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Abstract 

The scaffold representation is widely employed to classify bioactive compounds on the basis of common core 
structures or correlate compound classes with specific biological activities. In this paper, we present a novel approach 
called “Molecular Anatomy” as a flexible and unbiased molecular scaffold-based metrics to cluster large set of com-
pounds. We introduce a set of nine molecular representations at different abstraction levels, combined with frag-
mentation rules, to define a multi-dimensional network of hierarchically interconnected molecular frameworks. We 
demonstrate that the introduction of a flexible scaffold definition and multiple pruning rules is an effective method to 
identify relevant chemical moieties. This approach allows to cluster together active molecules belonging to different 
molecular classes, capturing most of the structure activity information, in particular when libraries containing a huge 
number of singletons are analyzed. We also propose a procedure to derive a network visualization that allows a full 
graphical representation of compounds dataset, permitting an efficient navigation in the scaffold’s space and signifi-
cantly contributing to perform high quality SAR analysis. The protocol is freely available as a web interface at https://​
ma.​exsca​late.​eu.
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Introduction
High-throughput screening (HTS) of small-molecule 
libraries is routinely used in drug discovery process to 
identify novel leads against clinically relevant targets. 
Successful HTS require high quality, validated screening 
assays, but also an effective strategy for chemical struc-
tures selection is fundamental for the following hit-to-
lead phase. HTS libraries, indeed, comprise some hits 
of interest, but also many compounds resulting in false 
positives or promiscuous hits, as well as number of com-
pounds with no relevant biological activities at micro-
molar concentrations in biochemical assays [1]. The first 

fundamental step, affecting the probability of success of 
the entire lead discovery process, is represented by an 
incisive preliminary structure activity relationships (SAR) 
analysis. One of the crucial tasks in the design of large 
diverse libraries is the chemical space mapping. Selection 
of a representative subset of the desired chemical space 
is generally addressed by the identification of three ele-
ments: a set of meaningful descriptors [2], a similarity 
metric allowing to compare molecular structures pair-
wise [3], and a clustering algorithm for grouping struc-
tures according to the calculated pairwise similarity 
values [4, 5]. Many clustering algorithms exist [6], and 
many clustering techniques are able to address this task 
for groups of 105 to 107 compounds; however, the identi-
fication of relevant chemical series within the generated 
clusters is much more difficult. The generation of clusters 
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organized as “series” in medicinal chemistry is an impor-
tant asset of the scaffold-based techniques.

A chemical scaffold, also referred to as ‘chemotype’ 
or ‘Markush structure’, can be defined as the common 
structure characterizing a group of molecules. Com-
pounds sharing the same scaffold are likely to have a 
similar synthetic pathway as resulting from the concept 
of molecular template in combinatorial chemistry [7]. 
Once a scaffold is defined, SAR can be developed analyz-
ing the effects of the substitution patterns [8]. The scaf-
fold approach shows several advantages, in particular 
its outcomes are both simple to interpret and medicinal 
chemistry-oriented; additionally, some of the most sig-
nificant features of the graph-based approaches [9] are 
combined with molecular fingerprint characteristics and 
maximum common substructure methods. Bemis et  al. 
[10] introduced a systematic analysis of drugs accord-
ing to their scaffold/framework representation which it 
is now a well-established method alongside molecular 
descriptors, molecular fingerprints and graphs. In the 
last twenty years, different scaffold definitions have been 
introduced and numerous scaffold-based computational 
approaches have been developed for structural classifica-
tion and biological activities prediction [11]. The intro-
duction in 2005, by Wilkens et  al. [12], of hierarchies 
based on several kinds of scaffold deconstructions, repre-
sented a milestone in the development of scaffold-based 
approaches. In 2007, Schuffenhauer et  al. [13] demon-
strated the potentiality of combining the scaffold-based 
approach with ad hoc graphical representations through 
the “Scaffold Tree” algorithm and visualization tool; 
Schuffenhauer also introduced a rule-based ring disas-
sembly. Since then, other decomposition and visualiza-
tion tools have been developed, such as Scaffold Hunter 
in 2009 [14], recently revised and extended, and Scaffold 
Explorer in 2010 [15]. In 2008 Gianti and Sartori [16] pro-
posed an alternative procedure to address scaffold deco-
ration, pruning and fragmentation as a workflow for the 
identification of “privileged fragments”. Agrafiotis et  al. 
[15], in 2010, demonstrated that the inclusion of relevant 
side chains and functional groups in the scaffold repre-
sentation could greatly enhance the derivation of robust 
SAR, thus indicating that the explicit consideration of the 
most significant molecular features overcomes the limits 
associated with “a priori” definition of specific pruning 
rules. In 2011, Varin et al. [17] proposed an extended ver-
sion of the previously developed Scaffold Tree and dem-
onstrated that rule-based approaches in fragmentation 
are less useful and flexible than the unbiased ones. Lipkus 
[18] introduced hierarchies between different abstraction 
levels and, finally, different hierarchical scaffold decom-
position and abstraction approaches were proposed by 
many authors [19, 20].

All the above described methods share two major limi-
tations; first a single ring system is represented, decorated 
with chains of various length, therefore, when pruned, all 
the molecules collapse into a degenerated cluster. Addi-
tionally, there is no relationship between scaffolds when 
the difference is represented by one or more ring systems. 
These issues are particularly limiting for the analysis and 
selection of vendor libraries to build diverse compound 
collections and, afterward, for HTS campaigns analysis in 
order to obtain preliminary SAR.

Very recently, Bandyopadhyay et  al. [21], in order to 
overcome the limits related to hard clustering meth-
ods, which assign each molecule to a single cluster and 
so tend to place structurally analogous molecules into 
different and not related clusters, described a method 
based on fuzzy clustering that may assign a molecule to 
different clusters. In this method, for each molecule an 
exhaustive enumeration of Bemis-Murcko scaffolds, cor-
responding to all possible combinations of ring systems, 
was applied and data were annotated and aggregate at 
scaffold level, allowing to relate molecules on the basis 
of shared scaffolds. Another recent approach to perform 
scaffold analysis is based on retrosynthesis rules, which 
allow to easily identify analog series [22, 23]. Such analog 
series-based scaffolds can also be associated with activ-
ity information to develop possible target hypotheses for 
other compounds containing the same scaffold [24]. The 
organization of compounds in analog series leads to the 
formation of “constellations” of molecules, in chemical 
space, which can be visualized as a network of all possible 
molecule–core relationship [25].

However, the main limitation of the network con-
necting molecules and scaffolds generated with these 
implementations is that they are based on a unique scaf-
fold representation, not sufficient to effectively map the 
chemical space of a heterogeneous ensemble of mol-
ecules, for example multi-scaffold libraries, and to cap-
ture relationships with the relative biological activity. The 
critical point is that it is not possible to define a priori 
the best representation of a molecule, because it mainly 
depends on the biological context and on the nearest-
neighbors of the screened library.

Here, we present a novel approach, called “Molecu-
lar Anatomy”, for the generation and analysis of cor-
related molecular frameworks aimed at overcoming 
the limitations of scaffold analysis based on a single 
predefined set of rules. In our experience, the here 
identified molecular frameworks and related frag-
ments are able to capture most of the structure activity 
information from HTS campaigns, and are also use-
ful for other applications, such as library design and 
analysis. In particular, the combination of fragments, 
correlated in frameworks and wireframes, identifies 
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relevant chemical moieties in an efficient manner, 
clustering together many scaffolds with similar shapes 
despite, for example, different dispositions of heter-
oatoms or small differences in bond order. To the best 
of our knowledge, this is a distinctive feature of our 
approach, compared to other known methodologies, 
such as the widely accepted Maximum Common Sub-
structure (MCS) [26].

