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Abstract 

Interpretation of QSAR models is useful to understand the complex nature of biological or physicochemical processes, 
guide structural optimization or perform knowledge-based validation of QSAR models. Highly predictive models are 
usually complex and their interpretation is non-trivial. This is particularly true for modern neural networks. Various 
approaches to interpretation of these models exist. However, it is difficult to evaluate and compare performance and 
applicability of these ever-emerging methods. Herein, we developed several benchmark data sets with end-points 
determined by pre-defined patterns. These data sets are purposed for evaluation of the ability of interpretation 
approaches to retrieve these patterns. They represent tasks with different complexity levels: from simple atom-based 
additive properties to pharmacophore hypothesis. We proposed several quantitative metrics of interpretation perfor-
mance. Applicability of benchmarks and metrics was demonstrated on a set of conventional models and end-to-end 
graph convolutional neural networks, interpreted by the previously suggested universal ML-agnostic approach for 
structural interpretation. We anticipate these benchmarks to be useful in evaluation of new interpretation approaches 
and investigation of decision making of complex “black box” models. 
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Introduction
Interpretation of QSAR models is useful to understand 
the complex nature of biological or physicochemical pro-
cesses. Information discovered by interpretation can be 
used to optimize structures of compounds, reveal struc-
ture–property trends or perform knowledge-based vali-
dation of models. Instance-based interpretation reveals 
contributions of atoms or fragments within individual 
molecules to identify most favorable or unfavorable 
motifs to consider subsequent modifications. Dataset-
wide interpretation helps to establish contributions 
of fragments across different molecules of a data set to 
rank them and reveal general structure–property trends 
[1]. Interpretation of QSAR models became even more 

important in recent years after appearance of numer-
ous deep learning approaches and their introduction to 
everyday practice [2]. It is important to understand deci-
sion making of such “black box” models to increase confi-
dence in these models and retrieve useful knowledge [3].

Numerous approaches have been developed to inter-
pret QSAR models. All approaches can be split in two 
categories: those which are applicable to particular 
machine learning models and those which are applicable 
to any models (machine learning method agnostic, ML-
agnostic) (Table  1). Interpretation approaches can also 
be classified by the level of interpretation: feature-based 
or structural interpretation. In feature-based approaches 
contributions or importances of individual features/
descriptors are calculated. This information can already 
be useful if descriptors are interpretable per se. Con-
tributions of interpretable descriptors can be mapped 
back onto structure to reveal favorable/unfavorable 
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substructures. Structural interpretation directly gives 
contributions of particular motifs skipping the step of 
calculation of descriptor contributions.

Modern deep learning approaches frequently use end-
to-end modeling and create own internal representa-
tion that makes many of commonly used approaches 
not applicable. This requires specific interpretation 
approaches developed for these methods [4]. There are 
multiple post hoc interpretation approaches developed 
specifically for neural network models, e.g., Layer-wise 
Relevance Propagation (LRP) [5], DeepLift [6], CAM [7], 
GRAD-CAM [8], etc. Some deep learning approaches 
are interpretable by design, e.g., attention-based neural 
networks [9]. Weights assigned by the attention layer 
can be interpreted as importances of corresponding 
features. In graph-based networks these features can be 
atoms and thus importance of individual atoms within a 
molecule can be established. ML-agnostic interpretation 
approaches can be applied to modern deep learning mod-
els too. Examples of feature-based approaches include 
Integrated Gradients [10], Shapley values [11, 12]. To the 
best of our knowledge, structural ML-agnostic interpre-
tation methods haven’t been yet studied in application to 
deep neural networks (in QSAR field).

Despite the fact that multiple interpretation 
approaches have been developed and new ones con-
stantly appear there are no suitable benchmarks to evalu-
ate their applicability to interpretation of QSAR models. 
Often authors demonstrate applicability of their interpre-
tation approaches on well-studied end-points like lipo-
hilicity, solubility or toxicity where relevant patterns are 
well known [13]. Interpretation is usually performed for 

pre-defined motifs or on a limited number of considered 
examples [13–15]. For example, authors visually inspect 
a subset of molecules and compare calculated contribu-
tions with expert knowledge. Such non-systematic eval-
uation can be biased by a human expert and the choice 
of inspected molecules. Real data sets may have hidden 
biases which are difficult to control, some properties may 
depend on multiple factors or the response can be caused 
by different mechanisms of action. All these issues com-
plicate proper validation of interpretation approaches 
based on real-world examples.

Synthetic data sets are more reasonable to evaluate 
interpretation approaches; they can be designed in such 
a way that end-point values are pre-defined according to 
some logic, e.g., presence or absence of chemical patterns 
combined by Boolean operators determining compounds’ 
activity (classification case). In regression case, the activ-
ity can be calculated as the sum of pre-defined atomic/
fragment contributions. These data sets can be suitable 
to investigate the ability of models to capture the intro-
duced logic and the ability of interpretation approaches 
to retrieve it. Two recent studies attempted using artifi-
cial data sets. The study by Sheridan was mainly focused 
on comparison of interpretation of models built using 
different conventional descriptors and machine learn-
ing methods [16]. The author used similarity maps for 
model interpretation which provided atom contributions 
(colors) [17]. Besides real-world datasets, two artificial, 
“idealized” ones were utilized. Both represented simple 
additive properties: heavy atom counts and the number 
of negative charges in compounds at pH 7.4. Regarding 
the impact of descriptors (D) and models (Q) on inter-
pretation quality the author concluded, that “… one has 
to have a very high cross-validated predictivity to recover 
those expected colors, and not all D/Q combinations are 
suitable.”

