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Abstract 

For photovoltaic materials, properties such as band gap Eg are critical indicators of the material’s suitability to perform 
a desired function. Calculating Eg is often performed using Density Functional Theory (DFT) methods, although more 
accurate calculation are performed using methods such as the GW approximation. DFT software often used to com-
pute electronic properties includes applications such as VASP, CRYSTAL, CASTEP or Quantum Espresso. Depending 
on the unit cell size and symmetry of the material, these calculations can be computationally expensive. In this study, 
we present a new machine learning platform for the accurate prediction of properties such as Eg of a wide range of 
materials.
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Introduction
Opportunities to harness the continued pace of computer 
processing capabilities as well as new and refined data 
processing techniques exist for those wishing to investi-
gate and predict material properties computationally.

Using a Machine Learning (ML), Deep Learning (DL), 
and High Throughput (HT) computing techniques can 
provide an efficient robust data processing platform for 
the prediction and discovery of new materials.

ML techniques involve processing large datasets in 
order to generate highly accurate modelling algorithms 
that can be used to find relationships within the data and 
predict outcomes.

HT computing techniques involve aggregating the 
results of computations that have already been executed 
from many disparate data sources. Quantum chemical 
calculations and atomic scale calculations are often time 
consuming and CPU expensive, requiring hundreds of 
hours of super-computer processing time. Using pre-cal-
culated results from these operations will greatly reduce 

processing time, allowing for a greater throughput on 
much more modest hardware.

The combination of ML with HT will allow for rapid 
and exhaustive exploration of materials properties within 
a computational environment, at a scale and speed that 
simply cannot be matched in a laboratory.

In this paper we present a bespoke software platform 
(codename: Hadoken) for the discovery of materials, as 
well as 5 models derived from ML techniques that can 
be used to accurately predict material properties (such 
as the band gap of a compound), and a newly developed 
website that provides the basis for a materials prediction 
platform.

Deep learning
Data preparation for deep learning
A dataset containing information about 250× 103 simu-
lations calculated via the Perdew-Burke-Ernzerhof (PBE 
[1, 2]) DFT functional using the projector augmented 
wave (PAW [3, 4]) method was sourced via the Hadoken 
platform and downloaded for processing.

Feature composition
The stoichiometry S value is a string which is split into 
its constituent parts (a form of one-hot encoding) and 
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subsequently used to compose new features, comprising 
of the element and the count of the instance of that ele-
ment. The one-hot encoding process involves decompos-
ing categorical values into a binary representation.

To encode H2O:

To encode copper indium selenide:

Isomers have the same stoichiometric S value, yet have 
differing physical structures ( C3H4 for example). These 
isomers will produce identical encoding.

In this paper, the definition S (1) refers to this equation.
The gap type GT feature represents values that indicate 

the category (one-hot encoded) of gap type present in the 
compound.

Table 1 details the possible gap type values with corre-
sponding definitions.

∗ Given a band gap, this keyword describes if the sys-
tem is a metal, a semi-metal, an insulator with direct or 
indirect band gap [5].

The geometry G feature is decomposed using cell 
parameters (the unit cell’s lengths and angles) into 6 
features:

Space group SG which defines one of the possible 230 
symmetry groups of the crystal lattice is a categori-
cal scalar that requires transformation into appropriate 

(1)
S(xH , xHe, . . . , xOg )

→ {H = xH ,He = xHe, . . . ,Og = xOg }

S(H2O) ⇒ S(H = 2,O = 1)

→ {H = 1,O = 2, . . . ,Og = 0}

S(CuInSe2) ⇒ S(Cu1In1Se2)

→ {H = 0, . . . ,Cu = 1, In = 1, Se = 2, . . . ,Og = 0}

(2)
GT (xGTHM , xGTID , . . . , xGTM ) →

{GTHM = xGTID , . . . ,GTM = xGTM }x ∈ 0, 1

(3)G → {aÅ, bÅ, cÅ,α◦,β◦, γ ◦}

binary features (one-hot encoding). As an example, space 
group represents one of 230 possible categories with the 
use of a single integer: this scalar is transformed into 230 
binary features:

To encode the space group 37:

In the final stages of data preparation, constant features 
(features that contain the same value for each record) 
were dropped from the dataset, as well as any rows that 
contained null feature values. The dataset is now ready 
for use.

Aggregated feature set
Data obtained from all databases (AFLOW [6], Materi-
als Project [7]) is normalised and aggregated into a single, 
functional form. This process results in the aggregation of 
maximum number of homogeneous features from con-
sumed data sources. Table 2 details the features obtained 
from the AFLOW and Materials Project databases along 
with example values.

Table  3 details the attributes collected, along with 
names, example values, and original data source.

Table 2 details the feature set with names and example 
values.

Additional feature set derivation
Additional features useful for ML can be derived from 
existing features and also user input. Deriving these 
features frees the user from the necessity of perform-
ing these calculations and expedites work flow. In some 
instances, derivation of these additional features has 
been undertaken purely for experimental purposes, with 
the expectation that further refinement in the future will 
yield less theoretical results.

(4)
SG(xSG1

, xSG2
, . . . , xSG230

) →

{SG1 = xSG1
, SG2 = xSG2

, . . . , SG230 = xSG230
}x ∈ 0, 1

SG(37) → {SG1 = 0, . . . , SG37 = 1, . . . , SG230 = 0}

Table 1  Possible gap type values with definitions

Value Definition

NULL No definition

HalfMetal ∗

InsulatorDirect ∗

InsulatorDirectSpinPolarised ∗

InsulatorIndirect ∗

InsulatorIndirectSpinPolarised ∗

Metal ∗

Table 2  Feature set with names and example values

Name Example

Stoichiometry Al3Li3O12Si3

Band Gap 4.8022

Density 2.25761

Energy − 151.631

Energy per Atom − 7.22053

Fermi energy 0.4748

Geometry A, B, C 5.296, 5.296, 11.448

Geometry α , β , γ 90, 90, 120

Space group 181
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In this paper, the notation S (1) refers to S provided by 
the Definition 1.