In the “Methods” section, the molecular scaffold rep-
resentations and the fragmentation rules used to gener-
ate the related fragments are defined. A COX-2 inhibitors 
dataset has been chosen to illustrate our approach. Then, 
we introduce an innovative network representation as a 
more convenient tool for SAR evaluation and visualiza-
tion. We first apply this visualization to the molecular 
frameworks proposed, and then we extend the network 
visualization also to the underlying fragments, to show 
the full graphical representation. We also summarize the 
main advantages of our method compared to the other 
approaches proposed so far. Finally, we show the gen-
eral applicability of our approach by performing the SAR 
analysis of 26,092 commercial compounds tested in an 
HTS campaign aimed at identifying potential inhibitors 
of the enzyme Histone deacetylase 7 (HDAC7).

Methods
Dataset definition
COX-2 A dataset containing COX-2 inhibitors was pre-
pared and used to illustrate the “Molecular Anatomy” 
approach. To this aim, the Integrity™ database was inter-
rogated to search for COX-2 inhibitors, providing 2599 
molecules in total. Of these, 816 were in preclinical phase 
or in a higher phase of clinical development. This subset 
was used in the following analysis to compare different 
scaffold representations. A Pipeline Pilot protocol [27] 
was used to standardize the molecular structures, to clas-
sify them according to the molecular mechanism (e.g. 
inhibitors) and highest phase of development, to perform 
substructure searches, to generate molecular frameworks 
according to our definition rules and, finally, to analyze 
the results in order to compare the different scaffold 
definitions.

HDAC7 dataset of 26,092 commercial compounds, 
tested as potential HDAC7 inhibitors during an HTS 
campaign performed internally within Dompé, was 
used as a more complex case study. The compounds 
were stratified in different activity classes according to 
the value of percent inhibition of the HDAC7 activity 
obtained at 10 μM concentration (Table 1).

ChEMBL datasets
Additional compound datasets were retrieved from 
release 28 of ChEMBL [28, 29] for further proof-of-con-
cept studies. Two sets were selected, with at least 1000 
active compounds, identified with ChEMBL Target IDs 
202 (Dihydrofolate reductase) and 2000 (Plasma kal-
likrein). Only data measuring binding of compounds 
(i.e., assay type “B”) were collected. To ensure a high 
level of data integrity, only compounds with explicitly 
defined IC50 values were selected, using a cut-off of 5 μM 
as minimum potency to define compounds as “actives”. 
A third dataset consisted of a recently added reposi-
tory generated within the “EXaSCale smArt pLatform 
Against paThogEns for Corona-Virus, Exscalate4CoV 
or E4C” project (CHEMBL4495564), containing activity 
data for ~ 8000 compounds from the primary screening 
against SARS-CoV-2 Main protease (Mpro) [30]. In this 
case, compounds were considered as actives if enzyme 
inhibition was at least 40%.

Identification of common scaffold representations 
and evaluation of their performance
In theory, it is possible to define an arbitrary number 
of scaffold’s representations based on different levels of 
abstraction and pruning rules. Figure 1 shows an example 
applied to the COX-2 inhibitor Polmacoxib (whose full 
structure is depicted in panel e) [31].

Panel 1a shows the most abstracted representation 
(hereafter 1a), obtained removing both bond and atom 
type. This representation is also known as “cyclic skel-
eton”. Representations 1b and 1c retain only bond and 
atom type, respectively, whereas the 1d representation 
corresponds to the Bemis-Murcko scaffold, containing 
all the rings and chains connecting them of the original 
molecule.

By using the most abstracted representation 1a of the 
Polmacoxib scaffold, corresponding to the most common 
moiety of COX-2 inhibitors, a subset of 224 COX-2 inhibi-
tors was identified. Figure 2 reports the MDL substructure 

Table 1  Activity thresholds for 26,092 commercial compounds 
tested at 10 μM concentration against HDAC7, classified on the 
basis of enzyme activity percent of inhibition

Activity class N. of compounds % of inhibition

Inactive 23,750  < 19

Weak 2141 19–33

Moderate 144 33–50

Strong 37 50–80

Very strong 20  > 80



Page 4 of 19Manelfi et al. J Cheminform           (2021) 13:54 

query and the corresponding SMARTS string used to 
retrieve the molecules containing this substructure.

These 224 molecules correspond to 84 different scaf-
folds if the less abstracted 1d representation is used 
(Table  2), thus resulting impossible to associate them 

each other as belonging to the same substructure. Fur-
thermore, we found that 53 out of 84 Bemis-Murko 
scaffolds (63.1%), have one or more additional rings, cor-
responding to 82 of the 224 molecules (36.6%) and clus-
tered in 34 groups according to the 1a representation, 
whereas the remaining 142 molecules, with exactly 3 
rings, corresponding to 31 scaffolds based on the 1d rep-
resentation, collapse to only one cluster if the 1a repre-
sentation is used.

Identification of nine correlated scaffold representations
In “Molecular Anatomy” we used, as starting point, the 
widely accepted scaffold abstraction representation (here 
called Basic Scaffold), which is generated by removing all 
side chains and terminal atoms. Then, we defined a set of 
nine molecular frameworks (MF) at different abstraction 
levels to match different side chain definitions, as showed 
in Fig.  3 for the COX-2 inhibitor Polmacoxib. We used 
two sets of pruning rules able to determine a multidi-
mensional hierarchy.

The first set of rules is based on an increased level of 
structural information with respect to the basic scaffold. 

Fig. 1  Possible scaffold definitions for the COX-2 inhibitor Polmacoxib: a is the most abstracted representation, obtained removing both bond and 
atom type; b and c representations retain, respectively, only bond and atom type; d corresponds to the Bemis-Murcko scaffold; e is the full structure 
of the Polmacoxib

Fig. 2  a MDL substructure query of the COX-2 inhibitors most common moiety (any atoms and any bonds and b the corresponding SMARTS string

Table 2  Clusterization of the 816 COX-2 inhibitors in preclinical 
development or in a higher phase, and of the subset of those 
matching the MDL substructure reported in Fig.  2. Clusters 
were obtained for each representation type, distinguishing the 
number of those containing only molecules with exactly 3 or 
more than 3 rings

All Matching 
the MDL 
substructure

With 
only 3 
rings

With more 
than 3 
rings

N. of molecules 816 224 142 82

Representation type N. of clusters

1a 277 35 1 34

1b 366 59 11 48

1c 412 78 27 51

1d 434 84 31 53
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In a first step, terminal atoms with bond order greater 
than one are maintained (Decorated Scaffold); in a sec-
ond step, the longest atom chain, considering also sub-
stitutions, is retained but all terminal non-carbon atoms, 
belonging to side chains, are iteratively pruned (Aug-
mented Scaffold). In case that no terminal atoms remain 
removing all terminal non-carbon atom with a bond 
order equal to 1, decorated and augmented scaffold coin-
cide. Some examples reported in Fig.  4  explain these 
rules, applied to different possible cases.

The second set of rules, conversely, increases chemical 
abstraction by removing the atom type label and then the 
bond order, generating, respectively, a Framework and a 
Wireframe for each level of the scaffold (basic, decorated 
and augmented), thus finally producing nine molecular 
representations with a hierarchical correlation.