Another study utilized Integrated Gradient interpre-
tation method [10]. Authors used graph convolutional 
models and their interpretation produced atomic con-
tributions. They created 16 synthetic classification data 
sets. Compounds were retrieved from ZINC database 
and satisfied particular positive or negative SMARTS 
patterns combined by Boolean operators. The goal 
of the study was investigating the ability of models to 
retrieve atoms corresponding to these positive and neg-
ative patterns. It was demonstrated that models could 
not always recognize true atoms correctly. Unfortu-
nately, authors did not provide data sets to enable com-
parative studies. Besides, those data sets represented 
only one possible scenario of structure–property rela-
tionship where the property of compounds depended 
on local chemical context encoded by SMARTS. 
Regression tasks were not studied. In their most recent 

Table 1  QSAR interpretation approaches

ML-dependent ML-agnostic

Feature-based Regression coefficients
Rule extraction
Layer-wise relevance propagation (LRP)
CAM, GRAD-CAM

Sensitivity 
analysis

Partial deriva-
tives

Feature impor-
tance by 
permutation

Integrated 
gradients

Shapley sam-
pling values

Structural Attention weights of attention-based 
(graph) neural networks

Universal 
approach 
of structural 
Interpretation

Similarity maps
Computational 

matched 
molecular 
pairs/series



Page 3 of 20Matveieva and Polishchuk ﻿J Cheminform           (2021) 13:41 	

study the same authors demonstrated on similar syn-
thetic data sets that not all interpretation methods, 
which were developed to interpret neural network, 
are suitable to retrieve structure–property relation-
ships captured by these models. It was demonstrated 
that integrated gradients and class activation maps 
performed consistently well across multiple model 
types whereas GradInput, GradCAM, SmoothGrad 
and attention mechanism performed poorly [18]. This 
demonstrates that not all interpretation approaches are 
suitable to retrieve structure–property relationships 
from machine learning models and therefore proper 
validation of interpretation approaches is required.

The aim of this study was creation of synthetic data sets 
with pre-defined patterns determining end-point values 
and with control over possible biases. Development of 
these data sets will enable systematic evaluation of inter-
pretation approaches to validate their ability to retrieve 
structure–property relationships captured by models, 
because calculated contributions of atoms or fragments 
can be compared with expected values determined by 
the incorporated logic (“ground truth”). We developed 
regression and classification data sets, which represent 
different logics and levels of complexity of end-points:

•	 Simple additive end-points, where specific contribu-
tions were assigned to individual atoms and the sum 
of atom contributions determined compound prop-
erty.

•	 Additive end-points depending on a local chemical 
context, where contributions were assigned to groups 
of atoms and their sum determined the property 
value of a compound. This is related to molar refrac-
tivity or lipophilicity modeling, where group contri-
bution methods are successfully applied [19, 20].

•	 Pharmacophore-like settings, where compounds 
were labeled as “active” if they had a specific 3D pat-
tern. For simplicity we chose a two-point 3D phar-
macophore. This case is the most similar to real 
problems, where property depends on distant fea-
tures and their mutual orientation.

We also proposed metrics to quantitatively estimate 
performance of interpretation approaches. To demon-
strate that the data sets and the metrics are suitable we 
applied previously developed universal interpretation 
approach [14], because it is ML-agnostic and allows to 
calculate the contribution of any atom or group of atoms. 
We applied it to multiple models built using conventional 
binary and count-based fingerprints and conventional 
machine learning methods and evaluated interpretabil-
ity of these models. We also implemented this approach 
for graph convolutional neural networks (GC) as a part of 
Deepchem [21] and for the first time compared interpret-
ability of GC with conventional QSAR models.

Materials and methods
Design of synthetic datasets
We created six data sets selecting compounds from 
the ChEMBL23 database (Table  2), which was used 
as a source of chemically relevant structures. Struc-
tures of all compounds were standardized, duplicates 
were removed, as were compounds with a MW > 500. 
For all retained compounds we assigned contribu-
tions to atoms or groups of atoms according to the rules 
described below, and then we calculated “activities” of 
compounds. To design regression data sets we assigned 
sampling probabilities to compounds so that their “activi-
ties” would resemble normal distribution. After that we 
randomly selected compounds from the pool with those 

Table 2  Synthetic data sets to benchmark interpretation of QSAR models

Alternative is reasonable for interpretation methods that meet “summation to delta” property (see “Design of synthetic datasets”)

Dataset Property type End-point Train/test set size Expected atom contribution

N Regression Sum(N) 6995/2999 Nitrogen atoms: 1; others: 0

N − O Regression Sum(N) − sum(O) 6893/2969 Nitrogen atoms: 1; Oxygen atoms: − 1; others: 
0

N + O Regression (Sum(N) + sum(O))/2,where sum(N) = sum(O) 7000/3000 Nitrogen and Oxygen atoms: 0.5; others: 0

Amide_reg Regression Sum(NC=O) 7000/3001 Any atom of amide groups: 1; others: 0

Amide_class Classification Active: if sum(NC=O) > 0; inactive: if 
sum(NC=O) = 0

6998/3000 Any atom of amide groups: 1; others: 0

Pharmacophore Classification Active: at least one conformer with exactly 
one pharmacophore match (same two 
atoms in all conformers); inactive: no 
pharmacophore matches for all conform-
ers; pharmacophore match: HBD and HBA 
9–10 Å apart

7000/3000 Atoms which are HBA or HBD of the pharma-
cophore: 1; others: 0 
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probabilities. This resulted in distributions close to nor-
mal (Additional file  1: Figure S1). To design balanced 
classification data sets we randomly selected equal num-
ber of compounds belonging to each class.

Three data sets represented simple additive properties. 
Patterns were defined as occurrence of certain atoms. 
The end-point of the first dataset (N data set) was the 
sum of nitrogen atoms. Thus, the expected contributions 
of nitrogen atoms were 1 and all other atoms—0. The 
end-point of the second dataset (N − O data set) was the 
sum of nitrogen atoms minus the sum of oxygen atoms. 
Thus, oxygen represented a negatively contributing pat-
tern. Expected contribution of any nitrogen was 1, any 
oxygen − 1, and all others 0. The end-point of the third 
dataset (N + O dataset) was the sum of nitrogen and oxy-
gen atoms divided by two. The number of nitrogen and 
oxygen atoms in a molecule was strictly equal. Thus, 
two positively contributing patterns were co-occurring 
and both contributed equally to the target property. This 
represents a specific case to verify how a model treats 
correlated patterns and how this affects interpretation 
output. Modeling algorithm can treat nitrogen and oxy-
gen as equally important or select only one of them as 
important feature. Both these cases will result in correct 
predictions. If the model randomly prioritizes one of cor-
related features than rebuilding the model may result in 
different interpretation output. The same may happen if 
correlated features are removed before model building 
and during analysis of interpretation outcomes the dis-
carded features are not considered. Depending on which 
scenario will be realized, the interpretation output may 
be incomplete and misleading.

We repeated the sampling procedure described above 
several times and calculated the correlation of selected 
atomic patterns with other elements to ensure that there 
is no explicit bias in data sets. Correlations varied a lit-
tle between different runs and we chose data sets with 
lowest observed correlations (Additional file 1: Table S1). 
However, this does not guarantee that there are no cor-
relations with more complex patterns.