Number of atoms
The total number of atoms N contained within the sys-
tem can be derived from S (1) such:

where S (1) describes the stoichiometric composition of 
the material. This feature returns the sum of species of 
each atom contained in the unit cell multiplied by the 
instance.

Atomic weight
The total atomic weight TAr of the system with reference 
to S (1) is given by:

where S (1) describes the stoichiometric composition 
of the material and Ar [8] describes the atomic weight 
of each element. This feature returns the sum of each 
atomic weight of each species considered individually in 
the unit cell multiplied by the instance.

(5)N =
∑

S(xi)

(6)TAr =
∑

Ari × S(xi)

Chemical potential
The total chemical potential Tµ of the system with ref-
erence to S (1) is given by:

where S(1) describes the stoichiometric composition of 
the material and µ describes the chemical potential of 
each element. This feature returns the sum of each chem-
ical potential of each species considered individually in 
the unit cell multiplied by the instance. This feature con-
tains values generated by the software given a stoichiom-
etry value. The chemical potential values are provided 
from the corresponding VASP POTCAR files.

S, P, D, F electrons
The total count of the number of electrons Te in each 
type of sub shell within the compound is given by:

where ei describes the number of electrons present in the 
corresponding sub shell. Electron configuration is deter-
mined using values from the literature [9].

(7)Tµ =
∑

µi × S(xi)

(8)Te =
∑

ei

Table 3  Collated attribute set with example values and accompanying data source

a  Post processing applied
b Sourced from associated files

Name Example AFLOW Materials Project

Species CaCuGeO Species Full_formula

Compound Ca2Cu2Ge4O12 Compound Full_formula a

Band gap 1.2007 EGap Band_gap

Density 4.60489 Density Density

DFT type 1 dft_typea If is_hubbard = true 
then PAW_PBE+U, else 
PAW_PBE

Energy −121.07 Energy_cell Energy

Energy per Atom −6.05349 Energy_atom Energy_per_atom

Fermi energy 3.4726 b N/A

Gap type InsulatorIndirect Egap_type N/A

Geometry A 6.949605 Geometry a N/A

Geometry B 6.949605 Geometry a N/A

Geometry C 5.44499 Geometry a N/A

Geometry alpha 76.82593 Geometry a N/A

Geometry beta 76.82593 Geometry a N/A

Geometry gamma 83.10932 Geometry a N/A

K-Space Ŵ-Y-F-L-Z-...-N-Z-F1 kpoints a N/A

Number of atoms 20 natoms nsites

Space group 15 Spacegroup_orig Spacegroup

Volume 248.674 Volume_cell Volume
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S, P, D, F orbitals
The total count of each type of orbital Tσ within the 
compound is given by:

where σi describes the corresponding number of orbitals 
present in the element. Orbital configuration is deter-
mined using values from the literature [9].

Symmetry
The symmetry elements HS [10] associated with the 
space group of the crystal lattice has been stored in our 
database. This information is one-hot encoded in a sim-
ilar fashion to SG (4).

Electron affinity
The total electron affinity TEA with reference to S (1) is 
given by:

where S (1) describes the stoichiometric composition of 
the material and EAi describes the electron affinity [11] of 
each element. This feature returns the sum of each elec-
tron affinity of each species considered individually in the 
unit cell multiplied by the instance.

Electronegativity
The total electronegativity χ is given by the Mulliken 
electronegativity definition [12, 13]:

where Ei describes the first ionisation energy [14] and Eea 
describes the electron affinity [11].

Ionisation energy
The total ionisation energy TIE with reference to S (1) is 
given by:

(9)Tσ =
∑

σi

(10)

HS(xHS1 , xHS2 , . . . , xHS63M )

→ {HS1 = xHS1 ,HS2 = xHS2 , . . . ,HS63M = xHS63M }

x ∈ 0, 1

(11)TEA =
∑

EAi × S(xi)

(12)χ =
∑ Ei + Eea

2

(13)TIE =
∑

IEi × S(xi)

where S (1) describes the stoichiometric composition of 
the material and IEi describes the ionisation energy [14] 
of each element.

Mass density
The total mass density Tρ with reference to S (1) is given 
by:

where S (1) describes the stoichiometric composition of 
the material and ρi describes the density [15, 9] of each 
element. This feature returns the sum of each mass den-
sity value multiplied by the instance count of the corre-
sponding element.

Valence electrons
The total number of valence electrons TVe with reference 
to S (1) is given by:

where S (1) describes the stoichiometric composition of 
the material and Vei describes the number of valences 
electrons present for each element [15]. Currently, the 
number of valence electrons is determined primarily 
from the specification of the chemical elements in the 
VASP POTCAR file associated with the structure.

Effective mass
For a free electron, effective mass [16, 17] is given by

For an electron in a crystal, the effective mass approxima-
tion is given by

where m′
e = xme . Thus the dispersion may be rewritten 

as

Using the second derivative of (18) to calculate x

Fitting a curve to the conduction band minima of an E-k 
diagram using the form y = ax2 + bx + c yields

(14)Tρ =
∑

ρi × S(xi)

(15)TVe =
∑

Vei × S(xi)

(16)E =
�
2k2

2me

(17)E′ =
�
2k2

2m′
e

(18)E′ =
12k̇2

2(x1̇)
=

k2

2x

(19)
d2E′

dk2
=

d

dk

(

dE′

dk

)

=
d

dk

(

k

x

)

=
1

x
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Then

And

Thus our final equation for calculating effective mass 
(adjusting for atomic units) is given by:

The VASP software package can produce EIGENVAL 
files which contain the Kohn-Sham eigenvalues for all 
k-points. We have developed software to parse these files 
and produce the appropriate band structure diagrams, to 
which a parabola may be fitted. The EIGENVALS output 
usually appears in the following format:

44 44 1 1

0.1722398E+02 0.7561903E-09 0.7561903E-09 0.1382445E-08

1.0000000000000000E-004

CAR

Ag1Cr4O14Tl3_ICSD_421926

364 280 294

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.3571429E-02

1 -43.9433

2 -43.9433

...