Fragmentation rules definition
To further overcome one general limitation of the scaf-
fold based techniques [12, 14, 32] that, by definition, mol-
ecules sharing the same scaffold only partially belong to 
distinct clusters, in “Molecular Anatomy” approach we 
have implemented an unbiased fragmentation scheme 
that can be applied in parallel to all nine scaffold repre-
sentations described above. These rules are explained in 
Fig. 5, applied to specific molecules chosen on represent-
ative purpose. The first rule (Fig. 5a) depicts an example 
of fragmentation based on an exhaustive and progres-
sive elimination of all the internal chains from the scaf-
fold. As second rule, unbiased ring disassembly was also 
implemented; the methodology for ring decomposition 
involves the removal of all fused rings, allowing their 
opening into fragments (Fig. 5b). For sake of consistency, 
we also introduced a third rule to remove internal rings 
(Fig. 5c).

Fig. 3  Representation of the nine levels of structure decomposition for the COX-2 inhibitor Polmacoxib
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The here reported fragmentation and deconstruction 
introduce other hierarchies, meaning that each fragment 
of the original scaffold is related with all the other rep-
resentations in a multi-dimensional space. As a result 
of this multi-dimensional hierarchical scaffold analysis, 
the entire set of generated molecular frameworks are 
highly interconnected, and it is possible to move from 
one to another following SAR. To clarify this concept, 
Fig.  6 reports an example showing how the combina-
tion of fragments and molecular frameworks at different 
abstraction levels allows to cluster molecules with differ-
ent scaffolds.

Network representation of “Molecular Anatomy”’s 
frameworks
The software Cytoscape was used for creating and visu-
alizing an MF-based network, which was also integrated 
with activity data for the SAR analysis.  This network 
provides a full graphical representation of the dataset 
composition, allowing to easily navigate through the 
molecular frameworks and their hierarchical correlation. 
A Pipeline Pilot protocol was implemented to prepare the 
data matrix needed for the visualization, in the format 
required for the import process.

Each molecule from the dataset of 816 COX-2 inhibi-
tors was described according to the nine molecular rep-
resentations implemented in the “Molecular Anatomy” 
approach (Additional file 3: Table S2); then, a unique list 
of frameworks was obtained (Additional file 4: Table S3), 
keeping the less abstracted one in case of duplicate struc-
tures (when a same scaffold structure was obtained with 
different representations), corresponding to the nodes 
of the network. All possible parent–child relationships 
between the nine molecular frameworks of each mol-
ecule were generated, as reported in Additional file  5: 
Table  S4, according to the hierarchical relationships 
between the representation types shown in Fig. 3, corre-
sponding to the edges of the network.

To fully exploit this graphical representation, the net-
work data matrix can be integrated with the enrichment 
factors (EF) calculated, according to Eq.  (1), for each 
molecular framework (MF) according to the activity data 
of the corresponding molecules, keeping the highest EF 
value in case of duplicate structures when the unique list 
of frameworks is generated.

(1)E.F =
MF ratio

Total ratio

Fig. 4  Augmented scaffold rules to identify the longest atom path: in the first step, all terminal non carbon atoms with a bond order equal to 1 
are removed, in the second step the longest carbon chain ending with a carbon atom is identified. Three examples explain some possible cases (a) 
three different paths can be identified and the longest is retained (the first); b three paths can be identified two of them are the longest with the 
same length and the first identified is retained; c only one path can be identified
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where

In order to focus the network visualization on the most 
relevant dataset information, the nodes associated with 
EF = 0 can be filtered out, thus stepping through the 
nodes with increasingly higher EF values, as described in 
the HDAC7 case study (see “Results and discussion”).

A fully connected network representation by means 
of “Molecular Anatomy”’s frameworks and fragments
“Molecular Anatomy” allows, as already described, 
to derive trees in multiple dimensions such as wire-
frame > framework > scaffold, or augmented > deco-
rated > basic or wireframe > ring disassembly > fragments 

(2)MF ratio =
MF actives

MF actives +MF inactives

(3)MF actives = number of active molecules having a specific MF

(4)Total ratio =
Total actives

Total actives + Total inactives

and in all the other possible directions maximizing the 
SAR information of the dataset. The network visualiza-
tion can be extended also to the fragments to obtain a 
fully connected network, considering that the smallest 

fragments (e.g. benzene ring) are shared by a huge num-
ber of the original molecules. In this implementation, 
the network nodes can be molecular frameworks, frag-
ments or entire small molecules, and the direction of the 
edges, defined by the fragmentation rule, starts from the 
originator fragment and end up into the corresponding 
fragments.

Molecular Anatomy Web interface implementation
The above-described protocol is freely accessible at 
https://​ma.​exsca​late.​eu. The web interface was imple-
mented using LAMP (Linux Apache MariaDB PHP), an 
open source Web development platform that allows a 
fluent and responsive user experience in displaying and 

Fig. 5  Representation of the hierarchical decomposition of a molecule by the exhaustive and progressive elimination of (a) all the chains from the 
scaffold, b all fused rings from the scaffold, and c all internal rings from the scaffold

https://ma.exscalate.eu
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handling the output data, which in this case are calcu-
lated on the fly in a completely automated Pipeline Pilot 
workflow.

Implementation of Molecular Anatomy approach in Knime
The Pipeline Pilot protocol for the preparation of the data 
matrix was also re-implemented in Knime 4.3.2 by means 
of in-house Python scripts and taking advantage of the 
available RDKit [33] and Indigo nodes [34].

Results and discussion
Comparison between common scaffold representations 
and “Molecular Anatomy” to perform SAR analysis
As shown in “Methods” section for to the COX-2 inhibi-
tors dataset, scaffold representations with high level of 
abstraction, showed in Fig.  1a–b for Polmacoxib, per-
form generally better than the others in the identification 
of relevant chemotypes. Table  2 summarizes the results 
obtained for each representation in terms of number of 
clusters generated, starting, on one hand, from all the 
816 COX-2 inhibitors in preclinical development or in 
a higher phase, and, on the other hand, from the subset 
of the COX-2 inhibitors matching the MDL substructure 
reported in Fig.  2, the most common COX-2 inhibitor 

moiety. In particular, the number of clusters containing 
the molecules matching the common substructure with 
exactly or more than 3 rings was specified.

Representation 1a clusters together most of the well-
known marketed drugs, such as valdecoxib and celecoxib, 
as well as many others leads and experimental drugs, and 
collapses all the 142 active molecules with exactly 3 rings 
to a single cluster. This cluster likely includes also several 
inactive molecules. Interestingly, we can note that, even 
though this representation is used, still almost the 40% of 
the scaffold information, corresponding to the molecules 
with additional rings, would be lost in unrelated clusters, 
impairing the identification of the most relevant addi-
tional structural information.

Using the less abstracted representation 1d, we can 
retrieve and distinguish the most diverse COX-2 inhibi-
tor scaffolds, even if this information is distributed in 84 
clusters considering both those with 3 or more rings. Fur-
thermore, an intermediate representation as 1b, where 
only the atom type information is removed, could allow a 
more effective clustering of the relevant structural infor-
mation, identifying only 11 different frameworks con-
taining molecules with exactly 3 rings, instead of 31; but, 
almost the same number of clusters containing molecules 

Fig. 6  Fragments and molecular frameworks at different abstraction levels can be combined to overcome the limits of an approach based on a 
single representation
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with more than 3 rings is generated with the two repre-
sentations (48 instead of 53).