Two other data sets represented additive end-points 
depending on local chemical context: they were collected 
independently and consisted of different compounds. The 
end-point of the first data set was the number of amide 
groups encoded with SMARTS NC=O. Thus, this was a 
regression task. The second data set was a classification 
one, where compounds were assigned active if they had 
at least one amide pattern and inactive otherwise. The 
expected contribution of any atom of an amide group 
for both data sets was set to 1, because upon removing 
of such an atom the whole pattern disappears. This dis-
appearing should result in the decreasing of a predicted 
property value by 1 for the regression data set. In the case 

of the classification task, if a compound contains multi-
ple amide groups, an issue may occur, because there is no 
single group which determines the activity. This may cre-
ate complications for interpretation analysis and we will 
investigate this issue specifically.

The last data set was designed based on a pharmaco-
phore hypothesis and represents property, depending 
on whole-molecule context. Compounds were labeled 
as active if at least one of their conformers had a pair of 
an H-bond donor and an H-bond acceptor 9–10 Å apart. 
If the pattern occurred in more than one conformer of a 
molecule, this had to be the same pair of atoms. There-
fore, actives contained exactly one pharmacophore pair 
consistent across all conformers. If this pattern was 
absent in all conformers a compound was labeled inac-
tive. Compounds with multiple pharmacophore pairs 
were excluded to avoid ambiguity in subsequent interpre-
tation. We generated up to 25 conformers for each com-
pound using RDKit. H-bond donors and acceptors were 
labeled using pmapper software [22]. We ensured that 
distributions of H-bond donors and acceptors in active 
and inactive classes were similar (Additional file  1: Fig-
ure S2). Atoms which were true pharmacophore centers 
had expected contribution 1; all other atoms—0. This 
example is closest to a real case scenario. However, we 
used a two-point pharmacophore to simplify modeling 
and interpretation. Using more complex pharmacoph-
ores with more features may require 3D descriptors to 
properly distinguish spatial arrangement of compounds 
and this could introduce additional difficulty to modeling 
using 2D representation. This can be implemented in 
future.

We verified that all data sets are representative of the 
source database and distributed similarly to it (Addi-
tional file  1: Figure S3). To create training and primary 
test sets all data sets were randomly split in a ratio 70/30. 
All datasets are provided in the repository https://​github.​
com/​ci-​lab-​cz/​ibenc​hmark.

Extended test sets
To reveal possible weaknesses in data sets and chal-
lenge the generalization ability of trained models we cre-
ated an extended test set for each task. Structures from 
primary test sets were subject to small perturbations. 
This was done by applying the mutate operation imple-
mented in the CReM tool [23]. We used the previously 
generated fragment database based on compounds from 
ChEMBL22 having maximum synthetic complexity score 
2.5 [23, 24]. This database stores fragments and their 
local chemical context (atoms within a given radius from 
corresponding attachment points of a fragment). Frag-
ments occurring in the same context are interchange-
able and result in chemically valid structures. Filtering 

https://github.com/ci-lab-cz/ibenchmark
https://github.com/ci-lab-cz/ibenchmark
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compounds used for fragmentation by their synthetic 
complexity result in more synthetically feasible and rea-
sonable structures [24]. This has less importance in the 
present study but may prevent from appearing of unu-
sual or “ugly” motifs in generated compounds. We chose 
neighborhood radius 3 and made all possible replace-
ments of groups of up to three atoms with other groups 
of up to three atoms from the database. For each primary 
test set we generated around 300,000 new analogues and 
assigned end-point values to each compound using the 
same rules as for the corresponding data set (Table  2). 
The extended test sets provided more diverse examples of 
chemical space represented by primary test sets.

Descriptors and model building
We employed the following descriptors: atom-pair fin-
gerprints which enumerate pairs of particular atoms at 
the topological distance from 1 to 30 (AP), Morgan fin-
gerprints which enumerate atom-centered substructures 
of radius 2 (MG2), RDK fingerprints which enumerate 
all possible substructures with atom count from 2 to 4 
(RDK) and topological torsion fingerprints which enu-
merate all possible linear substructures with four atoms 
(TT). AP, MG2 and RDK fingerprints were also used in 
their binary (bit vector) form of length 2048. The cor-
responding binary fingerprints are denoted bAP, bMG2, 
and bRDK. All fingerprints were calculated using RDKit 
[25].

QSAR models were built using Random Forest (RF), 
Partial Least Squares (PLS), Gradient Boosting Machine 
(GBM) and Support Vector machine with Gaussian ker-
nel (SVM) from Scikit-learn Python package [26]. Hyper 
parameters were optimized by the grid search in the 
course of five-fold cross-validation. We used SPCI soft-
ware which automates overall modeling workflow and 
interpretation [27]. Graph convolutional neural network 
models (GC) were built using DeepChem [21]. This 
approach does not require external fingerprints and learn 
internal representation of molecules in the course of 
modeling. We used the default architecture with 2 graph 
convolutional layers, each of size 64 and a GraphPool 
layer after each convolution (GraphPool performs max 
pooling on each atom’s neighborhood). Output from the 
GraphPool layer was fed to “atom-level dense layer” (size 
128) and global sum pooling (GraphGather) followed by 
linear or logistic regression layer depending on the task 
(regression, classification) (Additional file  1: Figure S4). 
We didn’t apply batch normalization. GC models can be 
considered as models trained on “learnable” Morgan fin-
gerprints of radius 2. For training of GC models valida-
tion subsets (15%) were separated from training sets to 
tune model hyper parameters. We also trained 1-nearest 
neighbor (1-NN) models as baseline models to examine 

data set modelability [28]. Poor performance of 1-NN 
models would indicate that compounds are not easily 
distinguished within chosen descriptor space, indirectly 
indicating that data sets don’t have an obvious bias.

Predictive performance of models was assessed using 
the primary and extended test sets. Q2 and RMSE values 
were calculated for regression tasks and sensitivity, speci-
ficity and balanced accuracy were calculated for classifi-
cations tasks (Eq. 1–5).