293 15.1138

294 15.2782

0.2553226E-01 0.2553226E-01 0.3244774E-02 0.3571429E-02

1 -43.9433

2 -43.9433

...

The following line in this file contains important infor-
mation required during processing:

364 280 294

The values on this line are the number of electrons, 
number of k-points, and number of bands respectively. 
Lines that contain 4 double-values contain informa-
tion regarding the 3-dimensional position in k-space 

(20)E′ = ak2 + bk + c

(21)d2E′

dk2
= 2a

(22)x =

(

d2E′

dk2

)−1

= (2a)−1

(23)m∗ = (2a)−1

(x, y, z), as well as a weighting factor (not used by our 
software):

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.3571429E-02

These values are parsed into a vector and stored in 
memory. Immediately following the coordinate lines are 
lines containing energies associated at that coordinate:

1 -43.9433

2 -43.9433

...

293 15.1138

294 15.2782

Coordinate vectors represent direct coordinate values 
(x, y, z) and are require further processing to be useful for 
m∗ calculation.

The reciprocal lattice is a 3× 3 matrix defined as

where the reciprocal primitive vectors are defined as

The reciprocal lattice (values sourced from the OUTCAR 
file, another VASP output file) is used to transform coor-
dinate vectors vi = [x′iy

′
iz
′
i] by the reciprocal lattice such:

Finally, the distance between two 3-dimensional k-coor-
dinate vectors vi and vj is described by:

This value is used as the k-value (converted from units of 
Å−1 → µB

−1 ) along the x-axis in the following E-k dia-
gram, with E (converted from units of eV → Ha ) com-
prising the y-axis values. This process ostensibly provides 

(24)

f (α) = (2× π × α)

...

x′ = f (x)

y′ = f (y)

z′ = f (z)

(25)Gm = m1b1 +m2b2 +m3b3

(26)

b1 = αî1 + β ĵ1 + γ k̂1

b2 = αî2 + β ĵ2 + γ k̂2

b3 = αî3 + β ĵ3 + γ k̂3

(27)vi =
[

x′i y
′
i z

′
i

]T
× Gm

(28)d =

√

(vjx − vix)2 + (vjy − viy)2 + (vjz − viz)2
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energy values that correspond to the associated position 
in the Brillioun zone.

Figure 1 shows the band structure (E-k) diagram of Si2 
generated by the Hadoken software. Conduction bands 
are shaded green, with the lowest unoccupied molecular 
orbital (LUMO) is shown as bold green. Valence bands 
are shaded blue, with the highest occupied molecular 
orbital (HOMO) show as bold blue. An orange parabola 
has been fitted to the LUMO minimum in the Ŵ-X seg-
ment, and it is this curve that is used to calculate effective 
mass. Also shown are red parabolae fitted to the HOMO 
maxima. 

Fitting a parabola in the quadratic form 
y = ax2 + bx + c yields the coefficient a which can then 
be used by (23) to obtained the final m∗ value.

Should more than one fit per k-space segment be pos-
sible, then the resultant values are averaged to yield the 
final effective mass value. Currently, only m∗ values cal-
culated in the Ŵ-X segment via this method are persisted.

The following Table  4 displays the entire feature set, 
including sourced and derived values, corresponding 
example values and units.

Deep learning model training process
All models were trained using the same process: 

1	 Features in the entire 0.477 GB dataset were normal-
ised.

2	 Data was split into two streams: training and valida-
tion at a ratio of 0.7/0.3.

3	 An artificial neural network based on a sequential DL 
model from the Keras framework on a TensorFlow 
back end with dense layers (100, 50) was used and 
trained over 300 iterations.

4	 Verification that over-fitting was not occurring. 
Over-fitting is characterised by an increase in loss 
which will be reflected in the training history. Even 
after 300 iterations, the loss recorded continues to 
converge, indicating that the algorithm is still learn-
ing (i.e., not over-fitting). Had the training process 
resulted in an increase in loss, we could be sure over-
fitting was occurring.

5	 The neural network was optimised by training it 
with all the data over 1000 iterations. The following 
Table  5 demonstrates that the optimisation process 
may yield extra accuracy when training a model for 
production deployment.

6	 Information about the neural network was serialised 
for production use (layers, weights, biases, activation 
functions etc.).

7	 Optimised models are persisted for future use via the 
https://​www.​hadok​enmat​erials.​io/ website and asso-
ciated API

The models described in this document have been made 
available for use at https://​www.​hadok​enmat​erials.​io/ 
with the API documentation available at https://​www.​

Fig. 1  Bulk silicon band structure

https://www.hadokenmaterials.io/
https://www.hadokenmaterials.io/
https://www.hadokenmaterials.io/Home/Api
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hadok​enmat​erials.​io/​Home/​Api. These models are also 
made available via GitHub at https://​github.​com/​carly​
man77/​Mater​ialsD​iscov​eryML.

Determination of model accuracy
We include three different loss functions used to determine 
accuracy for the predictive models, and a single loss func-
tion for the classification model. All metrics should be con-
sidered when evaluating the accuracy of a model, as each 
method has advantages in certain applications. For exam-
ple, if the average errors are evenly distributed then both 

Mean Absolute Error and Root Mean Squared Error out-
puts should converge. However, Root Mean Squared Error 
will penalise large outlier errors as the errors are squared 
before an average is taken.