This example on COX-2 inhibitors clearly shows how 
this kind of analysis strongly depends on the nature of the 
dataset; each scaffold abstraction of Fig. 1 provides some 
important structural information but none of them is suf-
ficient, alone, to capture the complexity of the heteroge-
neous ensemble of molecules. Only the integration of the 
information captured from the different scaffold abstrac-
tions, in a Multi-Dimensional Hierarchical Scaffold Anal-
ysis, allows to effectively map the entire chemical space 
of multi scaffold libraries. Furthermore, the combination 
of the “Molecular Anatomy” approach, the fragmentation 
rules and the network representation allows to imme-
diately focus the attention on the most interesting and 
useful structural information, easily navigating among 
several structural clusters, moving from a molecular 
framework to another on the basis of their hierarchy and 
according to the SAR.

Attempts to identify more relevant chemical moieties 
have been presented in the past, for example the rule-
based decompositions proposed by Schuffenhauer et  al. 
[32], schematized in Fig.  7 for three COX-2 inhibitor 
scaffolds. However, a clear limitation resides in the dif-
ficulty to define a priori a set of rules able to maintain a 
general consistency with SAR information.

The method that we propose, involving the combi-
nation of correlated molecular frameworks and frag-
ments, is able to efficiently identify relevant chemical 
moieties, and to cluster together active molecules (also 
in the nanomolar range) belonging to different molecu-
lar classes within HTS campaigns, capturing most of the 
SAR information.

To fully exploit the hierarchical correlation among the 
molecular frameworks and to generate a full graphical 
representation of the analyzed dataset, we also propose 

a network visualization. Actually, the combination of the 
MF approach with a network representation provides a 
more convenient tool for SAR evaluation and visualiza-
tion [35–38], usefully guiding the user from a molecular 
framework to another, on the basis of their hierarchy in 
the direction of increasing or decreasing level of abstrac-
tion and according to the SAR.

Figure 8 shows the complete network obtained for the 
dataset of 816 COX-2 inhibitors. As reported in the list 
of statistical parameters (Fig.  8b), 277 connected com-
ponents were generated, corresponding to the clusters 
obtained using the most abstracted (basic wireframe) 
representation. It is possible to clearly note the biggest 
cluster at the top of Fig.  8a corresponding to the 142 
molecules with exactly 3 rings (Table  2), all sharing the 
basic wireframe 1a. Figure 8c reports the hierarchical vis-
ualization of a smaller cluster, to further show how this 
graphical representation of the data matrix consists in an 
oriented network, where nodes are in general molecular 
frameworks, and the direction of the edges is defined by 
the direction of increasing abstraction level of the molec-
ular representations.

Furthermore, it is possible to retrieve the relationships 
among the diverse representations within this cluster 
and, focusing on the most interconnected frameworks, to 
identify the structural characteristic representative of the 
active molecules, as shown in Fig. 9. On the other hand, 
the network visualization clearly shows the high number 
of singletons that would be dispersed considering only 
the representation 1a. Here, thanks to the use of the frag-
mentation, these singletons can be related each other if 
containing the same fragments, allowing to easily verify 
if they contain characteristics in common with relevant 
clusters of actives.

Focusing on the fragments related to the basic wire-
frame representation, all the clusters identified in Fig. 8a 

Fig. 7  A tentative rule-based decomposition is represented in green; in this case the reasonable hypothesis that phenyl rings are less relevant than 
heterocyclic ones leads to sub-scaffolds lacking the COX-2 inhibitors moiety
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can be connected each other in a unique network, as can 
be visualized in Additional file 1: Figure S1.

Furthermore, Additional file  1: Figure S2 shows the 
fragments with the highest indegree value, in particular 
cyclohexane and cyclopentane, which means the highest 
number of fragments connected within the network in 
Additional file 1: Figure S1.

Some qualitative considerations about the obtained 
networks can be done. As a first point, it is reasonable 
that highly connected singletons tend to be small frag-
ments shared by a large number of molecules included 
in the library (as shown in Additional file  1: Figure 
S2). On the contrary, low molecular weight singletons 
involved in a small number of connections represent 
potential interesting decorations of a specific group of 
the original molecules. If this group is enriched in a 
specific activity of interest, the corresponding single-
ton fragments connecting all the molecules included in 

the group, could represent a pharmacophore. As a sec-
ond point, high molecular weight singleton fragments, 
connecting cluster of molecules with enriched activ-
ity, could represent chemical scaffolds or the “minimal 
chemical entity” that confers the selected activity to 
the cluster. As a third point, it is comprehensible that 
the meaning of the singleton constituting the networks 
may change according to the fragmentation rules used. 
While the approach suggested herein consists in a 
purely informatics fragmentation procedure, an alter-
native method is possible, where singletons consist in 
reaction intermediates derived applying retrosynthetic 
rules to the original molecules. In other words, in this 
case the network would contains, as “fragments” the 
precursors used to synthesize larger molecules, and 
as pathways connecting couple of singletons, possible 
synthetic strategies to attach a specific interesting low 

Fig. 8  a Cytoscape network visualization of the 816 COX-2 inhibitors subset in preclinical development or in a higher phase; b main statistical 
parameters of the network; c hierarchical visualization of a smaller cluster used to show and explain the oriented network, where nodes are 
molecular frameworks connected in the direction of increasing abstraction level of the molecular representations
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molecular weight singleton to another one representing, 
for example, a scaffold.

In our experience, the “Molecular Anatomy”’ approach 
allows deciphering more easily the connections between 
chemotypes. In particular, filtering by EF and ranking by 
number of connections for each cluster allow to focus the 
analysis on the highly connected singletons. These frame-
works have high relevance, considering that they connect 
different chemotypes without overlapping fragments and, 
then, could, suggest the most significant parts of active 
molecules, the fragments that could be exchanged, and 
the bond order and the atom type relevant for SAR deri-
vation. This approach allows to include in SAR analysis 
also molecules usually underestimated because single-
tons, or compounds with small ligand efficacy, but here 
connected to relevant clusters corresponding to specific 
series of compounds. In this way, a valuable information 
could be added in the SAR of this major hit series, con-
necting them to additional latent ones [39]. This method 
could be considered an extension of the already proposed 
compound set enrichment [17, 40, 41], based on an 
implementation of an higher level of abstraction, poten-
tially able to identify new hit series connected with the 
conventional one.

Case study I: SAR analysis of an HTS campaign on HDAC7
In order to better illustrate the molecular scaffold rep-
resentations and the fragmentations rules that we 

introduced and with the intent to clarify the advan-
tages to use the network visualization proposed for SAR 
evaluation, we present, as case study, the SAR analysis 
of the HTS campaign on HDAC7 performed for 26,092 
compounds.

First, the set of nine molecular frameworks at dif-
ferent abstraction levels were generated for the entire 
dataset. For each of the nine frameworks, the EF was 
calculated, based on the inhibition data of the corre-
sponding molecules; molecules were considered as 
active if belonging to the activity classes moderate, 
strong and very strong (Table 1).

Figure 10 shows the complete network obtained with 
Cytoscape, as described in “Methods” section, for this 
dataset, that clearly appears a more complex case study 
compared to the previous one, thus chosen to show the 
potentiality of our approach. 3061 connected compo-
nents were generated, corresponding to the clusters 
obtained using the most abstracted (basic wireframe) 
representation.

The most interesting basic wireframe in terms of SAR 
evaluations are selected (Additional file  1: Figure S3), 
filtered by the highest values of EF and number of con-
nected active molecules, to focus the analysis on the 
abstracted scaffolds accounting for more actives.