Interpretation approach
We chose the universal interpretation approach SPCI 
because it allows to estimate a contribution of a sin-
gle atom as well as an arbitrary group of atoms from 
any QSAR models [14]. We mainly focused our analy-
sis on atom-based interpretation as the most popular 
and simple one, but in the case of the pharmacophore 
data set we also applied fragment-based interpretation. 
To estimate atom/fragment contribution an atom or a 
group of atoms is virtually removed from a compound 
and the end-point value is predicted for the remaining 
part of the compound. The contribution of the removed 
part is calculated as the difference between predicted 
value for the whole compound and the remaining part. 
To virtually remove atoms we used the scheme similar 
to that used by Sheridan in his study [16]. We replaced 
removed atoms with dummy atoms (with atomic number 
0) and calculated descriptors. This resulted in appear-
ance of new descriptors encoding dummy atoms, but 
these descriptors did not occur in the training sets, so 
the models ignored them during prediction. Thus, these 
atoms disappeared for models and prediction was made 
based on descriptors of the remaining part of the mol-
ecule. This scheme was implemented in spci software for 

(1)Q2
= 1−

∑

i

(

yi,pred − yi,obs
)2

∑

i

(

yi,pred − yobs
)2

(2)RMSE =

√

∑

i

(

yi,pred − yi,obs
)2

N

(3)specificity =
TN

TN + FP

(4)sensitivity =
TP

TP + FN

(5)balanced accuracy =
sensitivity+ specificity

2
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RDKit-based fingerprints (https://​github.​com/​DrrDom/​
spci) [27].

To estimate atom contributions from GC models we 
implemented the similar procedure to the described 
above. GC models convert each molecule into two input 
matrices at the preliminary featurization step: (1) atom 
basic features, and (2) connectivity information. To virtu-
ally remove an atom, we remove the corresponding row 
from the first matrix and adjust the connectivity table 
(the second matrix) respectively (Additional file 1: Figure 
S5). These modified matrices are supplied as input for a 
GC model which makes prediction. The contribution is 
calculated in the same way by subtracting the predicted 
end-point value for a compound with a virtually removed 
atom from the value predicted for the whole structure. 
We implemented this interpretation procedure in deep-
chem [29].

For regression models a calculated contribution is 
measured in the same units as studied end-points. For 
binary classification models the end-point used for cal-
culation of atom/fragment contribution is probability 
of a compound to belong to the active class. Thus, the 
contribution represents the change in the probability of 
a molecule to belong to the active class upon removal of 
a particular atom/fragment. In this case the contribution 
has no units and can vary from − 1 to 1. An important 
note is that we used only training set for estimation of 
interpretation performance. This should give more accu-
rate results than test set because prediction error for a 
training set is smaller.

Interpretation quality metrics
The important ability of machine learning models is find-
ing of relevant patterns which discriminate actives from 
inactives. Since we focused mainly on contributions of 
atoms we performed only instance-based interpretation. 
We considered each molecule individually and analyze 
the ability of interpretation methods to rank atoms in 
proper order, i.e., atoms with greater expected contribu-
tions should be ranked higher.

For atom-based interpretation we propose to calcu-
late ROC AUC, top-n and bottom-n scores, and RMSE. 
Metrics (where applicable) are computed individually for 
positively contributing atoms (hereafter positive atoms) 
and for negatively contributing atoms (hereafter negative 
atoms). Positive atoms are atoms which increase activity 
(regression) or favor positive class prediction (classifica-
tion). Negative atoms—vice versa.

ROC AUC is an integral metric which demonstrates 
how well relevant patterns (atoms) are ranked over oth-
ers within a particular molecule. To get the final score 
we averaged AUC values for all considered molecules. In 
QSAR interpretation context this metric was first used by 

McCloskey et al. [10]. To calculate AUC for positive pat-
terns (AUC​+) we set all negative atoms’ labels to 0. Thus, 
AUC​+ characterized how high positive patterns were 
ranked. To calculate AUC for negative patterns (AUC​
−) we set negative atoms’ labels to 1 and all others to 0. 
It worth noting that AUC cannot be calculated for mol-
ecules having no patterns pre-defined for a given dataset 
(expected contributions of all atoms are 0). Therefore, 
these molecules were not considered for the calculation 
of average AUC for individual data sets.

The weakness of ROC-AUC is that it is an integral 
measure and accounts for both relevant and irrelevant 
patterns. In practice it is more reasonable to find relevant 
features. To address this, we propose top-n score which is 
calculated as follows and should be more stringent:

where ni is the total number of positive atoms in the i-th 
molecule, mi is the number of positive atoms in ni top 
ranked atoms according to their calculated contributions. 
For instance, if a molecule has two true patterns with 
expected contributions + 1 and interpretation retrieved 
only one of them among top two contributing patterns, 
the molecule will contribute n = 2 and m = 1 to the equa-
tion above. Top-n is an integral characteristic of a data 
set and varies from 0 to 1 (perfect interpretation). Analo-
gously we calculated bottom-n score to estimate the abil-
ity to retrieve negative patterns.

Additionally, we calculated root mean square error 
(RMSE) of predicted contributions for each molecule and 
averaged them across molecules in a data set to estimate 
deviation of calculated contributions from the expected 
values. This is less important metric, because proper 
ranking is more practically valuable than exact estima-
tion of contributions which are generally unknown in 
real cases. But RMSE should be helpful for benchmarking 
purposes because it allows to investigate decision mak-
ing of models and interpretation methods from another 
point of view and may reveal other weaknesses or advan-
tages not captured by other metrics.

The described metrics were implemented in the open-
source repository to facilitate calculation of interpreta-
tion performance—https://​github.​com/​ci-​lab-​cz/​ibenc​
hmark.

Results
Model performance
For all regression datasets baseline 1-NN models dem-
onstrated poor results irrespective of descriptors and 
machine learning method used (Fig.  1). In almost all 
cases R2 was less than 0.3 for both test sets. In all cases 

top-n score =

∑

i mi
∑

i ni
,

https://github.com/DrrDom/spci
https://github.com/DrrDom/spci
https://github.com/ci-lab-cz/ibenchmark
https://github.com/ci-lab-cz/ibenchmark
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Fig. 1  Performance of models on primary and extended test sets for regression and classification data sets
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performance of 1-NN models was significantly poorer 
than performance of other models. This indicates that 
these data sets do not have easily distinguishable pat-
terns in chosen descriptor space and are not biased in 
that way.

Performance of models under study on regression 
data sets varied for both primary and extended test 
sets and depended on the combination of descriptors 
and machine learning method. However, there were 
at least several models with almost perfect predic-
tions for each data set. GBM models trained on count-
based Morgan fingerprints achieved consistently high 
performance on all regression tasks (R2 = 0.95–1.0, 
Fig.  1a–h). Models trained on binary Morgan finger-
prints followed by binary RDK fingerprints achieved 
the lowest performance across all data sets irrespec-
tive of the machine learning method used. Expectedly, 
binary fingerprints resulted in less predictive models 
than corresponding count-based fingerprints. SVM 
demonstrated lower accuracy on all regression data sets 
that could be explained by RBF kernel chosen whereas 
studied activities were additive and could be captured 
by simpler linear models. Performance of models on 
extended test sets was lower than on primary tests, but 
for highly predictive models this difference was absent 
or minimal. These models recognized correct patterns 
and challenging them by structural perturbations did 
not compromise their predictive performance. There-
fore, we concluded that regression data sets do not have 
a hidden bias. Lower performance of weak models on 
extended test sets suggests rather model fault than a 
data set bias.

