.rdkit.org/
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1023/A:1022627411411

Page 15 of 15Pastor et al. J Cheminform (2021) 13:31 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	40.	 Wold S, Johansson ECM (1993) PLS—partial least squares projections
to latent structures. In: Kubinyi H (ed) 3D-QSAR in drug design, theory,
methods, and applications. ESCOM, Leiden, pp 523–550

	41.	 Sharma N (2018) XGBoost. The extreme gradient boosting for mining
applications. GRIN Verlag

	42.	 Norinder U, Carlsson L, Boyer S, Eklund M (2015) Introducing conformal
prediction in predictive modeling for regulatory purposes. A transpar‑
ent and flexible alternative to applicability domain determination. Regul
Toxicol Pharmacol 71:279–284. https://​doi.​org/​10.​1016/j.​yrtph.​2014.​12.​
021

	43.	 Non-conformist. https://​github.​com/​donlnz/​nonco​nform​ist
	44.	 Eriksson L, Andersson PL, Johansson E, Tysklind M (2006) Megavariate

analysis of environmental QSAR data. Part I—a basic framework founded
on principal component analysis (PCA), partial least squares (PLS), and
statistical molecular design (SMD). Mol Divers 10:169–186. https://​doi.​
org/​10.​1007/​s11030-​006-​9024-6

	45.	 European Commission JRC-IHCP QSAR model reporting format. https://​
publi​catio​ns.​jrc.​ec.​europa.​eu/​repos​itory/​bitst​ream/​JRC10​7491/​kjna2​
8713e​nn.​pdf. Accessed 11 Feb 2021

	46.	 Sild S, Maran U, Lomaka A, Karelson M (2006) Open computing grid
for molecular science and engineering. J Chem Inf Model 46:953–959.
https://​doi.​org/​10.​1021/​ci050​354f

	47.	 Gramatica P, Cassani S, Chirico N (2014) QSARINS-chem: insubria datasets
and new QSAR/QSPR models for environmental pollutants in QSARINS. J
Comput Chem 35:1036–1044. https://​doi.​org/​10.​1002/​jcc.​23576

	48.	 UFZ Department of Ecological Chemistry (2019) ChemProp 6.7.1. http://​
www.​ufz.​de/​ecoch​em/​chemp​rop

	49.	 Benfenati E, Manganaro A, Gini G (2013) VEGA-QSAR: AI inside a platform
for predictive toxicology. In: Proceedings of the workshop “popularize
artificial intelligence 2013”. Turin, Italy

	50.	 EPA U (2021) Estimation Programs Interface SuiteTM for Microsoft® Win‑
dows, v 4.11

	51.	 Kausar S, Falcao AO (2018) An automated framework for QSAR
model building. J Cheminform 10:1–23. https://​doi.​org/​10.​1186/​
s13321-​017-​0256-5

	52.	 Patlewicz G, Jeliazkova N, Safford RJ et al (2008) An evaluation of the
implementation of the Cramer classification scheme in the Toxtree soft‑
ware. SAR QSAR Environ Res 19:495–524. https://​doi.​org/​10.​1080/​10629​
36080​20838​71

	53.	 OECD QSAR ToolBox. https://​qsart​oolbox.​org/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.yrtph.2014.12.021
https://doi.org/10.1016/j.yrtph.2014.12.021
https://github.com/donlnz/nonconformist
https://doi.org/10.1007/s11030-006-9024-6
https://doi.org/10.1007/s11030-006-9024-6
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC107491/kjna28713enn.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC107491/kjna28713enn.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC107491/kjna28713enn.pdf
https://doi.org/10.1021/ci050354f
https://doi.org/10.1002/jcc.23576
http://www.ufz.de/ecochem/chemprop
http://www.ufz.de/ecochem/chemprop
https://doi.org/10.1186/s13321-017-0256-5
https://doi.org/10.1186/s13321-017-0256-5
https://doi.org/10.1080/10629360802083871
https://doi.org/10.1080/10629360802083871
https://qsartoolbox.org/

	Flame: an open source framework for model development, hosting, and usage in production environments
	Abstract
	Introduction
	Reproducibility
	Accessibility
	Model management
	Reporting

	Implementation
	Results
	Model building features
	Model predictions
	Model management
	Model documentation
	Performance
	Error handling
	Comparison with other integrated modeling environments

	Discussion
	Reproducibility
	Accessibility
	Governance
	Reporting

	Conclusions
	Acknowledgements
	References