Mean absolute error (MAE)
This value is derived from the mean_absolute_error 
[19] function which produces a risk metric corresponding 
to the expected value of the absolute error loss or l1-norm 
loss.

Table 4  Full feature set with example values and accompanying units

Name Example Units Data type Aggregated Calculated

Species CaCuGeO String Yes No

Compound Ca2Cu2Ge4O12 String Yes No

Band gap 1.2007 eV Double Yes No

Density 4.60489 eV Double Yes No

DFT type 1 Int32 Yes No

Energy − 121.07 eV Double Yes No

Energy per Atom − 6.05349 eV Double Yes No

Fermi energy 3.4726 eV Double Yes No

Gap type InsulatorIndirect String Yes No

Geometry A 6.949605 Å Double Yes No

Geometry B 6.949605 Å Double Yes No

Geometry C 5.44499 Å Double Yes No

Geometry alpha 76.82593 Degrees Double Yes No

Geometry beta 76.82593 Degrees Double Yes No

Geometry gamma 83.10932 Degrees Double Yes No

K−Space Ŵ-Y-F-L-Z-...-N-Z-F1 String Yes No

Number of atoms 20 Int32 Yes No

Space group 15 Int32 Yes No

Volume 248.674 Å3 or Bohr3 [18] Double Yes No

Effective mass 0 or NULL Double No Yes

Total atomic weight 689.756 Double No Yes

Total chemical potential − 8390.4896 Double No Yes

Total electron affinity 24.9832632 Double No Yes

Total electro negativity 6.19191658 kJ/mol Double No Yes

Total ionisation energy 222.6934 eV Double No Yes

Total density 42.309148 eV Double No Yes

Total number of S Orbitals 56 Int32 No Yes

Total number of P Orbitals 96 Int32 No Yes

Total number of D Orbitals 30 Int32 No Yes

Total number of F Orbitals 0 Int32 No Yes

Total number of electrons 322 Int32 No Yes

Total number of S electrons 110 Int32 No Yes

Total number of P electrons 152 Int32 No Yes

Total number of D electrons 60 Int32 No Yes

Total number of F electrons 0 Int32 No Yes

Valence electrons 94 Int32 No Yes

https://www.hadokenmaterials.io/Home/Api
https://github.com/carlyman77/MaterialsDiscoveryML
https://github.com/carlyman77/MaterialsDiscoveryML


Page 8 of 23Belle et al. J Cheminform           (2021) 13:42 

Given ŷi to be the predicted value of the i-th sample, and 
yi to be the corresponding true value, then the MAE esti-
mated over n samples, is defined such that:

Root mean squared error (RMSE)
This value is derived by taking the square root of the Mean 
Squared Error (MSE, quadratic or L2 loss) value generated 
by the mean_squared_error [20] function.

Given ŷi to be the predicted value of the i-th sample, and 
yi to be the corresponding true value, then the MSE esti-
mated over n samples, is defined such:

Therefore:

R
2

This value is derived from the r2_score [21] function 
which is a representation of the proportion of explained 
variance. A perfect score is 1.0 which indicates that all 
independent variables are used to explain variation in 
the dependant variable.

Given ŷi to be the predicted value of the i-th sample, 
and yi to be the corresponding true value for a total of n 
samples, then the estimated R2 is defined such:

(29)MAE(y, ŷ) =
1

n

n−1
∑

i=0

|yi − ŷi|

(30)MSE(y, ŷ) =
1

n

n−1
∑

i=0

(yi − ŷi)
2

(31)RMSE(y, ŷ) =

√

√

√

√

1

n

n−1
∑

i=0

(yi − ŷi)2

where ȳ = 1
n

∑n
i=1 yi and 

∑n
i=1(yi − ŷi)

2 =
∑n

i=1 ǫ
2
i .

Modelling and results
Overview
Models are produced by the ML training process, and 
contain the refined weights, biases and activation func-
tions required to operate independently of the original 
dataset. Models are software assets that can be used to 
perform complex algorithmic tasks such as prediction 
or classification.

Band gap
Band gap Eg is an energy range between the uppermost 
valence band (valence band maximum) and the low-
est conduction band (conduction band minimum) of a 
crystal. Electrons in the valence bands can transition 
into the conduction bands upon excitation. This size of 
the band gap is a critical feature that many of the mate-
rial’s possible applications.

Photovoltaic (PV) materials are semiconductors, and 
so it follows that Eg is a key metric when considering a 
material’s suitability for PV applications.

Deep learning to predict band gap (Single feature)
This model attempts to predict Eg from stoichiometry 
only. This model uses a single feature, stoichiometry  S 
(1), such:

where Eg (S) describes the predicted result computed by 
M from S (1).

Results
Figure  2 displays the predicted Eg values generated by 
the model with the original Eg values. A clear linear 
trend is evident.

Figure 3 displays errors in 0.1 eV buckets. The major-
ity of predicted results appear in the first negative 
bucket, indicating that for most predictions, the result-
ant value is no more than 0.1 eV different from the 
original value.

Figure 4 displays the loss values generated by during 
the model training process.

Table 6 details the overall predictive accuracy metrics 
for the model.