Moderate performance of 1-NN models achieved for 
classification amide data set was expected, because an 
amide group is essentially distinguishable by fingerprints 
used. Performance of GBM, RF, SVM and GC models was 
much higher. Balanced accuracy was greater than 0.9 for 
both primary and extended test sets (Fig. 1i, j) suggesting 
that in all cases models were able to capture relevant pat-
terns. The second classification task, the pharmacophore 
data set, was much harder because the models trained on 
2D descriptors should capture the 3D pattern. The best 
baseline 1-NN model trained on AP descriptors had bal-
anced accuracy 0.66. Models under study demonstrated 
moderate performance, but higher than that of corre-
sponding 1-NN models (Fig.  1k, l). GBM, RF and SVM 
models trained on count-based and binary AP descrip-
tors had the highest balanced accuracy (> 0.8) on the 
primary test set. There was a slight difference between 
performance on primary and extended test sets. Models 
which had higher performance on the primary test set 
had higher performance on the extended test set simi-
larly to regression models.

GC models were among the best ones across all data 
sets confirming this modeling approach to be competi-
tive to conventional ones in terms of predictive ability 
[30].

Interpretation performance
N data set
High average AUC​+ values observed in the majority of 
cases indicate that atoms were ranked correctly (Fig. 2a). 
For models having test set R2 > 0.81 average AUC​+ was 
greater than 0.9 (Fig. 2b). There is a clear correspondence 
between model predictivity and the ability to rank atoms. 
However, there were few outliers, namely SVM and PLS 
models trained on binary RDK fingerprints. Their aver-
age AUC​+ values were substantially lower than AUC​+ 
of other models of comparable predictivity. AP, bAP and 
RDK fingerprints resulted in the highest average AUC​+ 
irrespective of machine learning method. Count-based 
Morgan fingerprints with RF and GBM models had per-
fect average AUC​+. The GC model also resulted in high 
accuracy in atom ranking (average AUC​+ = 0.99).

Top-n score characterizes the ability to rank true atoms 
on top. This metric was more sensitive to the changes of 
R2 than AUC​+ (Fig.  2c, d). The most predictive models 
had high top-n scores. These were PLS, RF and GBM 
models trained on AP and bAP fingerprints and RF and 
GBM models trained on count-based Morgan finger-
prints (top-n = 0.92–1.0). GC model had somewhat lower 
score (0.89) followed by models trained on count-based 
RDK fingerprints (top-n = 0.65–0.81). Interestingly, GC 
model demonstrated top-n score lower than models hav-
ing even lower predictive ability. For example, RF trained 
on bAP had R2 0.82 and 0.71 for primary and extended 
test sets and top-n 0.92, whereas the GC model had R2 
0.97 and 0.96 and top-n 0.89. RMSE of calculated contri-
butions is an absolute measure of interpretation accuracy. 
RMSE values varied in a wide range but were in good 
agreement with top-n. Therefore, we did not analyze 
them in detail. It is worth noting, that models trained on 
binary atom pairs had similar interpretation performance 
to those trained on count-based atom pairs, whereas the 
former had poorer predictive ability. For other pairs of 
corresponding binary and count-based fingerprints the 
latter always outperformed the former.

N − O data set
This data set contained positive (nitrogen) and negative 
(oxygen) atoms. Therefore, we evaluated interpretation 
accuracy separately for each pattern. We found that overall 
ranking abilities for positive and negative patterns meas-
ured by AUC​+/AUC​− were similar (Fig. 3a, c). The same 
agreement was observed for top-n and bottom-n scores 
(Fig. 3e, g). Thus, models were able to detect positive and 
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negative patterns with comparable accuracy. The only 
outlier was PLS models trained on binary Morgan (AUC​
+  = 0.77, AUC​− = 0.64, top-n = 0.35, bottom-n = 0.2) 
and RDK fingerprints (AUC​+  = 0.74, AUC​− = 0.87, 
top-n = 0.29, bottom-n = 0.47), showing relatively large 
discrepancy between positive and negative pattern rec-
ognition. Because of high correspondence in positive and 
negative pattern detection we will discuss only positive 
patterns.

The relationship between model predictive ability and 
interpretation accuracy was less stringent relatively to 
the N data set, but highly predictive models still resulted 
in high interpretation performance. However, models 
trained on AP and bAP fingerprints always resulted in 
high interpretation performance (AUC​+  = 0.91–1.0, 
top-n = 0.61–1.0) regardless of their predictive ability 
(R2

test = 0.66–0.96). RMSE was in a good agreement with 
other metrics and we will not discuss it.

Interpretation of the GC model resulted in lower inter-
pretation accuracy than that of other models of compara-
ble or even lower prediction accuracy. The most striking 
difference was observed for top-n score which was 0.62 

for the GC model, whereas corresponding values for 
PLS and GBM models trained on AP descriptors were 
1.0 and 0.95. However, all these models had compara-
ble predictive performance: R2 for the primary test set 
was 0.96, 0.96 and 0.97 for PLS, GBM and GC models, 
respectively (Fig. 3c, d). We inspected the interpretation 
results of the GC model for a randomly chosen subset 
of 100 molecules. There were several kinds of misinter-
preted patterns (Fig. 4). Atoms neighboring to true ones 
often received greater contributions. For instance, carbon 
atoms in carbonyl and carboxyl groups or sulfur atoms 
in sulfonyl groups were often ranked on bottom (pink). 
Atoms attached to nitrogen were ranked on top (green) 
(Fig.  4a–f). Sometimes nitrogens in nitro groups were 
misinterpreted as negative (Fig.  4a). Aromatic carbons 
were frequently recognized as positive, though they were 
far from any nitrogen (Fig. 4c, e).