Figure  11a reports the network corresponding to one 
of these selected clusters, using a hierarchical layout for 
a better visualization. The complexity of this specific 

Fig. 9  Visualization of the most populated cluster, starting from the network visualization of the 816 COX-2 inhibitors shown in Fig. 8a, 
corresponding to the 142 COX-2 inhibitors having the same basic wireframe, zoomed in the Figure. It is also possible to identify the molecular 
frameworks with more connection in the network and more representative of the active molecules (violet bordered)
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network is due to the high number of nodes correspond-
ing to all the molecules (on top, in light blue) and rela-
tive molecular frameworks (all other nodes) matching 
the basic wireframe reported in Fig.  11c. This complex 
network may however be considerably simplified remov-
ing nodes with EF value equal to 0, that is, removing all 
the nodes connected to inactive molecules. Applying this 
filter, a more clear and useful network can be obtained 
(Fig. 11b), with the most relevant dataset information. In 
this way, it is possible to easily extract only the interesting 
pathways in terms of SAR analysis, starting from a huge 
number of connections that ensure a complete evaluation 
of the structural information.

In more detail, starting from the basic wireframe 
selected (Fig.  11c), thanks to the network visualization, 
more interesting sub-clusters can be identified corre-
sponding to the decorated wireframes reported in Fig. 12. 
The EF values of these decorated wireframes are higher 
than that of the basic wireframe in common, meaning 

that such approach allows focusing on specific character-
istics of the active compounds.

Focusing on the increase of EF, for example moving 
from the basic wireframe (EF = 2.1) to the first decorated 
wireframe (EF = 7.8), allows to highlight interesting “hot-
spots”, identifying a specific feature of the active mol-
ecules structure (e.g. a protruding bond in position 1 of 
the spacer between the two rings).

Furthermore, it is also possible to move to the less 
abstracted representation within the network, the deco-
rated frameworks also reported in Fig.  12, that provide 
information about the bond order characteristics com-
mon to the active compounds. And so on, moving back 
through the network toward the lowest abstraction level 
is it possible to visualize the original molecules.

A first interesting consideration about these results 
concerns the introduction of decorations in our scaf-
fold representations: defining a description level in 
which protruding bonds are added to the basic scaffold 

Fig. 10  a Cytoscape network visualization of the dataset of 26,092 compounds with inhibition data on HDAC7; b main statistical parameters of the 
network
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allows to better identify and distinguish the requirement 
essential for the activity. This point is clearly showed in 
Figs. 11 and 12, where moving from the basic to the deco-
rated wireframes with higher values of EF and number 
of connections, it is possible to retrieve all the clusters 
containing the active molecules. On the other hand, 12 
decorated wireframes and 37 decorated frameworks are 
identified in common with inactive molecules, another 
useful information to rationalize which scaffold decora-
tions are responsible of decrease or even loss of activity.

Finally, we want to show how the most useful SAR 
information can be obtained extending the analysis and 
the network to the fragments. When the fragmentation 
rules are applied to the dataset, the network visualization 
of the fragmented library allows to interconnect all the 
molecular frameworks containing the same fragment and 
the EF can be recalculated for each fragment according 

to the activity data of all the molecules connected via the 
corresponding molecular frameworks.

In particular, focusing the attention on the interest-
ing structures above identified, Fig. 13 reports the same 
scheme of Fig. 12, with the EF values recalculated consid-
ering all the clusters identified by molecular frameworks 
corresponding to superscaffolds of the scaffolds visual-
ized (superframeworks).

Comparing Fig. 12 and 13, it is possible to identify the 
molecular frameworks, the EF of which increases when 
they are considered as fragments, thus containing rel-
evant structural characteristic of active molecules.

To better explain the contribution of the integration of 
fragments and molecular frameworks in the SAR analy-
sis, we report on top of Fig.  14, as example, the deco-
rated wireframe of Fig.  13 showing the higher increase 
of EF value respect to Fig. 12 and the corresponding five 
decorated wireframes retrieved in the fragmented library 

Fig. 11  a Network corresponding to the cluster of molecules having the same basic wireframe shown in panel (c). b The same network is simplified 
by removing nodes with EF values equal to 0, that is molecules and scaffolds not relevant in terms of SAR information. Nodes correspond to the 
molecules, on the top of the hierarchical visualization colored in purple with a border width depending on the activity class, and to the relative 
molecular frameworks, colored according to the EF value reported as label of the node (from orange to green in the direction of ascending values) 
and sized according to the number of actives
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containing it as a fragment. For each of these decorated 
wireframes, the EF value is reported and that of the com-
mon wireframe on top, here treated as a fragment, is 
recalculated, adding the contribution of the other five 
ones. For each decorated wireframe the corresponding 
decorated framework and scaffold of the active molecules 
are reported in the lower panel of Fig. 14.

This example shows how this approach allows to 
extract structural information from the different levels 
of scaffold’s representations. The decorated wireframe 
on top of Fig. 14, identified on the basis of the higher EF 
value, represents the common pharmacophore of nine 
active compounds, corresponding to two rings connected 
by a five heavy atoms linker with an H-bond acceptor in 
position 2. The five decorated wireframes matching this 
pharmacophore enrich the information, showing that 
the structural flexibility can be reduced with a cycliza-
tion, involving different positions of the linker, and this 
information can clearly orient the design of new com-
pounds. Moving to the level of framework, the informa-
tion related to the double bonds can be added, showing 
that in most of the active compounds both the rings are 
aromatic. This information might suggest that aliphatic 
rings could also be included in active compounds. A sim-
ple search among the library frameworks allows to easily 

verify if this feature is already present in the library, in 
inactive compounds, otherwise it may represent a pos-
sible modification to be explored. Finally, moving to the 
scaffold level, the information related to the atom type 
can be added, showing if ketone, amide, urea or thio-
urea are preferred moieties in the active compounds, 
and thus providing useful insights for the design of new 
compounds.

We can conclude that, even if in this particular case 
study the decorated wireframe seems the most informa-
tive representation, in general the integration of all 
molecular frameworks and fragments in the network vis-
ualization is crucial for capturing the most relevant infor-
mation in compound libraries SAR analysis.

Performances of different molecular frameworks in terms 
of EF
In order to investigate which level of scaffold abstraction 
leads to the highest enrichment factors, we employed 
three further datasets from ChEMBL (see “Methods” 
section) together with the above-described HDAC7 data-
set. The nine molecular frameworks were generated for 
all these datasets and the corresponding EF were calcu-
lated. The top 50 frameworks with the highest EF values 
and number of connected molecules were selected; the 

Fig. 12  Decorated wireframes and decorated frameworks identified according to increased values of EF within the cluster analyzed in Fig. 11; this 
analysis allows to retrieve specific characteristics of the active compounds
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plot in Fig. 15 shows the number of the selected frame-
works for each of the nine representations. As pointed 
out above, the basic wireframe often represents the 
molecular framework that performs better in the iden-
tification of relevant chemotypes of active molecules, in 
particular for larger and diverse datasets, such as Mpro 
and HDAC7. However, also the other representations, in 
some cases, are much informative, in particular for cap-
turing the most significant features of molecules among 
active compound series. Therefore, the integration of the 
information retrieved from the different scaffold abstrac-
tions allows to more effectively map the chemical space 
of different types of compound datasets.

Web interface
The “Molecular Anatomy” approach is available as a 
web application, freely accessible at https://​ma.​exsca​
late.​eu. The user can upload a text file containing one 
or more  compounds, encoded as canonical SMILES, to 
generate the molecular frameworks related to the nine 
molecular representations at different abstraction levels.

The output consists of four tables, resembling Addi-
tional files 2, 3, 4, 5: Table  S1–S4 of this paper, named 
Molecular Frameworks for each SMILES, Molecular 
Frameworks list, Attribute file for network, Network file. 