Deep learning to predict band gap (minimal features)
This model attempts to predict Eg from the fewest fea-
tures considered logical that are also easily sourced, i.e., 

(32)R2(y, ŷ) = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2)

Eg (S) = M(S)

Table 5  Comparison of unoptimised ML and optimised Models

Model State MAE RMSE R
2 99%

Band Gap-
single

Unoptimised 0.079572 0.297179 0.914471 3.044744

Band Gap-
single

Optimised 0.057742 0.214150 0.955388 2.315024

Band Gap-
minimal

Unoptimised 0.072204 0.300485 0.912558 3.212371

Band Gap-
minimal

Optimised 0.045086 0.162154 0.974421 1.590898

Band Gap-
maximal

Unoptimised 0.082444 0.311686 0.905917 3.232445

Band Gap-
maximal

Optimised 0.046388 0.175463 0.970050 1.946711

Fermi energy Unoptimised 0.249163 0.379878 0.975808 2.765868

Fermi energy Optimised 0.308781 0.392329 0.974224 2.141287
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they can be found in literature and/or do not require 
complex computation to derive. This model uses the 
feature geometry G which is decomposed into cell 
parameters (the unit cell’s lengths and angles).

This model uses 3 main features, stoichiometry S (1), 
geometry G (3), and space group SG (4), such:

where Eg (S) describes the predicted result computed by 
M from  S (1). G (3), and SG (4).

Eg (S,G, SG) = M(S,G, SG)
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Fig. 2  Simulated vs. predicted Eg -single feature

Fig. 3  Eg Model residuals-single feature
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Results
Figure 5 displays the predicted Eg values generated by the 
model with the original Eg values. A clear linear trend is 
evident, and the spread of data points from this trend is 
much less than the previous model.

Figure 6 displays errors in 0.1 eV buckets. The major-
ity of predicted results appear in the first negative bucket, 
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Fig. 4  Eg Model Training History - Single Feature

Table 6  Single feature model performance metrics

Name Value

Mean absolute error 0.079572

Root mean squared error 0.297179

R2 0.914471

99% Quantile error 3.044744
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Fig. 5  Simulated vs. predicted Eg - minimal features
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indicating that for most predictions, the resultant value 
is no more than 0.1 eV different from the original value.

Figure 7 displays the loss values generated by during 
the model training process.

Table 7 details the overall predictive accuracy metrics 
for the model.

Fig. 6  Eg Model residuals-minimal features
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Fig. 7  Eg Model training history-minimal features

Table 7  Minimal feature model performance metrics

Name Value

Mean absolute error 0.072204

Root mean squared error 0.300485

R2 0.912558

99% Quantile error 3.212371
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Deep learning to predict band gap (maximal features)
This model attempts to predict Eg from the maximum 
number of features available from the collated dataset. 
This model is described as such:

Eg (FALL) = M(FALL)

where Eg (FALL) describes the predicted result computed 
by M from FALL , and FALL describes all features in the 
dataset.

Results
Figure 8 displays the predicted Eg values generated by the 
model with the original Eg values. A clear linear trend is 

0

1

2

3

4

5

6

7

8

876543210

S
im

ul
at

ed
 (e

V
)

Predicted (eV)

Band Gap - Maximal Features

Fig. 8  Simulated vs. predicted Eg -maximal features

Fig. 9  Eg Model residuals-maximal features
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evident, with the spread of data points from this trend 
much similar to the previous model. 

Figure 9 displays errors in 0.1 eV buckets. As with the 
previous model, the majority of predicted results appear 
in the first negative bucket, indicating that for most pre-
dictions, the resultant value is no more than 0.1 eV differ-
ent from the original value.

Figure 10 displays the loss values generated by during 
the model training process.

Table 8 details the overall predictive accuracy metrics 
for the model.

Comparison among deep learning models
Table  9 summarises the predictive accuracy metrics for 
each model. All 3 models are extremely accurate, and of 
note is the diminishing returns realised by the addition 
of many extra features: the model using a single feature 
is almost as accurate as the model that uses 20 features.

Fermi energy
Fermi energy is also an attribute useful for the design and 
discovery of materials, however some online data sources 
do not store this value. We provide a model for the pre-
diction of this property.

Deep learning to predict fermi energy
This model attempts to predict EF from the fewest fea-
tures. This model uses 2 main features, stoichiometry 
(one-hot encoded) S (1), and geometry G (3). This model 
is described as:

EF (S,G) = M(S,G)
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Fig. 10  Eg Model training history-maximal features

Table 8  Maximal feature model performance metrics

Name Value

Mean absolute error 0.082444

Root mean squared error 0.311686

R2 0.905917

99% Quantile error 3.232445

Table 9  Comparison metrics with feature and encoded feature count

Name F FE MAE RMSE R
2 99%

Single 1 100 0.079572 0.297179 0.914471 3.044744

Minimal 8 311 0.072204 0.300485 0.912558 3.212371

Maximal 20 348 0.082444 0.311686 0.905917 3.232445



Page 14 of 23Belle et al. J Cheminform           (2021) 13:42 

Results
Figure  11 displays the predicted EF values generated by 
the model with the original EF values. A clear linear trend 
is evident, with most data points clustered on or around 
this trend.

Figure 12 displays errors in 0.1 eV buckets. This model 
is accurate to within 0.5 eV for the majority of predicted 
values.

Figure 13 displays the loss values generated by during 
the model training process.
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Fig. 11  Simulated vs. predicted EF

Fig. 12  EF Model residuals
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Table 10 details the overall predictive accuracy metrics 
for the model.

Gap type
Gap type is an important attribute used to classify the 
type of band gap present in a material. Typically the gap 
type relates directly to the usefulness of a material for a 
specific application. For example, metals have no band 
gap and and such make excellent conductors, whilst sem-
iconductors may have a direct or indirect band gap (an 
indirect band gap is characterised by the phonon-assisted 
transmission). Insulators typically have a very large band 
gap.

Deep learning to classify gap type
This model uses 2 main features, stoichiometry (one-hot 
encoded) S (1), and space group SG (4), that are encoded 
(or decomposed) into values of varying size. This model 
is described as:

Results
Figure  14 displays the accuracy of gap type predictions 
per gap type. This model is most useful at predicting 
whether a gap type is an direct insulator or a metal.

Figure 15 displays the loss values generated by during 
the model training process. 