Regression amide data set
The overall ranking ability of highly predictive models 
was very high and it decreased with decreasing of model 
R2

test, but AUC​+ remained above 0.8 (Fig.  5a, b). The 

Fig. 2  Interpretation performance of models trained on the N data set
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overall trend was very similar to the N data set (Fig. 2b). 
SVM model trained on binary RDK fingerprints had very 
low interpretation accuracy (AUC​+ = 0.62) close to ran-
dom ranking (0.5) and this was the main outlier from the 
trend. The relationship between top-n score and model 
predictive ability was quite stringent with two notice-
able outliers: SVM models trained on binary and count-
based RDK fingerprints (Fig.  5c, d). While the former 
had relatively low score (0.38) the latter had the higher 

score (0.93) than other models with comparable pre-
dictive ability. It should be noted that models built on 
count-based RDK fingerprints were among the strongest 
in terms of interpretation accuracy, whereas predictive 
ability for some of them was relatively low. For exam-
ple, SVM model trained on count-based RDK finger-
prints had R2

test = 0.85, AUC​+ = 0.97 and top-n = 0.93, 
while RF model trained on count-based Morgan finger-
prints had much higher predictive ability (R2

test = 0.97), 

Fig. 3  Interpretation performance of models trained on the N − O data set



Page 11 of 20Matveieva and Polishchuk ﻿J Cheminform           (2021) 13:41 	

but comparable interpretation accuracy (AUC​+ = 0.99, 
top-n = 0.94). It should be noted that in all cases count-
based fingerprints outperformed binary, most probably 
due to the loss of information discriminating molecules 
with different number of true patterns. The GC model 
had slightly lower interpretation performance than mod-
els of comparable predictive ability, similarly to the case 
of the N − O data set.

Classification amide data set
This data set was simple for modeling and all models 
achieved high balanced accuracy (≥ 0.93). However, over-
all ranking ability for atoms of amide groups varied in a 
wide range (AUC​+ = 0.82–0.98) (Fig.  6a, b). The trend 
that models with better predictive ability demonstrate 
better interpretation accuracy was not observed. Models 
with R2

test = 1 (all models trained on both types of RDK 
fingerprints and the GC model) demonstrated relatively 
low ranking ability (AUC​+ = 0.88–0.92). This was even 
more pronounced in the case of top-n score which was 
below 0.5 for most of these models (Fig. 6c, d), meaning 

that only half of true atoms were ranked on top. This is 
a consequence of the interpretation approach which vir-
tually removed an atom and calculated the contribution 
of the removed part as the difference between predicted 
active class probabilities. If the property depends on the 
presence or absence of a particular pattern, but there are 
multiple such patterns in a molecule, then removing one 
of them will keep the remaining structure highly prob-
able to be predicted active and the calculated difference 
will be small. We confirmed this by investigating inter-
pretation accuracy for subsets of molecules having differ-
ent number of true patterns using three models (Table 3). 
GBM model trained on MG2 descriptors had the highest 
interpretation performance. Average AUC​+ values slowly 
decreased with increasing of the number of true pat-
terns in molecules. Top-n score was more sensitive and 
substantially decreased for molecules having two amide 
patterns (from 0.98 to 0.69). In the case of GBM model 
trained on AP descriptors all interpretation metrics 
were more sensitive to the number of true patterns. For 
example, for molecules having two amide patterns AUC​

Fig. 4  Top-scored (green) and bottom-scored (pink) atoms by the GC model for the N − O data set. The number of top and bottom highlighted 
atoms is equal to the total number of positive (nitrogen) and negative (oxygen) atoms in corresponding molecules



Page 12 of 20Matveieva and Polishchuk ﻿J Cheminform           (2021) 13:41 

+ dropped from 0.96 to 0.77, and top-n score dropped 
from 0.89 to 0.58. Similar picture was observed for the 
GC model (Table 3).

Pharmacophore data set
The pharmacophore dataset was the hardest task and 
models achieved moderate balanced accuracy. Thus, it 
was expected that interpretation accuracy would be rela-
tively low (Fig. 7). Interestingly, for this data set the cor-
relation between model predictivity and interpretation 
accuracy was the most pronounced and predictive ability 
of conventional models mostly depended on descriptors 
type. Both types of atom pairs fingerprints resulted in the 
most accurate models followed by count-based Morgan 
fingerprints. All models built on atom pairs fingerprints 
demonstrated reasonably high ability to rank atoms 
(AUC​+ = 0.84–0.89). This observation can be explained 
by the nature of the end-point–two specific atoms at a 
distance of 10–11A. Atom pairs were the only descriptors 
which could capture long distance interaction of features, 
because they took into account atoms up to 30 bonds 
apart. RF and GBM models trained on count-based 

Morgan fingerprints and the GC model had moderate 
overall raking ability (AUC​+ = 0.7 = 0.79). Multiple mod-
els had average AUC​+ values close to 0.5 or even lower, 
however predictive ability of all these models was moder-
ate (R2

test ≥ 0.71). This suggests that models considered as 
acceptable according to their predictive ability may result 
in ranking ability of patterns close to random choice.

AUC metric may be particularly not suitable in this 
case because each molecule of the active class has only 
two true pharmacophore centers being ranked against 
all remaining atoms. This could result in artificially high 
AUC values if both true patterns were ranked close to 
the top but not on top. We expect top-n to be a more 
reasonable and stringent metric in this case. Models 
with the highest average AUC​+ values had relatively low 
top-n scores 0.30–0.57 (Fig. 7c). This means that on aver-
age they identified only 30–57% of true pharmacophore 
centers within top 2 scored atoms. Most of other mod-
els had even lower performance. Because each active 
molecule had only two true pharmacophore centers, the 
top-n score was equivalent to the average percentage of 
true centers in top 2 atoms. To augment this value we 

Fig. 5  Interpretation performance of regression models trained on amide data set
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calculated the average percentage of true centers in top 
3 and top 5 atoms (Table  4). This is a common metric 
frequently used to measure accuracy of prediction of 
true active centers, for example sites of metabolism [31]. 
The results demonstrated that probability to find true 
pharmacophore center substantially increased with con-
sidering more atoms. For the best model GBM/AP the 

probability to find true pharmacophore centers in top 5 
atoms reached 77%. For the GC model the increase was 
less pronounced, just to 50% (Table 4).