Each output table can be downloaded as .csv file. Specifi-
cally, the first table contains the uploaded compounds, 
and the related nine molecular representations, encoded 
as canonical SMILES and InChIKey, listed in the same 
row. In the second output table, each compound and the 
corresponding nine molecular representations are listed 
as single rows. The third output table consists of the list 
of unique frameworks (attribute file) whereas the fourth 
output table (network file) lists all the parent–child rela-
tionships which can be used for the network visualization 
in Cytoscape, permitting an efficient navigation in the 
scaffold’s space that can be readily used for SAR analysis.

The dataset of 816 COX-2 inhibitors used for this study 
has been provided within the web interface as template 
file to test the application (by clicking on the “Submit 
Example” button).

Conclusions
We propose “Molecular Anatomy” as a fast and flexible 
method for the analysis of the chemical space, library 
design and SAR studies.

This set of tools could be useful in the management of 
large compounds collections, for example in the analysis 
of HTS campaign results, as well as in focused libraries 
design. On the other side, this kind of data organization 

Fig. 13  After library fragmentation, the decorated wireframes and decorated frameworks described in Fig. 12 are treated as fragments, allowing to 
retrieve all the molecular frameworks containing them (superframeworks). The corresponding EF values are recalculated adding the contribution of 
all the superframeworks

https://ma.exscalate.eu
https://ma.exscalate.eu
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allows to efficiently analyze scaffold-activity relation-
ship, identify relevant clusters and easily connect differ-
ent chemotypes with biological activity. The limitation 
in the underestimation of the side chain effect can be 
easily circumvented combining the “Molecular Anat-
omy” approach with other techniques, such as matched 
molecular pairs (MMP) [42–44]. In this case, the iden-
tified molecular frameworks can make MMP equally 
or even more efficient and consistent than other meth-
ods [45, 46]. Furthermore, using MA with a higher level 
of abstraction, it is possible to compare effectively SAR 
behaviors on multiple scaffolds, or support scaffold hop-
ping strategies.

Another interesting application, still in an early phase 
of evaluation, is the possibility to annotate a library 
according to therapeutic areas information of classified 
drugs, in order to accelerate the identification of target-
based or disease-based libraries, using for example anno-
tated database such as MDDR, WOMBAT [47], or public 
databases [48].

Furthermore, molecular frameworks can be prof-
itably used for compounds clustering and database 
indexing. One of the most critical tasks in the design of 
large diverse libraries is the comprehensive mapping of 
chemical space. The generation of groups that can be 

considered as “series” in a medicinal chemist’s percep-
tion represents an important asset of the scaffold-based 
techniques. However, the clusters generated by cur-
rently available approaches generally tend to contain an 
elevated number of scaffolds, hampering the selection of 
chemical series for follow-up activities. Some improve-
ments have been introduced to overcome this problem, 
for example by means of Maximum Overlapping Set 
(MOS) [49]. The main advantage of scaffold-based clus-
tering techniques is that they do not require the calcu-
lation of similarity indices, nor pairwise similarities: 
indeed, the scaffold structure itself represents the aggre-
gation rule, so that each molecule is assigned to a cluster 
regardless of the nature of the neighbors. In this sense, 
the approach can be defined as a “Natural Clustering” 
(NC) method. Another important feature is that no bias, 
like the average number of molecules per group or the 
expected number of scaffolds, has to be introduced. This 
is very useful when some over-represented scaffolds may 
drive the analysis. Therefore, MA enables the hierarchi-
cal clustering, considerably extending the potentialities of 
scaffold-based clustering.

Finally, NC makes relational databases ideal for chemi-
cal graph-based compound clustering applications. The 
composition of a specific cluster is independent from the 

Fig. 14  One of the decorated wireframes (colored in black, on the top) corresponds to a common fragment of five decorated wireframes 
(highlighted in cyan) retrieved in the fragmented library. These, in turn, are also represented into the corresponding decorated frameworks and 
scaffolds
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chemical structure of the other clusters, and, once the 
scaffold abstraction is defined, isn’t needed to re-cluster 
the whole library.

Organizing molecules within a database by means of 
clustered SQL indices (based on the MA), can dramati-
cally reduce the time required for substructure searches, 
as reported by Wilkens et  al. [50] and Masciocchi et  al. 
[51]. In our implementation, due to the higher abstrac-
tion of the frameworks and wireframes, it is also possi-
ble to further speed up substructure searches using these 
representations as a wild character-like query, such as 
“any atom” or “any bond”. Interestingly, MA are, per se, 
searchable molecular representations, and this allows to 
define local similarities in substructure searches space. 
For example, the scaffold of a target molecule could be 
searched with either a lower or higher similarity to the 
reference template. Besides that, it is also possible to con-
strain the local diversity of the scaffold by requiring, for 
example, the presence of a specific hydrogen bond accep-
tor at a given position on the scaffold, or even specifying 
a LogP range.

All these prospective applications make the MA 
approach a valuable cheminformatics tool that can con-
siderably improve structural data analysis.
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HTS: High-throughput screening; SAR: Structure activity relationships; MCS: 
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Overlapping Set.
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cal development or in a higher phase, described according to the nine 
molecular representations of “Molecular Anatomy”. Each compound and 
the related nine molecular representations are encoded as canonical 
SMILES and InChIKey, respectively, and are listed in the same row.

Additional file 3: Table S2. Dataset of 816 COX-2 inhibitors reported in 
Table S1; each compound and the related nine molecular representations 
are encoded as canonical SMILES and InChIKey and are listed as single 
rows. From this list, Tables S3 and S4 are generated.

Additional file 4: Table S3. List of unique frameworks obtained from the 
molecules in Table S2.

Additional file 5: Table S4. List of parent–child relationships between the 
nine molecular frameworks of molecules listed in Table S2.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Datasets generated and analyzed during this study are included in this pub-
lished article and its Additional files. The Pipeline Pilot protocol employed for 
the current study can be downloaded at: https://​github.​com/​andre​abecc​ari/​
Molec​ular_​Anato​my. A reimplementation of this protocol in Knime is available 
at the same address. The protocol is also available as a web application, freely 
accessible at https://​ma.​exsca​late.​eu.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dompé Farmaceutici SpA, Via Campo di Pile, 67100 L’Aquila, Italy. 2 Depart-
ment of Pharmacy, University of Naples “Federico II”, 80131 Napoli, Italy. 