Table 11 details the overall predictive accuracy metrics 
for the model.

Table 12 details the metrics for each class of the model.

Production deployment of machine learning 
models
In addition to development of the preceding models, we 
have developed a lightweight and efficient method for 
deploying models to a production environment.

Multiple files are produced by Keras when persist-
ing a model, namely the weights and structure of the 
network. The weights are stored in the HDF5 [22] for-
mat and the model structure in a JSON format, neither 
of which are suitable for a number of reasons: JSON 
offers no schema support, or mature query language, 
comments, or meta-data. JSON is also a terse format 
designed to be used when the contract is pre-agreed 
upon, and therefore does not make a good candidate 
to support rich, searchable data models. The HDF5 
format is not human readable and is not easily parsed. 

GapType(S, SG) = M(S, SG)
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Fig. 13  EF Model training hstory

Table 10  Fermi energy model performance metrics

Name Value

Mean absolute error 0.249163

Root mean squared error 0.379878

R2 0.975808

99% quantile error 2.765868
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Unifying these two files in a more appropriate format is 
a welcome improvement.

In addition to this, no information is saved with the 
model about how it is intended to be used. For example, 
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Fig. 14  Gap type class metrics
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Fig. 15  Gap type classification training history

Table 11  Gap type classifier model performance metrics

Name Value

R2 0.924429
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inputs are not labelled, and no normalising parameters 
are included, which renders the model not portable and 
useless for production consumption. To address this, we 
have developed a simple, portable XML format that is 
searchable and can be validated against a schema. Only 
a single file is required to instantiate a usable model in 
a production environment that is guaranteed to produce 
reliable results from minimal code.

Artificial neural network function
Provisioning of ML models from the XML definition is 
provided via the Hadoken.ML.NeuralNetwork type 
located in the Hadoken.ML assembly. This custom-built 
Artificial Neural Network (ANN) functions as a series of 
completely connected layers using the following method: 

1	 Inputs are multiplied by weights and forwarded to 
the nodes in each layer

2	 Each node introduces a bias and another weight and 
sends the value to the next layer via the activation 
function

Figure 16 displays the map of a typical neural network. 
Inputs are fully connected with the first hidden layer, 
which is in turn fully connected to each following layer. 
This process is completed for each hidden layer, with 
results forwarded to the output layer.

Figure 17 displays the map of a neural network node. 
Inputs are multiplied by a weight and then added to a 
bias value. The sum of these operations is forwarded to 
an activation function which determines the final out-
put value.

Table 12  Gap type classifier model performance metrics per 
class

Class Accuracy Recall Precision F-Score

Half metal 0.981922 0.588644 0.336201 0.427970

Insulator direct 0.967027 0.659524 0.567789 0.610228

Insulator direct, Spin 
Polarised

0.9967527 0.500000 0.459016 0.478632

Insulator indirect 0.957695 0.717451 0.678095 0.697218

Insulator Indirect, Spin 
Polarised

0.992452 0.498920 0.408127 0.448980

Metal 0.960757 0.965741 0.989014 0.977239

Input Layer

Hidden Layer 0

Output Layer

Hidden Layer 

0

1

0

1⋯

⋯

⋯

⋮ ⋮

Fig. 16  Neural network function
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Supported activation functions
Table 13 details the activation functions provided by the 
software.

Supported normalisers
Table 14 details the normalisers provided by the software.

Software platform
Architecture
A bespoke software platform (codename: Hadoken) was 
created for the express purpose of aggregating materi-
als data from disparate representational state transfer 
(REST) APIs such as Materials Project [7] and AFLOW 
[6]. Data from these sources is collected via an aggregator 
and stored in a relational database. Additional support-
ing files that may be of use (such as associated VASP [23] 
files) are also downloaded and stored for later use. Useful 
attributes such as Fermi energy EF that are not present 
in REST API data are sourced from the VASP files and 
added to the database. Curated data is then used for the 
purposes of training ML models for predictive tasks.

Technology stack
The technology stack mirrors current popular indus-
try standard for rapid application development (RAD), 
and is based on Microsoft’s .NET Core Framework [24] 
and Microsoft SQL Server 2017 [25]. ML technologies 
include Python 3.5 [26] and TensorFlow [27] as well as 
Azure ML Studio [28].

Data collection
Data are initially sourced from two streams, on-line and 
off-line. On-line data sources are actively maintained 
network resources which release edits in real (or near to 
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Fig. 17  Neural network node function

Table 13  Supported activation functions

Name Form

Hyperbolic tangent f (x) = tanh x

Rectified linear unit f (x) = max{0, x}

Sigmoid f (x) = 1

1+e−1

Softmax f (xi) =
exi

∑

j e
xj

Table 14  Supported normalisers

Name Form

Mean y = x−mean x
max x−min x

Min/Max y = x−min x
max x−min x
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real) time. These often take the form of REST web API 
offerings including Materials Project and AFLOW. Some 
of these web services include information gathered from 
other sources, such as the Inorganic Crystal Structure 
Database (ICSD) [29].

These RESTful web services provide an industry stand-
ard method for querying and retrieving data. Data is 
provided in JSON format, which is then parsed into a 
common object model and stored locally. On-line data 
sources are much easier to work with than off-line, as 
they provide instant access to data stores that are pro-
actively curated.

Off-line data sources may not be actively maintained, 
or may only release edits periodically (such as with a new 
publication) and typically include information contained 
within texts, files, or databases which may have been 
produced by a lab during the research process. It is most 
likely that each off-line source differs in its storage format 
or layout, especially in the case of textural publications, 
and thus must have a bespoke parser written for it. This 
process is very time consuming and so these sources are 
currently avoided.