Since atom-based interpretation resulted in relatively 
low performance we examined fragment-based inter-
pretation performance. The motivation was to check 
whether selection of larger fragments (more than one 

Fig. 6  Interpretation performance of models trained on the classification amide data set

Table 3  Interpretation performance of selected models calculated for subsets of molecules having different number of amide groups

Count of 
amide groups

GBM/MG2 GBM/AP GC

Mean AUC​+ Top-n Mean RMSE Mean AUC​+ Top-n Mean RMSE Mean AUC​+ Top-n Mean RMSE

All 0.98 0.81 0.12 0.90 0.73 0.14 0.92 0.75 0.14

0 – – 0.03 – – 0.02 – – 0.02

1 1 0.98 0.12 0.96 0.89 0.17 1 0.98 0.2

2 0.94 0.69 0.4 0.77 0.58 0.42 0.81 0.56 0.36

3 0.9 0.65 0.51 0.75 0.6 0.53 0.66 0.44 0.52

4 0.87 0.62 0.57 0.6 0.45 0.57 0.53 0.39 0.57

5 0.8 0.44 0.58 0.57 0.47 0.58 0.54 0.33 0.57

6 0.66 0.55 0.67 0.49 0.39 0.67 0.61 0.48 0.67
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atom) would help to better locate true centers at least 
approximately. We exhaustively fragmented training 
set molecules by breaking up to three bonds matching 
SMARTS [!#1]!@! = !#[!#1] using RDKit [25]. From result-
ing fragments, we kept only those of the size up to seven 
heavy atoms and the fragment size was limited to 40% 
of the total number of heavy atoms in a molecule. Effec-
tively, since we did not break rings, this allowed us to 
estimate contributions of six-membered rings with one 
attached atom. To evaluate performance of fragment-
based interpretation we chose top-2 metric calculated 

similarly to top-n metric for atoms. Top 2 scored frag-
ments were chosen for each molecule and if both true 
centers were captured by these fragments the score was 
1, if only one −  0.5, if none −  0. The scores were aver-
aged among all molecules to get the final value. The met-
ric top-2 for fragments was equivalent to top-n for atoms 
because each compound had exactly two true centers. 
Therefore, we plotted them together (Fig. 8). For models 
which demonstrated high performance in atom-based 
interpretation, performance of fragment-based inter-
pretation was not substantially better. But models with 
relatively poor performance at the atom level demon-
strated substantially better accuracy of identification of 
fragments comprising true centers. For example, GBM 
model trained on RDK descriptors could identify only 
15% of true centers within top 2 scored atoms and 44% 
true centers within top 2 scored fragments.

RMSE has a little sense for classification models but 
we observed a clear relationship that RMSE values 
gradually increased with decrease of model predictive 
ability (Fig.  7f ). The only outlier was the GC model. 
This could be explained by the fact that sigmoid 

Fig. 7  Interpretation performance of models trained on pharmacophore data set

Table 4  Average percentage of indentified true pharmacophore 
centers in top scored atoms for the pharmacophore data set

Model Top-2 (%) Top-3 (%) Top-5 (%)

GBM/AP 54 63 77

RF/AP 43 54 67

SVM/AP 30 41 63

GC 33 39 50
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activation function used on the output layer resulted in 
predicted probabilities substantially shifted towards 0 
or 1 (Additional file 1: Figure S6). Thus, a small pertur-
bation of a structure may result in substantial changes 
in the predicted probability for a molecule and, as a 
consequence, large calculated contribution.

N + O dataset
This data set is a special case constructed to investigate 
how interpretation approach and underlying model 
assign contributions to correlated patterns. In this case 
models can assign equal or similar contributions to both 
correlated patterns or prioritize one over the other. PLS 
and SVM models mainly resulted in comparable contri-
butions for nitrogen and oxygen (Fig.  9). RF and GBM 
models were more inclined to prioritize one of them. 
Models trained on binary fingerprints resulted in more 
balanced contributions than models trained on count-
based descriptors. The most striking example was GBM 
and RF models trained on MG2, where oxygen atoms 
received much higher contributions than nitrogens.

If we consider both N and O atoms as true patterns the 
overall interpretation performance is high for models 
trained on AP and bAP, GBM and RF models trained on 
MG2, and GC model (Fig. 10). However, not all of these 
models had high predictive performance. For example, 
SVM models trained on AP, bAP and MG2 had rela-
tive low R2

test—0.75–0.81. We also calculated AUC and 
top-n scores separately for cases where only O or N 
atoms were (mutually exclusively) considered true pat-
terns. The closer the points in Fig. 11 to the diagonal, the 

Fig. 8  Top-2 score for atom- and frgament-based interpretation of 
models trained on the pharamcophore data set

Fig. 9  Contributions of nitrogen, oxygen and other atoms for models trained on the N + O data set
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more balanced assigned contributions. It should be noted 
that overall interpretation performance does not corre-
late with interpretation performance calculated for cases 

where only one of two correlated patterns was considered 
true. For example, GBM/MG2 model showed perfect 
performance to retrieve O as true patterns (AUC​O+ = 1.0, 

Fig. 10  Interpretation performance of models trained on N + O data set. Both N and O atoms were considered as positive patterns

Fig. 11  Interpretation performance for the N + O data set, where N or O atoms mutually exlusively were considered true patterns
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top-nO = 1.0) but low performance retrieving N (AUC​
N
+ = 0.87, top-nN = 0.0). At the same time overall inter-

pretation performance when both patterns were consid-
ered true was very high (AUC​+ = 1.0, top-n = 0.98). This 
can be easily explained if one will look at assigned con-
tributions. Oxygen atoms received consistently higher 
contributions among all atoms (Fig. 9). Thus, these atoms 
were always on top and statistics was perfect. Nitrogen 
atoms received contributions much lower than oxygens 
but they were still almost always greater than contribu-
tions of remaining atoms. Nitrogens were close to top 
but not on top and thus AUC value was at a reasonably 
high level but top-n score was zero because all top scored 
atoms were oxygen. Considering both patterns as posi-
tive resulted in high performance because both were well 
separated from the rest.

Discussion
Interpretation performance was reasonable on data 
sets studied. For highly accurate models SPCI approach 
retrieved expected patterns with high accuracy. The 
relationship between prediction and interpretation per-
formance was established in all cases except classifica-
tion amide data set, where all models had nearly perfect 
predictive ability, but many of them had relatively poor 
interpretation results. This can be explained by the pres-
ence of multiple true patterns in active molecules, mak-
ing major impact on interpretation performance. This is 
a common issue for all similar interpretation approaches 
based on masking of atoms (similarity maps or matched 
molecular pairs). Interpretation approaches based on cal-
culating contributions of individual descriptors should be 
less affected by this issue, but they require interpretable 
descriptors.

The classification amide data set most notably dem-
onstrated the weakness of AUC as the measure of inter-
pretation accuracy. AUC indicates the ability of models 
to rank true pattern high. But there is a little difference 
in AUC values between models which score true pat-
terns on top and those which score true patterns high but 
not exactly on top. In the latter case it may be difficult 
to identify true patterns among other highly scored ones. 
For example, AUC​+ for GBM and RF models trained on 
MG2 were 0.98 and 0.94 respectively, but corresponding 
top-n scores were 0.81 and 0.60 indicating that probabil-
ity to find true patterns in the top was much higher for 
the GBM model. Therefore, the proposed top-n score 
looks a more practically relevant measure of interpreta-
tion accuracy.