Received: 30 December 2020   Accepted: 13 June 2021

References
	1.	 Macarron R (2015) Chemical libraries: how dark is HTS dark matter? Nat 

Chem Biol 11:904–905. https://​doi.​org/​10.​1038/​nchem​bio.​1937
	2.	 Bender A, Jenkins JL, Scheiber J et al (2009) How similar are similar-

ity searching methods? A principal component analysis of molecular 
descriptor space. J Chem Inf Model 49:108–119. https://​doi.​org/​10.​
1021/​ci800​249s

	3.	 Todeschini R, Consonni V, Xiang H et al (2012) Similarity coefficients for 
binary chemoinformatics data: overview and extended comparison 
using simulated and real data sets. J Chem Inf Model. https://​doi.​org/​
10.​1021/​ci300​261r

	4.	 Brown RD, Martin YC (1996) Use of structure−activity data to compare 
structure-based clustering methods and descriptors for use in com-
pound selection. J Chem Inf Comput Sci 36:572–584. https://​doi.​org/​
10.​1021/​ci950​1047

	5.	 McGregor MJ, Pallai PV (1997) Clustering of large databases of com-
pounds: using the MDL “Keys” as structural descriptors. J Chem Inf 
Comput Sci 37:443–448. https://​doi.​org/​10.​1021/​ci960​151e

	6.	 Raymond JW, Blankley CJ, Willett P (2003) Comparison of chemical 
clustering methods using graph- and fingerprint-based similarity 
measures. J Mol Graph Model 21:421–433

	7.	 Katritzky AR, Kiely JS, Hebert N, Chassaing C (2000) Definition of tem-
plates within combinatorial libraries. J Comb Chem 2:2–5

	8.	 Hu Y, Bajorath J (2011) Target family-directed exploration of scaffolds 
with different SAR profiles. J Chem Inf Model 51:3138–3148. https://​
doi.​org/​10.​1021/​ci200​461w

	9.	 Bonchev D, Rouvray DH (1991) Chemical graph theory : introduction 
and fundamentals. Abacus, New York, London

	10.	 Bemis GW, Murcko MA (1996) The properties of known drugs. 1 Molecular 
frameworks. J Med Chem 39:2887–2893. https://​doi.​org/​10.​1021/​jm960​
2928

	11.	 Hu Y, Stumpfe D, Bajorath J (2016) Computational exploration of molecu-
lar scaffolds in medicinal chemistry. J Med Chem 59:4062–4076. https://​
doi.​org/​10.​1021/​acs.​jmedc​hem.​5b017​46

	12.	 Wilkens SJ, Janes J, Su AI (2005) HierS: hierarchical scaffold clustering 
using topological chemical graphs. J Med Chem 48:3182–3193. https://​
doi.​org/​10.​1021/​jm049​032d

	13.	 Schuffenhauer A, Ertl P, Roggo S et al (2007) The scaffold tree–visualiza-
tion of the scaffold universe by hierarchical scaffold classification. J Chem 
Inf Model 47:47–58. https://​doi.​org/​10.​1021/​ci600​338x

	14.	 Wetzel S, Klein K, Renner S et al (2009) Interactive exploration of chemical 
space with Scaffold Hunter. Nat Chem Biol 5:581–583. https://​doi.​org/​10.​
1038/​nchem​bio.​187

	15.	 Agrafiotis DK, Wiener JJ (2010) Scaffold explorer: an interactive tool for 
organizing and mining structure-activity data spanning multiple chemo-
types. J Med Chem 53:5002–5011. https://​doi.​org/​10.​1021/​jm100​4495

	16.	 Gianti E, Sartori L (2008) Identification and selection of “privileged frag-
ments” suitable for primary screening. J Chem Inf Model 48:2129–2139. 
https://​doi.​org/​10.​1021/​ci800​219h

	17.	 Varin T, Schuffenhauer A, Ertl P, Renner S (2011) Mining for bioactive scaf-
folds with scaffold networks: improved compound set enrichment from 
primary screening data. J Chem Inf Model 51:1528–1538. https://​doi.​org/​
10.​1021/​ci200​0924

	18.	 Lipkus AH, Yuan Q, Lucas KA et al (2008) Structural diversity of organic 
chemistry. A scaffold analysis of the CAS Registry. J Org Chem 73:4443–
4451. https://​doi.​org/​10.​1021/​jo800​1276

	19.	 Vogt M, Huang Y, Bajorath J (2011) From activity cliffs to activity ridges: 
informative data structures for SAR analysis. J Chem Inf Model 51:1848–
1856. https://​doi.​org/​10.​1021/​ci200​2473

	20.	 Hu Y, Stumpfe D, Bajorath J (2011) Lessons learned from molecular scaf-
fold analysis. J Chem Inf Model 51:1742–1753. https://​doi.​org/​10.​1021/​
ci200​179y

	21.	 Bandyopadhyay D, Kreatsoulas C, Brady PG et al (2019) Scaffold-based 
analytics: enabling hit-to-lead decisions by visualizing chemical series 
linked across large datasets. J Chem Inf Model 59:4880–4892. https://​doi.​
org/​10.​1021/​acs.​jcim.​9b002​43

	22.	 Stumpfe D, Dimova D, Bajorath J (2016) Computational method for the 
systematic identification of analog series and key compounds represent-
ing series and their biological activity profiles. J Med Chem 59:7667–7676. 
https://​doi.​org/​10.​1021/​acs.​jmedc​hem.​6b009​06

	23.	 Dimova D, Stumpfe D, Hu Y, Bajorath J (2016) Analog series-based scaf-
folds: computational design and exploration of a new type of molecular 
scaffolds for medicinal chemistry. Futur Sci OA 2:FSO149. https://​doi.​org/​
10.​4155/​fsoa-​2016-​0058

	24.	 Cerchia C, Dimova D, Lavecchia A, Bajorath J (2017) Exploring structural 
relationships between bioactive and commercial chemical space and 
developing target hypotheses for compound acquisition. ACS Omega 
2:7760–7766. https://​doi.​org/​10.​1021/​acsom​ega.​7b013​38

	25.	 Naveja JJ, Medina-Franco JL (2019) Finding constellations in chemical 
space through core analysis. Front Chem 7:510

	26.	 Hariharan R, Janakiraman A, Nilakantan R et al (2011) MultiMCS: a fast 
algorithm for the maximum common substructure problem on multiple 
molecules. J Chem Inf Model 51:788–806. https://​doi.​org/​10.​1021/​ci100​
297y

	27.	 Dassault Systèmes BIOVIA (2016) BIOVIA Pipeline Pilot.
	28.	 Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 

2017. Nucleic Acids Res 45:D945–D954. https://​doi.​org/​10.​1093/​nar/​
gkw10​74

	29.	 Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct 
deposition of bioassay data. Nucleic Acids Res 47:D930–D940. https://​doi.​
org/​10.​1093/​nar/​gky10​75

	30.	 Kuzikov M, Costanzi E, Reinshagen J et al (2021) Identification of inhibitors 
of SARS-CoV-2 3CL-pro enzymatic activity using a small molecule in vitro 

https://github.com/andreabeccari/Molecular_Anatomy
https://github.com/andreabeccari/Molecular_Anatomy
https://ma.exscalate.eu
https://doi.org/10.1038/nchembio.1937
https://doi.org/10.1021/ci800249s
https://doi.org/10.1021/ci800249s
https://doi.org/10.1021/ci300261r
https://doi.org/10.1021/ci300261r
https://doi.org/10.1021/ci9501047
https://doi.org/10.1021/ci9501047
https://doi.org/10.1021/ci960151e
https://doi.org/10.1021/ci200461w
https://doi.org/10.1021/ci200461w
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/acs.jmedchem.5b01746
https://doi.org/10.1021/acs.jmedchem.5b01746
https://doi.org/10.1021/jm049032d
https://doi.org/10.1021/jm049032d
https://doi.org/10.1021/ci600338x
https://doi.org/10.1038/nchembio.187
https://doi.org/10.1038/nchembio.187
https://doi.org/10.1021/jm1004495
https://doi.org/10.1021/ci800219h
https://doi.org/10.1021/ci2000924
https://doi.org/10.1021/ci2000924
https://doi.org/10.1021/jo8001276
https://doi.org/10.1021/ci2002473
https://doi.org/10.1021/ci200179y
https://doi.org/10.1021/ci200179y
https://doi.org/10.1021/acs.jcim.9b00243
https://doi.org/10.1021/acs.jcim.9b00243
https://doi.org/10.1021/acs.jmedchem.6b00906
https://doi.org/10.4155/fsoa-2016-0058
https://doi.org/10.4155/fsoa-2016-0058
https://doi.org/10.1021/acsomega.7b01338
https://doi.org/10.1021/ci100297y
https://doi.org/10.1021/ci100297y
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gky1075