Data curation and post processing
Data is collected currently on an ad-hoc basis, however 
when a new model is to be trained a snapshot of the data-
base is taken so that continual data collection may occur. 
These snapshots are completely disconnected from the 
original data source, thus any updates to the database are 
not reflected in any dataset used by the model training 
process.

Post processing is the first step in data curation, and 
involves processing values and schema structure to assist 
with preparing data for curation. As an example, the 
AFLOW schema is mostly flat, however the Materials 
Project schema is nested. The Hadoken software prepares 
nested data by moving it to a simple normalised schema 
ready for the curation and matching process.

Data curation is a process that involves the careful 
selection and combination of data sources. Data sources 
may have differing, non-identical schemas applied to 
them, which will affect the storage and representation 
of underlying data. During the process, attributes from 
disparate data sources are matched where possible. Deci-
sions must also be made about the treatment of nullable 
attributes. For example, it may be possible to replace null 
values with a default initialisation value, such as 0 for a 
null integer or an empty string for a null string. These 
decisions are realised in code, and applied in the software 
and underlying database schema.

All data collected must be curated, and this process 
involved dividing the data into two streams: high-quality 
and low-quality. Data must attain a completeness fac-
tor of 100% in order to be useful, so efforts are made to 
achieve this.

The completeness factor FC is the ratio of features that 
contain non-null values FNN to the total number of fea-
tures FTot in the dataset:

where FNN defines the number of features with non-
null values and FTot defines the total number of features 
present.

Data is considered high-quality if its FC > 0.9 , with the 
additional constraint that any missing attributes can be 
retro-fitted by reading them from associated files or cal-
culating them directly.

Data is considered low-quality if its FC ≤ 0.9 . Records 
that contain missing attributes cannot be used by model 
training as they may mislead the model. Low-quality data 
is stored, but shelved for use later, as it may be possible to 
reconstruct missing attributes via ML, or, the data may 
be updated when matched with a future high-quality data 
source.

API access
We present a lightweight REST API for accessing the 
machine learning models built from this curated data. 
The API is built on current industry standards support-
ing both JSON and XML data exchange formats. The full 
API definition is located on the Hadoken Materials web-
site here: https://​hadok​enmat​erials.​io/​Home/​Api. Reg-
istration is required to use the API (https://​hadok​enmat​
erials.​io/​Accou​nt/​SignUp) and is fast (and free), however 
registration is not required to use the web UI interfaces 
provided for each model.

Whilst use of the website is free, any use of the website 
or API for research purposes, commercial or otherwise, 
are governed by terms defined in the citing document 
available on the website. More information is available 
here https://​hadok​enmat​erials.​io/​Home/​Citing.

Upon completion of registration, an API key in the 
form of an 128-bit GUID is allocated and API access is 
granted to the entire platform. This API key must be pre-
sented during each request.

By way of example, a typical API request for a band gap 
prediction for the compound Ca2Cu2Ge4O12 follows:

(33)FC = FNN /FTot

https://hadokenmaterials.io/Home/Api
https://hadokenmaterials.io/Account/SignUp
https://hadokenmaterials.io/Account/SignUp
https://hadokenmaterials.io/Home/Citing
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POST /Api/v1/MachineLearning/BandGap/Single HTTP/1.1

Host: www.hadokenmaterials.io

Hadoken-API-Key: XXXX

Content-Type: application/json

{

"Stoichiometry": "Ca2Cu2Ge4O12"

}

The response from this request (some headers omitted 
for brevity):

HTTP/1.1 200 OK

Transfer-Encoding: chunked

Content-Type: application/json; charset=utf-8

X-Powered-By: ASP.NET

{

"bandGap": 1.3985653904114555472784324321,

"stoichiometry": "Ca2Cu2Ge4O12"

}

API reference
Currently, the API supports a single version: 1. In the 
future, different versions will become available; to use 
those versions replace the current version number.

Table 15 details the entire API URI reference.
Table  16 details all optional query string parameters 

used by the API.

Machine learning API URI reference
Band gap‑single feature
URL format: /api/vVersion/MachineLearning/BandGap/
Single

JSON fragment template:

{

"Stoichiometry": "{Stoichiometry}"

}

JSON fragment example:

{

"BandGap": 1.2049858165280045952682033686,

"Stoichiometry": "Ca2Cu2Ge4O12"

}

Band gap‑minimal features
URL format: /api/vVersion/MachineLearning/BandGap/
SpaceGroup Geometry

JSON fragment template:

Table 15  Full URI reference-https://​www.​hadok​enmat​erials.​io/​Home/​Api

Format Method Description

/Api/v{Version}/Species GET Retrieve a list of resources

/Api/v{Version}/Species/{Name} GET Retrieve a list of resources by name

/Api/v{Version}/Species?Start={Start}&Size={Size} GET Retrieve a list of resources constrained by arguments

/Api/v{Version}/Species/Species/{GUID} GET Retrieve a single resource by unique identifier

/Api/v{Version}/Compounds GET Retrieve a list of resources

/Api/v{Version}/Compounds/{Name} GET Retrieve a list of resources by stoichiometry (Fe2In1P1)

/Api/v{Version}/Compounds?Start={Start}&?Size={Size} GET Retrieve a list of resources constrained by arguments

/Api/v{Version}/Compounds/Compound/{GUID} GET Retrieve a single resource by unique identifier

/Api/v{Version}/Simulations GET Retrieve a list of resources

/Api/v{Version}/Simulations/{Name} GET Retrieve a list of resources by stoichiometry (Cu1In1Se2)

/Api/v{Version}/Simulations?Start={Start}&?Size={Size} GET Retrieve a list of resources constrained by arguments

/Api/v{Version}/Simulations/Simulation/{GUID} GET Retrieve a single resource by unique identifier

/Api/v{Version}/MachineLearning/BandGap/Single POST Compute a prediction from the posted data