Among regression models GBM trained on count-
based atom pairs or Morgan descriptors had consist-
ently high interpretation performance on all data sets. RF 

models trained on the same descriptors conceded them a 
little. The same was observed for classification amide task 
but not for the pharmacophore task, where the finger-
prints type was the most important parameter regardless 
of modelling algorithm (AP and bAP produced the best 
results).

It was not surprising that in regression cases binary 
descriptors often resulted in models with poorer pre-
dictive ability than count-based ones. The same was 
observed for interpretation performance. For classifica-
tion models there was less discrepancy in both predictive 
and interpretation performance between count-based 
and binary descriptors.

While interpretation of conventional models resulted 
in mostly explainable performance, interpretation perfor-
mance of GC models raised a question. GC was among 
models with the highest predictive ability and one may 
expect highly accurate interpretation results. However, in 
many cases there was a large difference between interpre-
tation performance (mainly in top-n scores) for GC and 
conventional models of comparable predictive ability. 
This was most apparent for regression tasks. We can sug-
gest two possible explanations:

•	 The implemented interpretation approach is not fully 
suitable for GC models. It is difficult to prove whether 
a particular interpretation approach is suitable or not 
for a particular model, but comparison of interpreta-
tion performance with other models may shed some 
light. For classification tasks in contrast to regression 
we did not observe large discrepancy in top-n scores 
between GC and conventional models of similar pre-
dictive performance. This indirectly confirms validity 
of the chosen interpretation approach and its appli-
cability to GC models. In future it would be reason-
able to compare results obtained in this study with 
interpretation results of “orthogonal” interpretation 
approaches.

•	 Hidden bias in data sets. It is impossible to control 
all possible biases in data sets. Conventional mod-
els which had high predictive ability comparable to 
the corresponding GC models demonstrated much 
better ability to identify true patterns. An explana-
tion may lie in the nature of GC models which learn 
sophisticated internal representation of molecular 
structure to find correlation with a given end-point. 
Thus, these models may construct overly complex 
patterns correlated with true ones and the end-point. 
As we demonstrated with the example of N + O data 
set, GC models assign comparable contributions to 
correlated features. This can make it difficult to dis-
tinguish true patterns from correlated ones. In other 
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words, GC models may “create” a bias and capture 
it. This ability of GC models can bring some advan-
tages if the underlying true patterns are really highly 
complex. For tasks of biological activity prediction 
GC models did not demonstrate systematically bet-
ter predictivity than conventional models [30]. Thus, 
constructing complex internal representations may 
not be necessary to capture relevant structure–activ-
ity relationships.

Interpretation of data sets where correlated patterns 
can appear should be performed with care. In general, 
it is the desirable ability of models and interpretation 
approaches to assign comparable contributions to corre-
lated features. If correlated features are true ones this will 
simplify analysis and interpretation of a model. However, 
if a model prioritizes only one of correlated features this 
can result in incomplete interpretation. The same can 
happen if one removes highly correlated features before 
model building and does not take them into account at 
the interpretation stage. At least it may be reasonable to 
assign the same contributions to correlated features to 
partially consider them.

Atom-based interpretation, despite its simplicity and 
attractiveness, does not always result in good perfor-
mance as it was shown in the case of the pharmacophore 
data set. This can be explained by the fact that removing 
one atom may be a too small change in a molecule to be 
well captured by models. As we observed for the N − O 
data set, neighbors of true atoms can be confused with 
them. In this case it would be beneficial to use fragment-
based interpretation which can provide a way to capture 
an approximate position of the true pattern that may be 
enough for practical applications. For example, if one 
knows that a particular group causes metabolic instability 
of a compound, the compound can be modified accord-
ingly even without knowing the exact site of metabolism.

Conclusions
We created six synthetic data sets of three complex-
ity levels for benchmarking QSAR model interpretation 
methods. Using these data sets, we investigated an exten-
sive set of descriptor/algorithm combinations and the 
universal interpretation approach SPCI. We established 
that interpretation performance may decrease faster 
than predictivity, and in some cases models with accept-
able predictive ability may result in poor interpretation 
performance. In particular, this was observed for the 
pharmacophore data set, where models with balanced 
accuracy on the test set greater than 0.7 had AUC​+ values 

close to 0.5. This leads us to conclusion similar to Sheri-
dan [16] that only highly predictive models may reach 
high interpretation accuracy. However, high predictive 
ability of models does not guarantee high interpretation 
accuracy. Graph convolutional models had high pre-
dictivity, but on regression tasks they resulted in worse 
interpretation performance than other models of compa-
rable predictive ability. We hypothesize that GC models 
learned too complex internal representation resulting in 
some interpretation bias due to possible appearance of 
correlated features.

We specifically investigated the issue of capturing of 
correlated features with the N + O data set. It was estab-
lished that GC models assign comparable contributions 
to correlated features. In general, this is the desired abil-
ity of models and interpretation approaches. If correlated 
features are true ones this simplifies analysis; but, if true 
patterns are randomly correlated with other ones this 
makes it difficult to distinguish them. Thus, learning of 
overly complex representation may decrease interpreta-
tion performance.

Investigation of three metrics proposed for evaluation 
of interpretation performance demonstrated that AUC 
metric is not very sensitive to small changes in ranks of 
top scored patterns and overly optimistic. Alternative 
top-n (bottom-n) score is a more stringent and practi-
cally reasonable criterion.

We demonstrated a downside of the interpretation 
approach which virtually removes a particular substruc-
ture to estimate its contribution. For classification tasks 
the presence of multiple identical true patterns in the 
same molecule leads to poor discrimination between 
true and false patterns and lower AUC and top-n scores. 
Any approach based on masking (occlusion) of molecular 
substructures will be affected by this issue.

We expect that benchmark data sets developed and 
metrics proposed will be useful for validation and com-
parison of existing and emerging interpretation methods. 
The question of transferability of results to real-world 
applications is always open. We assume that high perfor-
mance achieved on these benchmarks supports positive 
conclusion about the method’s validity, and low perfor-
mance allows to screen out invalid methods. The latter 
can be inferred with higher confidence: if the method 
doesn’t work on simple synthetic datasets it is not 
expected to work on more complex ones. We also antici-
pate that this work will stimulate investigation of decision 
making of models, in particular neural networks, since 
synthetic data sets provide a more controlled environ-
ment for such studies.
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