Page 19 of 19Manelfi et al. J Cheminform           (2021) 13:54 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

repurposing screen. ACS Pharmacol Transl Sci. https://​doi.​org/​10.​1021/​
acspt​sci.​0c002​16

	31.	 Penning TD, Talley JJ, Bertenshaw SR et al (1997) Synthesis and biological 
evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibi-
tors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem 
40:1347–1365. https://​doi.​org/​10.​1021/​jm960​803q

	32.	 Ertl P, Schuffenhauer A, Renner S (2011) The scaffold tree: an efficient 
navigation in the scaffold universe. Methods Mol Biol 672:245–260. 
https://​doi.​org/​10.​1007/​978-1-​60761-​839-3_​10

	33.	 RDKit. https://​www.​rdkit.​org/. Accessed 28 May 2021
	34.	 GGA Software Services LLC Indigo Nodes for KNIME. http://​ggaso​ftware.​

com/​opens​ource/%​0Aind​igo. Accessed 28 May 2021
	35.	 Xiong B, Liu K, Wu J et al (2008) DrugViz: a Cytoscape plugin for visual-

izing and analyzing small molecule drugs in biological networks. Bioinfor-
matics 24:2117–2118. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btn389

	36.	 Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environ-
ment for integrated models of biomolecular interaction networks. 
Genome Res 13:2498–2504. https://​doi.​org/​10.​1101/​gr.​12393​03

	37.	 Iyer P, Stumpfe D, Bajorath J (2011) Molecular mechanism-based 
network-like similarity graphs reveal relationships between differ-
ent types of receptor ligands and structural changes that determine 
agonistic, inverse-agonistic, and antagonistic effects. J Chem Inf Model 
51:1281–1286. https://​doi.​org/​10.​1021/​ci200​1378

	38.	 Lepp Z, Huang C, Okada T (2009) Finding key members in compound 
libraries by analyzing networks of molecules assembled by structural 
similarity. J Chem Inf Model 49:2429–2443. https://​doi.​org/​10.​1021/​ci900​
1102

	39.	 Varin T, Didiot MC, Parker CN, Schuffenhauer A (2012) Latent hit series 
hidden in high-throughput screening data. J Med Chem 55:1161–1170. 
https://​doi.​org/​10.​1021/​jm201​328e

	40.	 Varin T, Gubler H, Parker CN et al (2010) Compound set enrichment: 
a novel approach to analysis of primary HTS data. J Chem Inf Model 
50:2067–2078. https://​doi.​org/​10.​1021/​ci100​203e

	41.	 Kruger F, Stiefl N, Landrum GA (2020) rdScaffoldNetwork: the Scaffold 
Network Implementation in RDKit. J Chem Inf Model 60:3331–3335. 
https://​doi.​org/​10.​1021/​acs.​jcim.​0c002​96

	42.	 Griffen E, Leach AG, Robb GR, Warner DJ (2011) Matched molecular pairs 
as a medicinal chemistry tool. J Med Chem 54:7739–7750. https://​doi.​
org/​10.​1021/​jm200​452d

	43.	 Wassermann AM, Bajorath J (2011) Large-scale exploration of bioisosteric 
replacements on the basis of matched molecular pairs. Future Med Chem 
3:425–436. https://​doi.​org/​10.​4155/​fmc.​10.​293

	44.	 Leach AG, Jones HD, Cosgrove DA et al (2006) Matched molecular pairs 
as a guide in the optimization of pharmaceutical properties; a study of 
aqueous solubility, plasma protein binding and oral exposure. J Med 
Chem 49:6672–6682. https://​doi.​org/​10.​1021/​jm060​5233

	45.	 Hussain J, Rea C (2010) Computationally efficient algorithm to identify 
matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 
50:339–348. https://​doi.​org/​10.​1021/​ci900​450m

	46.	 Hu X, Hu Y, Vogt M et al (2012) MMP-Cliffs: systematic identification of 
activity cliffs on the basis of matched molecular pairs. J Chem Inf Model 
52:1138–1145. https://​doi.​org/​10.​1021/​ci300​1138

	47.	 Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets 
for known drugs. Nature 462:175–181. https://​doi.​org/​10.​1038/​natur​
e08506

	48.	 Zhou Y, Zhou B, Chen K et al (2007) Large-scale annotation of small-mol-
ecule libraries using public databases. J Chem Inf Model 47:1386–1394. 
https://​doi.​org/​10.​1021/​ci700​092v

	49.	 Stahl M, Mauser H, Tsui M, Taylor NR (2005) A robust clustering method 
for chemical structures. J Med Chem 48:4358–4366. https://​doi.​org/​10.​
1021/​jm040​213p

	50.	 Wilkens SJ (2006) Relational database driven two-dimensional chemical 
graph analysis. Chem Biol Drug Des 68:135–138. https://​doi.​org/​10.​
1111/j.​1747-​0285.​2006.​00426.x

	51.	 Masciocchi J, Frau G, Fanton M et al (2009) MMsINC: a large-scale chemo-
informatics database. Nucleic Acids Res 37:D284–D290. https://​doi.​org/​
10.​1093/​nar/​gkn727

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/acsptsci.0c00216
https://doi.org/10.1021/acsptsci.0c00216
https://doi.org/10.1021/jm960803q
https://doi.org/10.1007/978-1-60761-839-3_10
https://www.rdkit.org/
http://ggasoftware.com/opensource/%0Aindigo
http://ggasoftware.com/opensource/%0Aindigo
https://doi.org/10.1093/bioinformatics/btn389
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1021/ci2001378
https://doi.org/10.1021/ci9001102
https://doi.org/10.1021/ci9001102
https://doi.org/10.1021/jm201328e
https://doi.org/10.1021/ci100203e
https://doi.org/10.1021/acs.jcim.0c00296
https://doi.org/10.1021/jm200452d
https://doi.org/10.1021/jm200452d
https://doi.org/10.4155/fmc.10.293
https://doi.org/10.1021/jm0605233
https://doi.org/10.1021/ci900450m
https://doi.org/10.1021/ci3001138
https://doi.org/10.1038/nature08506
https://doi.org/10.1038/nature08506
https://doi.org/10.1021/ci700092v
https://doi.org/10.1021/jm040213p
https://doi.org/10.1021/jm040213p
https://doi.org/10.1111/j.1747-0285.2006.00426.x
https://doi.org/10.1111/j.1747-0285.2006.00426.x
https://doi.org/10.1093/nar/gkn727
https://doi.org/10.1093/nar/gkn727

	“Molecular Anatomy”: a new multi-dimensional hierarchical scaffold analysis tool
	Abstract 
	Introduction
	Methods
	Dataset definition
	ChEMBL datasets
	Identification of common scaffold representations and evaluation of their performance
	Identification of nine correlated scaffold representations
	Fragmentation rules definition
	Network representation of “Molecular Anatomy”’s frameworks
	A fully connected network representation by means of “Molecular Anatomy”’s frameworks and fragments
	Molecular Anatomy Web interface implementation
	Implementation of Molecular Anatomy approach in Knime

	Results and discussion
	Comparison between common scaffold representations and “Molecular Anatomy” to perform SAR analysis
	Case study I: SAR analysis of an HTS campaign on HDAC7
	Performances of different molecular frameworks in terms of EF
	Web interface

	Conclusions
	References