/Api/v{Version}/MachineLearning/BandGap/SpaceGroupGeometry POST Compute a prediction from the posted data

/Api/v{Version}/MachineLearning/BandGap/SpaceGroupHighSymmetryDerived POST Compute a prediction from the posted data

/Api/v{Version}/MachineLearning/FermiEnergy/Geometry POST Compute a prediction from the posted data

/Api/v{Version}/MachineLearning/GapType/SpaceGroup POST Compute a prediction from the posted data

Table 16  Optional query string parameters

Parameter Default Minimum Maximum

Size 100 1 200

Start 1 1 2147483647

https://www.hadokenmaterials.io/Home/Api
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{

"Stoichiometry": "{Stoichiometry}"

"GeometryA": {GeometryA},

"GeometryB": {GeometryB},

"GeometryC": {GeometryC},

"GeometryAlpha": {GeometryAlpha},

"GeometryBeta": {GeometryBeta},

"GeometryGamma": {GeometryGamma},

"SpaceGroup": {SpaceGroup}

}

JSON fragment example:

{

"BandGap": 1.0722278625397415602174867483,

"GeometryA": 6.955802,

"GeometryAlpha": 76.73364,

"GeometryB": 6.955802,

"GeometryBeta": 76.73364,

"GeometryC": 5.44479,

"GeometryGamma": 83.12188,

"SpaceGroup": 15,

"Stoichiometry": "Ca2Cu2Ge4O12"

}

Band gap‑maximal features
URL format: /api/vVersion/MachineLearning/BandGap/
SpaceGroup HighSymmetryDerived

JSON fragment template:

{

"SpaceGroup": {SpaceGroup}",

"Stoichiometry": "{Stoichiometry}"

}

JSON fragment example:

{

"BandGap": 1.0886605111631546614381073308,

"SpaceGroup": 15,

"Stoichiometry": "Ca2Cu2Ge4O12"

}

Fermi energy
URL format: /api/vVersion/MachineLearning/FermiEnergy/
Geometry

JSON fragment template:

{

"Stoichiometry": "{Stoichiometry}",

"GeometryA": {GeometryA},

"GeometryB": {GeometryB},

"GeometryC": {GeometryC},

"GeometryAlpha": {GeometryAlpha},

"GeometryBeta": {GeometryBeta},

"GeometryGamma": {GeometryGamma}

}

JSON fragment example:

{

"FermiEnergy": 3.541726248357564780714516288,

"GeometryA": 7.642811,

"GeometryAlpha": 59.99344,

"GeometryB": 7.643063,

"GeometryBeta": 59.99952,

"GeometryC": 7.643013,

"GeometryGamma": 60.00009,

"Stoichiometry": "Cr4Cu1In1Se8"

}

Gap type
URL format: /api/vVersion/MachineLearning/GapType/
SpaceGroup

JSON fragment template:

{

"SpaceGroup": {SpaceGroup}",

"Stoichiometry": "{Stoichiometry}"

}

JSON fragment example:

{

"HalfMetal": 0.0000000001208971313097922044,

"InsulatorDirectSpinPolarised": 0.0000000000000000003332013,

"InsulatorDirect": 0.0276288844767050804013304393,

"InsulatorIndirect": 0.972054870642805564504263858,

"InsulatorIndirectSpinPolarised": 0.00000000000011510869471,

"Metal": 0.0003162447594771147566990205,

"SpaceGroup": 129,

"stoichiometry": "Ag10O8P2Te2"

}

Machine learning web URI reference
Visit the URLs listed below to use the corresponding ML 
model via a web UI.
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Band gap‑single
Compute the Eg from stoichiometry only. https://​www.​
hadok​enmat​erials.​io/​Machi​neLea​rning/​BandG​apSin​gle

Band gap‑space group, geometry
Compute the Eg from stoichiometry and geometry (cell 
lengths and angles). https://​www.​hadok​enmat​erials.​io/​
Machi​neLea​rning/​BandG​apSpa​ceGro​upGeo​metry

Band gap‑space group, derived
Compute the Eg from stoichiometry and values derived 
from stoichiometry. Note for this model, only the stoi-
chiometry is required for operation. https://​www.​hadok​
enmat​erials.​io/​Machi​neLea​rning/​BandG​apSpa​ceGro​
upHig​hSymm​etryD​erived

Fermi energy‑geometry
Compute the EF  from stoichiometry and geometry (cell 
lengths and angles). https://​www.​hadok​enmat​erials.​io/​
Machi​neLea​rning/​Fermi​Energ​yGeom​etry

Gap ttype‑space group
Compute the gap type from stoichiometry and space 
group. https://​www.​hadok​enmat​erials.​io/​Machi​neLea​
rning/​GapTy​peSpa​ceGro​up

Conclusions
In this paper we show that it is possible to develop a 
number of highly accurate ML models to inexpensively 
predict the properties of materials using information 
previously generated from computationally expensive 
simulations.

The ML models demonstrate that a stoichiometry 
definition alone is a high value feature, containing (in 
most cases) all the information required to accurately 
compute the band gap associated with that material. 
Initial experimenting has demonstrated that the addi-
tion of other features (such as Density or Total Atomic 
Weight) has yielded little, if any additional accu-
racy. This suggests that DFT computation may not be 
required to perform this type of calculation.

The prospect of fast, efficient DFT-free computation 
of materials properties using only consumer hardware 
is tantalising and implies that further investigation 
into properties implied by stoichiometry related to 
Eg is required. This development could in turn greatly 
reduce the amount of time spent on simulations, 
managing simulation software, and budgets spent on 
supercomputing.

This project also lays the foundation for expansion 
to the prediction of other materials properties in the 
future using a similar process, and the development of 

an industry standard platform for the production devel-
opment of said models should facilitate the exhaustive 
profiling of compounds to develop novel materials by 
the wider research community in general.
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